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SOME CONVERSE THEOREMS ON THE ABSCISSAE
OF SUMMABILITY OF GENERAL DIRICHLET SERIES

C. T. RAJAGOPAL
To the memory of J. Karamata

INTRODUCTION

Chandrasekharan and Minakshisundaram have generalized ([6], p. 21,
Theorem 1.82) a fundamental theorem which asserts the convergence of a
series when the series is (i) summable by a Riesz mean of general type 4 and
some positive order, (ii) subject to an appropriate Tauberian condition in
two-sided Schmidt form. Basing themselves on their generalization, they
have extended at one stroke ([6], pp. 86, 88, Theorems 3.71, 3.72), certain
converse theorems on the abscissae of summability of general Dirichlet
series, due in the first instance to Ananda-Rau ([2], Theorems 7, 8, 9) with
Tauberian conditions on individual coefficients of the series, and due sub-
sequently to Ganapathy Iyer ([7], Theorems 7, 8, 10) with Tauberian con-
ditions formally including those of Ananda-Rau. Now the fundamental
theorem generalized by Chandrasekharan and Minakshisundaram contains,
besides the two-sided Schmidt hypothesis taken into account by them, an
alternative one-sided hypothesis. And this theorem in its entirety, with both
alternative hypotheses, has a natural generalization in Theorem A (§ 1) of
which it is, in fact, the special case a = b = 0. In the present context the
significance of Theorem A lies in its being a basis, not only for the extensions
of Ananda-Rau’s and Ganapathy Iyer’s theorems given by Chandrasekha-
ran and Minakshisundaram, but also for some further extensions of the
same type (§§ 2, 3, 4).

It 1s relevant to mention here that the earliest version of Theorem A
is due to Karamata ([8], § 1.1) and concerned with the Cesaro first-order
mean of a series or sequence in place of a Riesz mean of general type A and
some positive order. Two later versions, also due to Karamata and found
in a paper by him dated November 1939 ([9], Théorémes 1a), 3f)), are
concerned with an integral mean including as a special case a Riesz mean
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of general type A and some positive integer order. These later versions are
proved by him by using a difference formula applicable to such an integral
mean ([9], Lemma 2); and each of them has a hypothesis which is an
extension of the one-sided or two-sided Schmidt condition of slow growth
of a function. Theorem A is a reformulation of Karamata’s later theorems
for any Riesz mean of a sequence, of general type A and some positive non-
integer order. In its fundamental case, a = b = 0, Theorem A has an analog-
ue for the Abel mean of type A instead of a Riesz mean of type A, consisting
of a classical theorem ([5], Theorem E) and Bosanquet’s addition thereto
([5], Theorem D). Theorem A itself has been proved by me ([12], Theo-
rem VI) by means of certain difference formulae due to Bosanquet ([4],
Theorem 1) which extend Karamata’s difference formula just mentioned
to an integral mean of non-integer order. Bosanquet first proved his extended
difference formulae in 1943, independently of Karamata. But, as a matter
of fact, he had used them much earlier in 1931 in a form equivalent to
Karamata’s ([3], Lemma 5). To complete the references in relation to
Bosanquet’s difference formulae, mention may be made of certain other
difference formulae independently evolved by Minakshisundaram and
myself ([10], formulae (2.32), (2.38)) which are serviceable for much the
same purposes as Bosanquet’s formulae.

This paper deals specifically with general Dirichlet series of type / as
distinguished from those of type /. However, as far as Riesz typical means
alone are concerned, there is no distinction between means of the two types,
and so (for convenience) the Riesz means of this paper are taken to be of
type / or (more explicitly) of type /,, where /or [, (n = 1, 2, ...) is a divergent
sequence strictly increasing and positive.

§ 1. NOTATION AND AUXILIARY RESULTS

Let a;-+a,+... be a real series and / a sequence {/,} such that
I<hi<h<.., [,- .

