Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	14 (1968)
Heft:	1: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	MULTIPLIERS OF UNIFORM CONVERGENCE
Autor:	DeVore, Ronald
DOI:	https://doi.org/10.5169/seals-42347

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 03.02.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

MULTIPLIERS OF UNIFORM CONVERGENCE

by Ronald DeVore

1. Introduction. If A and B are two classes of 2π -periodic integrable functions we say that (λ_k) is a multiplier sequence from A into B and we write $(\lambda_k) \in (A, B)$ if whenever

$$\sum_{0}^{\infty} \left(a_n \cos nx + b_n \sin nx \right)$$

is the Fourier series of a function in A

$$\sum_{0}^{\infty} \lambda_n (a_n \cos nx + b_n \sin nx)$$

is the Fourier series of a function in *B*. Let *C* denote the class of 2π -periodic continuous functions and C_F the subclass of those functions in *C* whose Fourier series converges uniformly. Karamata [1] has shown that $(\lambda_k) \in (C, C_F)$ if and only if

(1.1)
$$\int_{0}^{2\pi} |\Lambda_{n}(t)| dt = O(1) \quad (n \to \infty)$$

where

$$\Lambda_n(t) = \sum_{0}^n \lambda_k \cos kt.$$

This theorem contains as a special case an earlier result of Tomić [2] who showed that if (λ_k) is monotone decreasing and convex (i.e. $\Delta^2 \lambda_k =$ $\lambda_k - 2\lambda_{k-1} + \lambda_{k-2} \ge 0$) or more generally quasi-convex (i.e. $\sum_{0}^{\infty} (k+1) |\Delta^2 \lambda_k|$ $<\infty$) then $(\lambda_k) \in (C, C_F)$ if and only if $\lambda_n \log n = O(1)$ $(n \to \infty)$.

It is interesting to see to what extent condition (1.1) can be relaxed if we restrict our attention to a sub-class of C determined by some structural property. For example, let ω be a modulus of continuity and C_{ω} the subclass of C consisting of those functions whose modulus of continuity ω (f, h) satisfies

$$\omega(f,h) = O(\omega(h)) \quad (h \to 0).$$

Then Tomić [3] has shown that for a quasi-convex sequence (λ_k) to be in (C_{ω}, C_F) it is sufficient that

(1.2)
$$\omega\left(\frac{1}{n}\right)\lambda_n\log n = o(1) \quad (n \to \infty).$$

Also Bojanic [4] has shown that sufficient conditions for (λ_k) to be in (C_{ω}, C_F) are

(1.3)
$$\int_{0}^{2\pi} \left| \sum_{k=0}^{n} \Lambda_{k}(t) \right| dt = O(n) \quad (n \to \infty)$$

and

(1.4)
$$\omega\left(\frac{1}{n}\right)\int_{0}^{2\pi}|\Lambda_{n}(t)|dt = o(1) \quad (n \to \infty).$$

Of course, condition (1.3) is equivalent to (λ_k) being a Fourier Stieljes sequence which in particular characterizes the class of multipliers (C, C).

No necessary conditions have been given for (λ_k) to be in (C_{ω}, C_F) and sufficient conditions have been restricted to quasi-convex and Fourier-Stieljes sequences. In order to obtain necessary and sufficient conditions for (λ_k) to be in (C_{ω}, C_F) , it is natural to attempt to make C_{ω} a Banach space in which trigonometric polynomials are dense and then invoke the Banach-Steinhaus theorem as Karamata did in characterizing (C, C_F) . The most natural norm is to define for $f \in C_{\omega}$

$$||f||_{\omega} = \max\left(||f||_{\infty}, \sup_{h>0} \frac{\omega(f,h)}{\omega(h)}\right)$$

where $||f||_{\infty}$ is the usual supremum norm.