Then, as usual, we define the Riesz mean of Xa, of type / or /, and order
r>0 by

X

t\" r - _ Al (%)
J(l——) dA, (1) =—rf(x—t)’ YA, (dt = —
X X X

0

where A" (x) is the usual Riesz sum of Xa, of type [ or /, and order r,
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A =a;, +ay + ... +a, for I, <t <l (n=D,
A (@) =0 for t<l.

Again, as usual, we define 4; (t) = 4, (¢) and define as follows summability
of Xa, to sum S by the Riesz mean of type /, and order » >0, briefly called
summability (R, /,, ) of Xa, to S:

A (x)

r

X

- S, or Aj(x) —Sx" =o0o(x"), x = 0.

" In using this definition we may suppose (without loss of generality) that
S = 0 since this merely means our considering Za,— S instead of Za,.
Furthermore, when considering any other series b; +b,—..., it is convenient
to denote by B (x), r=0, the Riesz sum for that series, defined exactly as
A’ (x) for Xa,.

In the usual notation again, the general Dirichlet series of type / or /,,
with coefficients {a,}, is

an

Y=, s=0+irt.
T 1

Corresponding to the summability (R, /,,7), r>>0, of this series, to sum-
function f'(s), we have the abscissa of summability o, (— 0 <o, < 00) char-
acterized by the property that the series is summable (R, 7, r), or not
summable (R, /,, r), according as o>0, or 6<ao,.

In the above notation, we may state as under the lemmas and auxiliary
theorems used in this paper, denoting Riesz sums of order »>0, of Xa,
and 2b, respectively, by 4" (x) and B" (x), with omission of the suffix / indicat-
ive of the type which remains the same throughout.

LemMA 1 ([1], Theorem 6; [2], Theorem 1). Let Xb,= Xa, I’, where

y>0 is a constant. If A" (x) = o0 (x*), x> o0, where f=>r>0, then B' (x) =
= o (xf),

Lemma 2 ([1], Theorem 9; [2], Theorem 3). If A* (x) = o (x**#), x> o0,
where k>0, B>0, then b, = Xa, I} is either summable (R, l,, k) or never
summable (R, I, v) for any r however large.

LemMA 3 ([1], Theorem 4; [2], Theorem II). If
A" (x) = o{W(x)}(r>0), A(x) = O{V(x)}, x> o0,
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where W (x), V(x) are positive monotonic increasing functions of x>0, then,
 for O<k<r, A (x) = o (V¥ W*"y where V=V (x), W= W(x), x—®0.

Lemma 3 is proved, in the papers referred to ([1], [2]), for any integra-
ble function ¢ (x) instead of 4 (x) = > a,.
In=x

|
THEOREM A ([12], Theorem VI). If

A" (x) = o(x"™®), x > o, wherer >0, r +b >0, (1.1)
and if, with
O(x) = x1"@D/r g>p,
we have
EITHER (a)

tv an+an+l T .. +am
lim max = 0x(1),e -0,

n—swl, Zly, < 1, + 80 (1) ZZ
L (1.2
orR (b) (1.2
— la,.;+a,:,+...+a
lim max SR A n | =o0(1),e - 0,1

a
n—oool, =lgp <lp +e0(,) ln

then

A(l) = o), n— .

THEOREM B (Riesz; see e.g. [6], p. 81, Theorem 3.66). Suppose that the
Dirichlet series

dy,

!

Y=, s=0+ir,
1 *n
is summable (R, 1, q) for some g >0 whena>d. 2) Suppose also that the sum-
Junction f (s) thus defined is regular for c>n where n<d, and

f(s) = O (|t|"), r=0, uniformly for oc>=n-+e>n.

Then the Dirichlet series is summable (R, 1, v'), ¥'>r, for c>n.

) any1 + anyg2 + ... + am is to be interpreted as 0 when n = m or Ip = Ipm.
2) This is no restriction since otherwise oq = oo for all g.
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§ 2. A BASIC THEOREM

The theorem which follows supplies a basis for all the other theorems of
this paper, whether by itself or not.