The normed space $(C_{\omega}, ||\cdot||_{\omega})$ is a Banach space. However, trigonometric polynomials are not dense in $(C_{\omega}, ||\cdot||_{\omega})$. For if $\omega(h) \neq O(h) (h \rightarrow 0)$, then whenever (T_n) is a sequence of trigonometric polynomials which converge in $||\cdot||_{\omega}$ to f, f satisfies

$$\omega(f,h) = o(\omega(h)) \quad (h \to 0).$$

In the case that $\omega(h) = O(h)$ $(h \to 0)$, then a sequence of trigonometric polynomials (T_n) converge in $|| \cdot ||_{\omega}$ if and only both T_n an T'_n converge uniformly and therefore f is the limit of the sequence (T_n) only if f is contin-

— 177 —

uously differentiable. Accordingly, when $\omega(h) \neq O(h) (h \rightarrow 0)$, we define c_{ω} as the class of those functions in C_{ω} for which

$$\omega(f,h) = o(\omega(h)) \quad (h \to 0)$$

and when $\omega(h) = O(h) (h \to 0)$ we define c_{ω} as the class of all continuously differentiable functions. c_{ω} is then a closed subspace of C_{ω} and it is easy to see that if $f \in c_{\omega}$, the Fejer sums of f

$$\sigma_n(f) = \int_0^{2\pi} f(t) F_n(t-x) dt$$

with

$$F_n(t) = \frac{1}{2\pi (n+1)} \left(\frac{\sin (n+1)\frac{1}{2}t}{\sin \frac{1}{2}t} \right)^2$$

converges in $\|\cdot\|_{\omega}$ to f. Thus, c_{ω} is precisely the closure of the class of trigonometric polynomials in $\|\cdot\|_{\omega}$. It therefore appears some what more natural to consider the class c_{ω} rather than the class C_{ω} in terms of problems involving multiplier sequences. For we then have

PROPOSITION 1. The sequence
$$(\lambda_k) \in (c_{\omega}, C_F)$$
 if and only if
 $||| \Lambda_n |||_{\omega} \equiv \sup_{\substack{f \in c_{\omega} \\ ||f||_{\omega} \leq 1}} || \int_{0}^{2\pi} f(t) \Lambda_n (t-x) dt ||_{\infty} = O(1) \quad (n \to \infty)$

This is an immediate application of the Banach-Steinhaus theorem [5, p. 60] and the fact that the operators

$$L_{n}(f)(x) = \int_{0}^{2\pi} f(t) \Lambda_{n}(t-x) dt$$

converge in $\|\cdot\|_{\infty}$ for each trigonometric polynomial T.

We shall find it convenient to use the following proposition which follows immediately from the fact that any function f in C_{ω} with $||f||_{\omega} \leq 1$ is the uniform limit of sequence of functions from the unit ball of $(c_{\omega}, ||\cdot||_{\omega})$ (e.g. $\sigma_n(f)$ provides such a sequence of functions).

PROPOSITION 2. If Λ (t) is an integrable function then

$$||| \Lambda |||_{\omega} = \sup_{\substack{f \in C_{\omega} \\ ||f||_{\omega} \leq 1}} || \int_{0}^{2\pi} f(t) \Lambda_{n}(t-x) dt ||_{\infty}$$

In section 2, we shall consider quasi-convex sequences and show that in this case $(\lambda_k) \in (c_{\omega}, C_F)$ if and only if

$$\lambda_n \omega\left(\frac{1}{n}\right) \log n = O(1) \quad (n \to \infty).$$

In section 3, we shall give a necessary condition that (λ_k) be in (c_{ω}, C_F) with no restrictions on (λ_k) . We shall show that $(\lambda_k) \in (c_{\omega}, C_F)$ only if

$$\omega\left(\frac{1}{n}\right)\int_{0}^{2\pi} |\Lambda_{n}(t)| dt = O(1) \quad (n \to \infty).$$

It is easy to see that this condition is in general not sufficient. For example, if $\omega(h) = h$, then simple integration by parts (see theorem 4.2) shows that

$$|||\Lambda_{n}|||_{\omega} = \int_{0}^{2\pi} |\int_{0}^{t} \Lambda_{n}(x) dx| dt + O(1) \quad (n \to \infty)$$

thus, if we let

$$\lambda_n = \begin{cases} n , n = 2^k \\ o, n \neq 2^k \end{cases} \quad k = 0, 1, 2, \dots$$

then

$$\int_{0}^{2\pi} |A_{n}(t)| dt = \int_{0}^{2\pi} |\sum_{0}^{\log 2^{n}} 2^{k} \cos 2^{k} t| dt = O(n) \quad (n \to \infty).$$

Whereas,

$$\int_{0}^{2\pi} |\int_{0}^{t} \Lambda_{n}(x) dx| dt = \int_{0}^{2\pi} |\sum_{0}^{\lfloor \log 2^{n} \rfloor} \sin 2^{k} t| dt$$

and it follows from a theorem of Helson [6] that

$$\int_{0}^{2\pi} | \int_{0}^{t} \Lambda_{n}(x) dx | dt \neq O(1) \quad (n \to \infty).$$

In section 4, we shall examine sufficient conditions for (λ_k) to be in (c_{ω}, C_F) . First we shall obtain the result analogous to that of Bojanic. In particular, using the necessary condition given in Section 3, we shall prove that if (λ_k) is a Stieltjes sequence then $(\lambda_k) \in (c_{\omega}, C_F)$ if and only if

$$\omega\left(\frac{1}{n}\right)\int_{0}^{2\pi}|\Lambda_{n}(t)|dt = O(1) \quad (N \to \infty)$$

— 179 —

Finally, we shall give a sufficient condition for (λ_k) to be in (c_{ω}, C_F) with no restrictions on (λ_k) . We shall show that $(\lambda_k) \in (c_{\omega}, C_F)$ if

(1.5)
$$\omega(\mu_n) \int_{0}^{2\pi} |\Lambda_n(t)| dt = O(1)$$

where

$$\mu_{n} = \frac{\int_{0}^{2\pi} |\int_{0}^{t} \Lambda_{n}(x) dx| dt}{\int_{0}^{2\pi} |\Lambda_{n}(t)| dt}$$

This condition is also necessary in the case that $\omega(h) = O(h) (h \rightarrow 0)$. However, it is generally not necessary. For example, if F(x) is the classical Lebesgue function (see [7, p. 195]), then $F(x) - \frac{x}{2\pi}$ is continuous, of bounded variation, and its Fourier coefficients are not $o\left(\frac{1}{n}\right)(n\rightarrow\infty)$. Thus, if (λ_k) is the sequence of Fourier-Stieljes coefficients of $d\left(F(t) - \frac{t}{2\pi}\right)$ we have using the theorem of Dirichlet-Jordan [7, p. 57] that

$$\lim_{n \to \infty} \int_{0}^{2\pi} \left| \sum_{0}^{n} \frac{\lambda_{k}}{k} \sin kt \right| dt = \int_{0}^{2\pi} \left| F(t) - \frac{t}{2\pi} \right| dt > 0.$$

while by the result of Helson [6]

$$\int_{0}^{2\pi} |\sum_{0}^{n} \lambda_{k} \cos kt| dt \neq O(1) \quad (n \to \infty)$$

Also,

$$\int_{0}^{2\pi} |\sum_{0}^{n} \lambda_{k} \cos kt| dt = O(\log n) \quad (n \to \infty)$$

since it is a Fourier-Stieljes series. So that, if we choose ω to satisfy the conditions

$$\omega\left(\frac{1}{n}\right)\int_{0}^{2\pi} |\sum_{0}^{n} \lambda_{k} \cos kt| dt = O(1) \quad (n \to \infty)$$

and

$$\omega(\mu_n) \int_0^{2\pi} |\sum_{k=0}^n \lambda_k \cos kt| dt \neq O(1) \quad (n \to \infty)$$

with

$$\mu_n = \frac{\int\limits_0^{2\pi} |\sum\limits_0^{2n} \frac{\lambda_k}{k} \sin kt| dt}{\int\limits_0^{2\pi} \sum\limits_0^{n} \lambda_k \cos kt| dt}$$

we see that (1.5) is in general not necessary.