THEOREM 1. (A) For the Dirichlet series
>
suppose that a,<p for some r>0. Suppose also that there is a y and an
associated 0 (x) such that

I &

n

, S=0+1i1,

Ty
S

o, <y <p, 0O0(x)=xt"0Nr, (2.1)
with
EITHER (a)
_ a, + a, + ... +a,
lim max +lp = 0x(1),e >0,
nowoly, <1, < &0 () ln
or  (b) L (2.2)
— la,o1 + apys + ... +a,
lim max o +2p | =0(1),e>0.
n—>owol, <1, < &0 (I,) ln
Then
(r=k)p + ko,
G, < L O<k<r). (2.3)
r
B) Ifg,>p, instead of 6.<p as in (A), and p is such that
EITHER (a)
— a, +a,s, + ... +a,
lim  max T = 0x(1),e >0,
n—>w1nélm<£ln n
or (b) b (2.4)
— Ap+1 + Auyoy + ... +a,
lim max o +2p | =0(1),e >0,
n—ol, =<l <¢el, ln
then

o, = 0, (0<k<r). - (2.5)
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Proof. (A) The proof is given below only for the case in which {a,}
- satisfies the hypothesis in alternative (2.2) (a), the remaining case of altern-
ative (2.2) (b) being exactly similar.

By the definition of ¢, and that of y in (2.1), Za, [’ is summable
(R, I, r) to sum S (say), and so

bi+b,+...=(a, I7"—=9S) + a, 7" + ... is summable (R, [, r) to 0,
1.€.,
B"(x) = 0o(x"), x > o0, (2.6)

while it is easy to prove that

lim max by + Baps + wn b

n—oo ly =l <y + €0 (Iy) lP_'Y
n

2= 0x(1), e->0, (2.7)

distinguishing between the case y>> 0 and y<O0. If y> 0, then
bn + bn+1 + ...+ bm = anln_y + An+1 ln—-i?l + .+ A lr;y (n>1)

<177 max (a,+a,.;+...+a,),

from which and (2.2) (a) we have (2.7) as an immediate consequence.
On the other hand, if y<0, then ‘

b, + b, 1 + ... +b, <l 7 max (a,+a, ;+...+a,), (2.8)

n=v=m
where

L<l <1 <1 +e0(l) <+l

0(l,
0(l,

N’

IN\G—pTV)/r
=< > < (1 +e)lr=rtrlir — K(say).

k

N’

Hence (2.8) gives us

bn + bn+1 + ..+ bm

p—7
Iy

max
Lnzl g <Ly +£0(1y)

m
< : max (av+av+1+“'+am)
n lvélm<ln+£6(ln) -

L7 I\ : a, +a, 1 + ... +a,
< <—> <~> max e : (2.9)
ly <1

1°
=lpm <ly+eK0 (1) ¥
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l -7 l p—v
(l—"'> <1,<Z—V> <(1+¢)7?

since y<0, p—y>0. Hence (2.9) in conjunction with hypothesis (2.2) (a)

leads to (2.7) again.
After this we appeal to Theorem A with (1.1) and (1.2) (a) replaced by
(2.6) and (2.7) respectively, to obtain

In (2.9),

B(x)=B(,) = o) =0, Ly, >x>1, > 0.
From the last step and (2.6), we get, by using Lemma 3,
(1-7)(r-7) +§'}
X

for 0 <k<r

B*(x) = 0{

= o(x**#%) where B = (1——?—) (p—y) > 0.

Hence Xa, ! ?”” being summable (R, [, r), is also summable (R, /,, k)
by Lemma 2, i.e., Za,/,’ is summable (R, /,, k) for

k k k
a>v+ﬁ=v+(1—;>(p—v)=<1—~r—>p+;v- (2.10)

Since y>o0, may be taken as near to o, as we please 1), (2.10) immediately
gives us the conclusion (2.3).