Although, we give necessary and sufficient conditions for (λ_k) to be in (c_{ω}, C_F) in the case that (λ_k) is quasi-convex or a Stieljes sequence in general no conditions that are both necessary and sufficient are known.

2. Quasi-convex sequences. We consider first the simplest case of quasi convex sequences. If we apply Abel summation twice we find

$$\Lambda_{n}(t) = \sum_{0}^{n} (k+1) \Delta^{2} \lambda_{k} F_{k}(t) + n \Delta \lambda_{n-1} F_{n}(t) + \lambda_{n} D_{n}(t)$$

where D_n is the Dirichlet kernel

$$D_n(t) = \frac{1}{2\pi} \frac{\sin\left((n + \frac{1}{2})t\right)}{\sin\frac{1}{2}t} \, .$$

From the quasi-convexity and the fact that $\int_{0}^{2\pi} |F_n(t)| dt = 1$, we have

$$|||\sum_{0}^{n} (k+1) \Delta^{2} \lambda_{k} F_{k}|||_{\omega} \leq \int_{0}^{2\pi} |\sum (k+1) \Delta^{2} \lambda_{k} F_{k}(t)| dt = O(1) \quad (n \to \infty)$$

for any modulus of continuity ω . Thus

$$(2.1) \qquad ||| \Lambda_n |||_{\omega} = O(1) + ||| n \Delta \lambda_{n-1} F_n + \lambda_n D_n |||_{\omega} \qquad (n \to \infty)$$

It follows from standard estimates that there exist positive constants C_1, C_2 such that

(2.2)
$$C_1 \omega \left(\frac{1}{n}\right) \log n \leq ||| D_n |||_{\omega} \leq C_2 \omega \left(\frac{1}{n}\right) \log n.$$

This result is contained in theorems (3.1) and (4.1) so we shall not supply an independent proof.

The main result of this section is

THEOREM 2.1. If (λ_k) is a quasi-convex sequence then $(\lambda_k) \in (c_{\omega}, C_F)$ if and only if

(2.1)
$$\lambda_n \omega \left(\frac{1}{n}\right) \log n = O(1) \quad (n \to \infty).$$

Proof: We first consider the case when (λ_n) is a bounded sequence. Then by a result of Tomic [3]

$$n\,\Delta\,\lambda_{n-1} = o\left(1\right).$$

Thus from (2.1) we have

$$||| \Lambda_n |||_{\omega} = O(1) + ||| \lambda_n D_n |||_{\omega}$$

and the theorem follows immediately from the inequalities (2.2).

We shall now show that the case (λ_k) unbounded does not arise. Tomić [3] has shown that if (λ_k) is quasi convex and unbounded then

(2.3)
$$\lambda_n = An + B + o(1) \quad (n \to \infty)$$

and

(2.4)
$$n \Delta \lambda_{n-1} = -An + o\left(\frac{1}{n}\right). \quad (n \to \infty)$$

thus if

$$\lambda_n \omega \left(\frac{1}{n}\right) \log n = O(1) \quad (n \to \infty)$$

we must have

$$\frac{\lambda_n}{n}\log n = O(1) \quad (n \to \infty)$$

and therefor (λ_n) cannot satisfy (2.3) and the conditions (2.1) and (λ_k) unbounded are not compatible. Secondly, if (λ_k) is unbounded then by virtue of (2.1)

$$||| \Lambda_{n} |||_{\omega} = O(1) + ||| n \Delta \lambda_{n-1} F_{n} + \lambda_{n} D_{n} |||_{\omega}$$

and thus by (2.2) (2.3), and (2.4) we must have

(2.5)
$$||| \Lambda_n |||_{\omega} \ge An - A C_2 n \omega \left(\frac{1}{n}\right) \log n.$$

For $\omega(h) = h$, (2.5) fails and thus $(\lambda_k) \notin (c_{\omega}, C_F)$ for any ω . Thus, (λ_k) unbounded and $(\lambda_k) \in (c_{\omega}, C_F)$ are also incompatible.

3. A necessary condition for (λ_k) to be in (c_{ω}, C_F) . In this section, we shall give a necessary condition for (λ_k) to be in (c_{ω}, C_F) . Our main result is the following theorem.

THEOREM 3.1. There exists an absolute constant C>0 such that for any trigonometric polynomial T of degree n we have

$$|||T|||_{\omega} \ge C\omega \left(\frac{1}{n}\right) \int_{0}^{2\pi} |T| dt \qquad n = 1, 2, \dots$$

An immediate corollary of this theorem and Proposition 1 is

COROLLARY 3.1. A necessary condition for the sequence (λ_k) to be in (c_{ω}, C_F) is that

$$\omega\left(\frac{1}{n}\right)\int_{0}^{2\pi} |A_{n}| dt = O(1), \quad (n \to \infty)$$

We shall need some preliminary results concerning representations of trigonometric polynomials. Let $x_k = \frac{2k\pi}{3n}$, k = 0, 1, 2, ..., 3n-1. Then if T is a trigonometric polynomial of degree n, we have (see [8, p. 33])

(3.1)
$$T(x) = \frac{2}{3n} \sum_{k=0}^{3n-1} T(x_k) K_n(x-x_k)$$

where

(3.2)
$$K_n(t) = \frac{1}{\pi} \frac{\sin\left(\frac{3n}{2}t\right) \sin\left(\frac{n}{2}t\right)}{2n \left(\sin\frac{t}{2}\right)^2}$$

Also [8, p. 33] (3.3) $\int_{0}^{2\pi} |T(x)| dx \leq \frac{1}{n} \sum_{0}^{3n-1} |T(x_{k})|.$

Now to the proof of theorem (3.1). Let $0 < \delta < \frac{1}{4}$. We wish to estimate

$$\frac{\int_{-\pi\delta}^{\pi\delta}}{\int_{3\pi}^{\pi\delta}} K_n(t) dt$$

— 183 —

from below. We have for $|t| \leq \frac{\pi \delta}{3n}$

$$K_n(t) \ge \frac{1}{\pi} \left(\frac{\left(\frac{2}{\pi}\right) \left(\frac{3nt}{2}\right) \left(\frac{2}{\pi}\right) \left(\frac{nt}{2}\right)}{2n \left(\frac{t}{2}\right)^2} \right) = \frac{6}{\pi^3} n.$$

So that,

(3.4)
$$\int_{\frac{-\pi\delta}{3n}}^{\overline{3n}} K_n(t) dt \ge \frac{6n}{\pi^3} \cdot \frac{2\pi\delta}{3n} = \frac{4}{\pi^2} \delta.$$

δπ

$$x_k + \frac{2\pi\delta}{3n}$$

Secondly, for $k \neq 0$ we estimate $\int K_n(t) dt$ from above. For $x_k - \frac{\pi}{3n}$

$$\left|t-x_{k}\right| \leq \frac{2\pi \delta}{3n}$$
, we have

$$K_{n}(t) \leq \frac{\sin\frac{\delta\pi}{2}}{2n\left(\frac{2\pi}{3n}(k-\frac{1}{2})\right)^{2}} \leq \frac{\delta\pi}{4n}\frac{1}{\left(\frac{2\pi}{3n}(k-\frac{1}{2})\right)^{2}} = \frac{9\delta}{8\pi}\frac{n}{(k-\frac{1}{2})^{2}}$$

Thus

(3.5)
$$\begin{aligned} x_k + \frac{2\pi}{3n} \\ \int \\ x_k - \frac{2\pi\delta}{3n} \\ x_k - \frac{2\pi\delta}{3n} \end{aligned} | K_n(t) | dt &\leq \frac{4\delta\pi}{3n} \cdot \frac{9\delta}{8\pi} \frac{n}{(k - \frac{1}{2})^2} = \frac{3}{2} \frac{\delta^2}{(k - \frac{1}{2})^2} . \end{aligned}$$