In arriving at (2.3) we have tacitly assumed that ¢,> —oo. When
o, = — oo, we still reach (2.3) in the sense that g, = — oo for 0 <<k<r, as
we may see by taking y = —G (G positive and arbitrarily large) in the
preceding argument.

(B) As in (A), we confine ourselves to the hypothesis (2.4) (a), the
treatment of (2.4) (b) being precisely similar. Defining as in (A)

by + by, +...=(d{"=8) + a, 5" + ... (y>0,),
we see that (2.6) holds again, while (2.4) (a) implies

_ (b, +b,si+...4+b,)
lim max - = 0x(1), e >0,
nswoly, Zlg, <l, +el, ln

1) The truth of hypothesis (2.2) for some v, 6r < ¥ < p, implies its truth for any v’, 6, <y’ < v, so
that v may be replaced by v’.

*
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exactly as (2.2) (a) implies (2.7). Since now y>0a,>p, the above condition
in its turn implies

lim max (b,+b,4s1+...+b,) = 0g(1), e6>0.
nsoly <lpm <ly + el,
By Theorem A with hypothesis (1.2) (a) and a = b = 0, it follows that
Za,l,° is convergent for any ¢ such that ¢ >y>o¢, and therefore o, < o,.
But, in any case, o, >0, >0, for 0 <k <r and so we have the conclusion (2.5).
In the preceding argument we have supposed that ¢,< oo since g,= o0
implies trivially o,= 0.

§ 3. APPLICATIONS TO THEOREMS OF THE SCHNEE-LANDAU TYPE

Theorem II given next is the simplest of the theorems of the type men-
tioned above and it 1s a direct combination of Theorems I, B. Theorems V,
VI are generalizations, respectively of Ananda-Rau’s and Ganapathy Iyer’s
extensions of the Schnee-Landau theorem ([2], Theorem 9; [7], Theorem 10),
as given by Chandrasekharan and Minakshisundaram ([6], pp. 88-9,
Corollaries 3.73, 3.74). Theorems III, IV are apparently new counterparts
of Theorems V, VI, the newness consisting in the replacement of the two-
sided Tauberian conditions of the latter pair of theorems by analogous
one-sided conditions suitably supplemented.

THEOREM II. Suppose that (1) the Dirichlet series,

o0

da
s ?
1 ln

n .
s =0 +it,

is summable (R, 1., q) for some q >0 when 6> p, (i1) the sum-function f (s)
thus defined is regular for ¢ >n when n<p, and satisfies the condition

f(s) = O (|t]"), r>0, uniformly for o>=n+e>n,

(iii) the coefficients a, of the Dirichlet series satisfy ONE of the two altern-
atives (a), (b) of (2.2), but with 0 (x) = x"~ P! Then the Dirichlet series
is summable (R, 1, k), 0<k<r, for

(r—k)yp + kn

r

o=

Proof. By Theorem B, the Dirichlet series is summable (R, /,, r’), ¥’ >r,
for 6>n and hence o, <y <p. Therefore it is evident from the proof of
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Theorem I (A) ending with (2.10) that the Dirichlet series is summable
R, 1, k), 0<Lk<r', for

(r'=k)p + kn

4

r

o>

whence the desired conclusion follows when we let r'—r.

THEOREM III. In Theorem 11, let p be replaced by oa—+1 in hypotheses (i)
and (ii) ; also let hypothesis (iii) be replaced by

rF—a+n
d, = OR[li(ln_—ln—l)]a ln - ln—l = O<ln i >' (31)

Then the conclusion is that Za,l,’, s = o-+it, is summable (R,1, k),
0 <k<r, for

(r—k)y(a+1) +(k+1Dn
o > .