Let $g_{\delta}(x)$ be the 2π -periodic continuous function which has the value one on the interval $\left[\frac{-\pi\delta}{3n}, \frac{\pi\delta}{3n}\right]$ has the value zero on $\left[-\pi, \pi\right] - \left[\frac{-2\pi\delta}{3n}, \frac{2\pi\delta}{3n}\right]$ and is linear on the intervals $\left[\frac{-\pi\delta}{3n}, \frac{-\pi\delta}{3n}\right]$ and $\left[\frac{\pi\delta}{3n}, \frac{2\pi\delta}{3n}\right]$. The function

$$\overline{g}_{\delta}(x) = \omega \left(\frac{\delta \pi}{3n}\right) \sum_{k=0}^{3n-1} Sgn(T(x_k)) g_{\delta}(x-x_k)$$

is in C_{ω} and $||\bar{g}_{\delta}||_{\omega} \leq 1$. Also,

$$T(x_k) \int_{0}^{2\pi} \bar{g}_{\delta}(x) K_n(x-x_k) dx \ge \omega \left(\frac{\delta\pi}{3n}\right) |T(x_k)| \int_{x_k-\frac{\pi\delta}{3n}}^{x_k+\frac{\pi\delta}{3n}} |K_n(x-x_k)| dx$$

$$-\omega\left(\frac{\delta\pi}{3n}\right)\mid T(x_k)\mid \sum_{\substack{j=0\\j\neq k}}^{3n-1} \int_{\substack{x_j+\frac{2\pi\delta}{3n}\\j\neq k}} \mid K_n(x-x_k)\mid dx$$

which by virtue of (3.4) and (3.5) is

$$\geq \omega \left(\frac{\delta \pi}{3n}\right) \mid T(x_k) \mid \left(\frac{4}{\pi^2} \,\delta \,- \frac{3}{2} \,\delta^2 \sum_{\substack{j=0\\j\neq k}}^{3n-1} \frac{1}{(j-k-\frac{1}{2})^2}\right)$$
$$\geq \omega \left(\frac{\delta \pi}{3n}\right) \mid T(x_k) \mid \left(\frac{4}{\pi^2} \,\delta \,- \frac{3}{2} \,\delta^2 \,\sum_{j=0}^{\infty} \frac{1}{(j-\frac{1}{2})^2}\right)$$

Thus if we choose $\delta_0 > 0$ such that

$$\left(\frac{4}{\pi^2}\,\delta_0\,-\frac{3}{2}\,\delta_0^2\,\sum_{j=0}^\infty\,\frac{1}{(j-\frac{1}{2})^2}\right)\,=\,C_0\,>\,0$$

We have, using the elementary properties of a modulus of continuity that

$$T(x_k) \int_{0}^{2\pi} \bar{g}_{\delta_0}(x) K_n(x-x_k) dx \ge C\omega\left(\frac{1}{n}\right) |T(x_k)| \ k = 0, 1, 2, ..., 3n - 1$$

where C is an absolute positive constant. Finally,

$$\int_{0}^{2\pi} \bar{g}_{\delta_{o}}(x) T(x) dx = \frac{2}{3n} \sum_{k=0}^{3n-1} T(x_{k}) \int_{0}^{2\pi} \bar{g}_{\delta_{o}}(x) K_{n}(x-x_{k}) dx \ge$$
$$\geq C \omega \left(\frac{1}{3n}\right) \cdot \frac{2}{3n} \sum_{k=0}^{3n-1} |T(x_{k})|$$

which by virtue of (3.3.) is

$$\geq \frac{2}{3} C \omega \left(\frac{1}{n}\right) \int_{0}^{2\pi} |T(x)| dx.$$

- 185 -

Thus, using Proposition 2,

$$||| T_{n} |||_{\omega} \ge \int_{0}^{2\pi} \bar{g}_{\delta_{0}}(x) T(x) dx \ge \frac{2}{3} C \omega \left(\frac{1}{n}\right) \int_{0}^{2\pi} |T(x)| dx$$

and the theorem is proved.

4. Sufficient conditions for (λ_k) to be in (c_{ω}, C_F) . We first establish the result analogous to that of Bojanic (1.3) and (1.4). The proof is essentially that of Haršiladze [9].

THEOREM 4. 1. If (λ_k) is a Stieljes sequence and if $\omega \left(\frac{1}{n}\right) \int_{0}^{2\pi} |\Lambda_n(x)| dx = O(1) \quad (n \to \infty)$

then $(\lambda_k) \in (c_{\omega}, C_F)$.

Proof: Let $V_n(f)$ be the de la Vallée Poussin sums of f

$$V_n(f) = \int_0^{2\pi} f(t) \left(2F_{2n}(t-x) - F_n(t-x) \right) dt .$$

It is well known [10, p. 92] that

(4.1)
$$||f - V_n(f)||_{\infty} \leq C \omega \left(f, \frac{1}{n}\right)$$

where C is a constant independent of f and n. Also if T is a trigonometric polynomial of degree n then

$$V_n(T) = T$$

Thus if $f \in C_{\omega}$, $||f||_{\omega} \leq 1$

$$\int_{0}^{2\pi} f(t) \Lambda_{n}(t-x) dt = \int_{0}^{2\pi} \left(f(t) - V_{n}(f)(t) \right) \Lambda_{n}(t-x) dt + \int_{0}^{2\pi} V_{n}(f)(t) \Lambda_{n}(t-x) dt.$$

We have

$$\int_{0}^{2\pi} \int_{0}^{2\pi} \left(2F_{2n}(t) - F_{n}(t) \right) \Lambda_{n}(t-x) dt \, | \, dx \, = \, O(1) \quad (n \to \infty).$$

L'Enseignement mathém., t. XIV, fasc. 2.

— 186 —

Since (λ_k) is a Stieltjes sequence. Thus

$$\begin{aligned} &|| \int_{0}^{2\pi} f(t) \Lambda_{n}(t-x) dt ||_{\infty} \leq || \int_{0}^{2\pi} (f(t) - V_{n}(f)(t) (\Lambda_{n}(t-x) dt ||_{\infty} + \\ &+ ||f||_{\infty} \int_{0}^{2\pi} |\int_{0}^{2\pi} (2F_{2n}(t) - F_{n}(t) (\Lambda_{n}(t-x) dt | dx \leq \\ &\leq || \int_{0}^{2\pi} (f(t) - V_{n}(f)(t)) \Lambda_{n}(t-x) dt ||_{\infty} + O(1) \quad (n \to \infty) \end{aligned}$$

which by virtue of (4.1) is

$$\leq C \omega \left(\frac{1}{n}\right) \int_{0}^{2\pi} |\Lambda_n(t)| dt + O(1) \quad (n \to \infty).$$

As a corollary of theorem 4.1 and theorem 3.1, we have

COROLLARY 4.1. A Stieljes Sequence (λ_k) is in (c_{ω}, C_F) if and only if

$$\omega\left(\frac{1}{n}\right)\int_{0}^{2\pi} |\Lambda_{n}(t)| dt = O(1) \quad (n \to \infty).$$

We shall now give a sufficient condition for (λ_k) to be in (c_{ω}, C_F) which requires no special restriction on (λ_k) .

THEOREM 4.2. A sufficient condition for (λ_k) to be in (c_{ω}, C_F) is that

(4.2)
$$\omega(\mu_n) \int_0^{2\pi} |\Lambda_n(t)| dt = O(1) \quad (n \to \infty)$$

where

$$\mu_n = \frac{\int_{0}^{2\pi} |\int_{0}^{x} \Lambda_n(t) dt | dx}{\int_{0}^{2\pi} |\Lambda_n(t)| dt} n = 0, 1, 2, \dots$$

If $\omega(h) = h$ then (4.2) is also necessary.