3.2
r+ 1 (3.2

Proof. As in the proof of Theorem II, the series Xa,/,® is summable
(R, L, r"), ¥'>r, for >n where now n<a-+1, so that o, <y<a+1. We
begin by choosing y and correspondingly 6 (x) as follows:

n<y<o+1, 0(x)=x0""en/0+D (3.3)
Then, since r'>r and y>ﬁ, we have

r—o +y r—o 4y r—o+ g
> -
r'+1 r+1 r+1

And so (3.1) gives us, as n— oo,

r—a-+n r—a+y
a, = OR [lzln ret :, = ORr [:ls ln vt ] = Og [lze(ln)] . (34)

Also, if [, <I,,<l,+¢6 (1), (3.1) again gives us as n— oo,

J OR [110:1 (lm _ln)] if o >0 ’
An+1 + Apiz + .o m

I

| 0= [ (L, —1)]if « < 0,

so that, whether « >0 or ¢ <0,

an+1 + Apt2 + ... + am = OR [lzgg(ln)] . (35)
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In (3.4) and (3.5),

, r'—a 4+
ILo(,) =1° where p' = o+ M (>7).
r'+1
Hence, combining (3.4) and (3.5), we get
— a, +a,yq + ... +a,
lim max L = 0gx(1), e >0. (3.6)
n—>oo ly, <1, <lI, + 0 (I,) ln

(3.6) and the fact, following from Theorem B, that Xa, /’,° is summable
(R, /,, r"), enables us to use (2.10) in the proof of Theorem I (A) with r,

p replaced by r’, p’ respectively, so as to infer that Xa, [ ® is summable
(R, 1, k), 0<k<r’, for

(r'=kyp" +ky ("=k(a+1) +(k+1y
r’ B r'+ 1 '

o=

This yields (3.2) as required when we let r'—r and recall that y (>#) can be
taken arbitrarily close to .

THEOREM IV. In Theorem 111, (3.1) alone can be changed to

Z (av+lavl) ZIC (lv—lv—l)l_p =0 (li(d'?‘l)'*’l)l), ln - ln—l =
v=1

(3.7)

r—cz—p"'1+n
= O[Zn r+1—p—1jl, p>1,a+1+p 1>0,
J

with the conclusion changed in consequence to the assertion that Xa, 1’ is
summable (R, I, k), 0<k<r, for

(r—k)(a«+1) + (k—l—l-—p_l)n
g > .
r+ 1 —p—1

(3.8)

Proof. We observe that Theorem III may be viewed as the limiting
case p = oo of Theorem IV.

The proof itself is similar to that of Theorem III with the difference
that the choice of y and 6 (x) in (3.3) is now altered as below:

n<y<a+1, 0(x)=xE"ee H=n/0+1-p7h

1) We suppose that [, = O.
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And furthermore the step corresponding to (3.6) is obtained as follows.
Writing 1—1/p = 1/p’, we get, for [,</,<[,-+e0 (1),

ap+1 + Ay+2 + ...+ A <an+1 + ,an+1| + ...t Am + ,aml

-n

1_
= Z (av+n+|av+nl) lv+n(lv+n—lv+n__1)( P)/P ><
v=1

(lv+n - lv+n—1)1/p'

lv+n

m—n 1/p
(\< I: Z (av+n+|av+n,)p ll\”-f-n (lv+n—lv+n—1)1_p:I X

v=1
m-— 1/p’
> [ Zn lv+n — lv+n—1:| I

v=1 lzl+n
_I/p
= O|:Z’°:1+1+1/p 9"_1.1”1__} (n— o0)
n+1
0 (L)}
:O[liw,p{e W} ] 3.9)

where we have used the hypothesis (3.7) in the passage to the step preceding
(3.9). Taking m = n-+1 in the step preceding (3.9), we get also

_ln)llp’

l

+1+1 (L4

a,+1 = Opg [li i ]
n+1

} (n— o0)

—y—pn—1 ——1 ’
= OR[lzii/Plf,lla pl+m/(r+1-p 7]

= Opr [lﬁi/P{G(lnH)}l/pI] . (3.10)

From (3.9) and (3.10) with n+1 changed to », we obtain, instead of (3.6)
in the proof of Theorem III,

—— a, +a,yy + ... +a,
lim max > = 0g(1l), e—>0,
n—0 lp = Im <lp + &0 (Iy) ln

where

After this the proof is completed exactly like that of Theorem III subsequent
to (3.6).
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- It may be observed that the assumption a+-14p~ ' >0 involves no loss
of generality since a-+1-+p~'<0 makes successively a,-+|a,| =0, a,= 0
and so g, = —co for all r>0.

THEOREM V. In Theorem 11, let hypothesis (1) be omitted on account
of its being implicit (with q = 0, p = a+1) in hypothesis (iii) modified as
under. Let hypothesis (i) be retained with p changed to a1, and hypothe-
sis (1i1) replaced by

a, = O[L(,~1,_)]. (3.11)

Then the conclusion is that Xa, 1’ is summable (R, 1, k), 0<k<r, for o
satisfying (3.2).

THEOREM VI. If, in Theorem V, (3.11) alone is changed to

n

Y a2 B, ~1,- )" = 0[BT O], p> 1, a4+ 1+ p7 >0,
v=1
the conclusion will become the assertion that Xa, l”,’ is summable (R, 1,, k),
0<k<r, for o satisfying (3.8).

The proofs of Theorems V, VI are omitted, being obvious simplifica-
tions of those of Theorems III, IV, involving the use of Theorem I (A) with
hypothesis (2.2) (b) instead of (2.2.) (a) as formerly. Theorems V and VI,
as pointed out by Chandrasekharan and Minakshisundaram, yield Ananda
Rau’s and Ganapathy Iyer’s extensions of the Schnee-Landau theorem
when a— +-0.

§ 4. FURTHER APPLICATIONS

Theorem I (A) is a base which, combined with Theorem B, produces
Theorem 1II, and in this sense Theorem I (A) may be said to correspond
to Theorem II. There are results corresponding to each of Theorems III-VI
in the same sense. For instance, Deduction 1 below corresponds to Theo-
rem III and shows how other deductions corresponding to Theorems IV-VI
may be formulated. Deductions 2,3 are further examples of results based
on Theorem I.

DepucTtioN 1. (A) In Theorem 1 (A), suppose that o,<oa-+1 and that
(2.2) (a) is replaced by

ay, = O [l (l,=1-0)]s by = bioy = O(LTT*7o/0FD). 0 (4.1)
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Then

r—k(z+1) +(k+1)o,

0<k<r). (4.2)
r+ 1

o, <

(B) In Theorem 1 (B), suppose that ¢,> a-+1 and that (2.4) (a) is
replaced by

a, = OR [li (ln—_ln-l)] ’ ln - ln—l = 0(1:1) . (43)
Then
o, = 0, (0<k<r). (4.4)

Proof. The proof of part (A) is on the lines of that of Theorem III
excepting that now there is no appeal to Theorem B. The proof of part (B)
may need a further explanation as follows. The two conditions of (4.3)
together imply a, = oy (I*+') which, along with the first condition of (4.3),
readily gives us

— a, +a,yq + ... +a,

lim max T = 0x(1), e—>0.
n%-colnélm<ln+£ln n

The conclusion (4.4) now follows obviously from Theorem I (B) with
alternative (2.4) (a) and p = a--1.

The following deduction supplements the preceding and has been
kindly suggested by Prof. Bosanquet.

DEDUCTION 2. Suppose that, in Deduction 1, we replace (4.1) in (A)
and (4.3) in (B) by the common hypothesis

a, = OR [lf; (ln _ln~1)] > O, > 0. (45)

Then we have, for 0<k<r, EITHER (A) o,<a+1, OrR (B) 0, = 0,, according
as o.<o+1 or 0,> a-+1.