Proof: We consider first the case when $\omega(h) = h$. If $f \in C_{\omega}$ with $||f||_{\omega} \leq 1$ then

 $|f'(x)| \leq 1 a. e.$

So that

$$|\int_{0}^{2\pi} f(t) \Lambda_{n}(t-x) dt| = |\int_{0}^{2\pi} f'(t) \overline{\Lambda}_{n}(t-x) dt| \leq \int_{0}^{2\pi} |\overline{\Lambda}_{n}(t)| dt$$

with $\overline{\Lambda}_{n}(t) = \int_{0}^{t} \Lambda_{n}(u) du$.

Thus,

$$||| \Lambda_n |||_{\omega} \leq \int_0^{2\pi} |\overline{\Lambda}_n(t)| dt,$$

the function $g(x) = \frac{1}{2\pi} sgn \int_{0}^{x} \Lambda_{n}(t) dt$ is in C_{ω} and $||g||_{\omega} \leq 1$. Also

$$\int_{0}^{2\pi} g(t) \Lambda_n(t) dt = |g(2\pi) \Lambda_n(2\pi) - \int_{0}^{2\pi} |\overline{\Lambda}_n(t)| dt| \ge \int_{0}^{2\pi} |\overline{\Lambda}_n(t)| dt - \lambda_0.$$

Thus,

$$\int_{0}^{2\pi} |\overline{A}_{n}(t)| dt - \lambda_{0} \leq ||| A_{n} |||_{\omega} \leq \int_{0}^{2\pi} |\overline{A}_{n}(t)| dt \quad n = 1, 2, \dots$$

This shows that (4.2) is necessary and sufficient for (λ_k) to be in (c_{ω}, C_F) if $\omega(h) = h$.

Finally in the general case, the inequality

$$||\int_{0}^{2\pi} f(t) \Lambda_n(t-x) dt ||_{\omega} \leq \omega(\mu_n) \int_{0}^{2\pi} |\Lambda_n(t)| dt$$

is a simple modification of Lemma 1 of [11] and we will not give its proof.

REFERENCES

- [1] KARAMATA, J., Suite de fonctionelles linéaires et facteurs de convergence des séries de Fourier. Journal de Math. P et Appl., 35 (1956), 87-95.
- [2] TOMIĆ, M., Sur les Facteurs de convergence des séries de Fourier des fonctions continues. Publ. Inst. Math. Acad. Serb. Sci., VIII (1955), 23-32.
- [3] Sur la sommation de la série de Fourier d'une fonction continue avec le module de continuité donné, *Publ. Inst. Math. Acad. Serb. Sci.*, X (1956), 19-36.
- [4] BOJANIC, R., On uniform convergence of Fourier series. Publ. Inst. Math. Acad. Serb. Sci., X (1956), 153-158.

- [5] DUNFORD, N. and J. SCHWARTZ, *Linear Operators*, Vol. I. Interscience, N.Y., 1957, 858 pp.
- [6] HELSON, H., Proof of a conjecture of Steinhaus. Proc. Nat. Acad. Sci. U.S.A., 40 (1954), 205-206.
- [7] ZYGMUND, A., Trigonometric Series, Vol. I, Cambridge Univ. Press, New York, 1959, 383 pp.
- [8] Trigonometric Series, Vol. II, Cambridge Univ. Press, New York, 1959,
- [9] HARSILADZE, F., Multipliers of uniform convergence. Trudi Tbilisk. Mat. Inst., 26 (1959), 121-130.
- [10] LORENTZ, G., Approximation of Functions. Holt, New York, 1966, 188 pp.
- [11] DEVORE, R., On Jackson's Theorem. Jour. of App. Theory, Acad. Press, 1 (1968), 314-318.

(Reçu le 15 novembre 1968)

Dep. of Mathematics Oakland University Rochester, Mi. 48063.