Proof. (A) We choose y such that (0<{) o, <y<a-+1 and, as in (2.6),
assume that B" (x) = o (x"). Then we infer, from an application of Lemma 1,

A"(x) = o(x""") = o(x""**1%9) for every 6 > 0. (4.6)
On the other hand, our hypothesis on a, gives us first @, == O, (I*™") =
= 0p ([271"°) and then, as in the proof of part (B) of Deduction 1,

s a + ap+1 + ...+ a,
Itm max TESE: = og(1), e 0. (4.7)

n—w lp <lIlm <lIlp + &l,
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From (4.6) and (4.7) we obtain, appealing first to Theorem A and then to
Lemma 3,

Ax) = o(x*"179, A (x) = o(xF ™1 0<k <. (4.8)

Now Lemma 2 establishes the summability (R, /,, k) of Za, 7 “*1*%) or, of
Za, 1"’ for 6 >a+14-6 with arbitrary 6>0. Hence g, <<a-1 as required.

(B) We now choose y such that («+1<)o,<y and note that a«+1-+6
can be replaced by y in (4.7) and (4.8), so that, arguing as before, we estab-
lish the summability (R, /,, k), 0<k<r, of Za, !’ where y> o, is arbitrary.
Hence o, <o, while o, <o, universally, i.e., 6, = g, as we wished to prove.

DEpuCTION 3. If, for the Dirichlet series Xa,l’,’, 6,>—o0 andlim
L/l _1>1, then o, = o, for 0<k<r.

Proof. The hypothesis lim /,/I,_,>1 makes
Api1 + Apip + ... +a,, =0 for [, <, <, +¢&l,

if & 1s sufficiently small and n>n, (¢). Hence, for any p, in particular, for
p<o,

S Ian-l-l +an+2 + .. +aml
lim max : =o0(1), e—>0.
n—-00 lné lm <lIln t+ &lp ln

The desired conclusion now follows from Theorem I (B) with alternative
(2.4) (b).

In the above proof we have supposed that ¢,< o0, the case o, =
being trivial.

CONCLUDING REMARKS

A few remarks are offered in conclusion, supplementing some made in
the beginning. Though Theorem A in one form is Karamata’s (as already
said), a particularization of it ([12], Corollary VI with Tauberian O-condi-
tion) is a much older theorem of Ananda-Rau’s ([1], Theorem 16; [2], Theo-
rem 4). Ananda Rau left open one case of his theorem which Bosanquet
([4], Theorems 2, 3), Minakshisundaram and Rajagopal ([10], Theorem 1
and Corollaries 1.1, 1.3; [11], Theorem A and Corollaries A;, A,) have
independently settled, even for some extensions of Ananda Rau’s theorem.
The theorem mentioned at the outset as being due to Chandrasekharan
and Minakshisundaram ([6], p. 21, Theorem 1.82) is, in fact, a further
extension of one of the extensions of Ananda Rau’s theorem given by
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Bosanquet ([4], Theorem 3). In the present context, it is rather less effective
than the completely independent two-fold result of Karamata’s in the same
direction ([9], Théorémes 1a), 3f)), reformulated as Theorem A. That is
to say, precisely, Theorem A gives rise to a basic converse theorem on
abscissae of summability of general Dirichlet series (Theorem I of this paper)
which is more natural and suggestive as well as more comprehensive than
the like basic theorem resulting from the line of development followed by
Chandrasekharan and Minakshisundaram ([6], p. 86, Theorem 3.71). )

I am indebted to Prof. Bosanquet for some very useful remarks on the
original version of this paper which have led to the preparation of the
present version.
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1).Indeed the Chandrasekharan-Minakshisundaram theorem just referred to is deducible from Theo-
rem I, its case 6, < a + . [or, case 6, = o + ] from part (A) [or, part (B)] of Theorem I with hypothesis

22) () and x” = x* (015 00 = x TTEFN/Hu)

or <v <a-+u [or, hypothesis (2.4) (b)
and x? = xa+u]'
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