§2. The cusps and their resolution for the 2dimensional case

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 19 (1973)
Heft 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
21.07.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Problem. Prove these congruences in the framework of elementary number theory.

d	2	3	4	5	6	$2 \zeta_{K}(-1)$	2	3	4	6	12	$e\left(\mathfrak{J}^{2} / G\right)$	$e\left(\mathfrak{Y}^{2} / \hat{G}\right)$
2	2	2	2			1/6	-	-	-	-	-	4	$G=\hat{G}$
3	3	2			1	1/3	3	1	1		1	4	4
5	2	2		2		1/15	-	-	-	-	-	4	$G=\hat{G}$
6	6	3				1	5	1	2	1		6	6
7	4	4				4/3	5	2	2			6	6
10	6	4				7/3	-	-	-	-	-	8	$G=\hat{G}$
11	10	4				7/3	5	2	4			10	8
13	2	4				1/3	-	-	-	-	-	4	$G=\hat{G}$
14	12	4				10/3	8	2	4			12	10
15	8	6				4	-	-	-	-	-	12	?
17	4	2				2/3	-	-	-	-	-	4	$G=\hat{G}$
19	10	4				19/3	9	2	4			14	12
21	4	5				2/3	3	2		1		6	4
22	6	8				23/3	12	4	2			16	14
23	12	8				20/3	7	4	6			18	14
26	18	4				25/3	-	-	-	-	-	20	$G=\hat{G}$
29	6	6				1	-	-	-	-	-	8	$G=\hat{G}$
30	12	10				34/3	-	-	-	-	-	24	?
31	12	4				40/3	11	2	6			22	18
33	4	3				2	7	1		1		6	6
34	12	4				46/3	-	-	-	-	-	24	?
35	20	8				38/3	-	-	-	-	-	28	?
37	2	8				5/3	-	-	-	-	-	8	$G=\hat{G}$
38	18	8				41/3	16	4	6			28	22
39	16	10				52/3	-	-	-	-	-	40	?
41	8	2				8/3	-	-	-	-	-	8	$G=\hat{G}$

§ 2. The cusps and their resolution for the 2-dimensional case
2.1. Let K be a totally real algebraic field of degree n over \mathbf{Q} and M an additive subgroup of K which is a free abelian group of rank n. Such a group M is called a complete Z-module of K. Let U_{M}^{+}be the group of those units ε of K which are totally positive and satisfy $\varepsilon M=M$. Any $\alpha \in K$ with $\alpha M=M$ is automatically an algebraic integer and a unit.

The group U_{M}^{+}is free of rank $n-1$ (compare [6]).

Two modules M_{1}, M_{2} are called (strictly) equivalent if there exists a (totally positive) number $\lambda \in K$ with $\lambda M_{1}=M_{2}$. Of course, $U_{M_{1}}^{+}=U_{M_{2}}^{+}$ for equivalent modules.

According to [71] p. 45, Theorem 4, for any parabolic point x of an irreducible discrete subgroup Γ of $\left(\mathbf{P} \mathbf{L}^{+}(\mathbf{R})\right)^{n}$ with $\mathfrak{G}^{n} / \Gamma$ of finite volume the element $\rho \in\left(\mathbf{P L}^{+}(\mathbf{R})\right)^{n}$ with $\rho x-\infty$ can be chosen in such a way that the group $\rho \Gamma_{x} \rho^{-1}($ see $1.5(15))$ is contained in $\mathbf{P L}^{+}(K) \subset\left(\mathbf{P L}{ }^{+}(\mathbf{R})\right)^{n}$ where K is a suitable totally real field. Then we have an exact sequence

$$
0 \rightarrow M \rightarrow \rho \Gamma_{x} \rho^{-1} \rightarrow V \rightarrow 1
$$

where M is a complete \mathbf{Z}-module in K and V is a subgroup of U_{M}^{+}of rank $n-1$. The field K, the strict equivalence class of M and the group V are completely determined by the parabolic orbit and do not depend on the choice of ρ.

It can be shown more generally ([71] p. 45, footnote 3) that there exists a $\rho \in\left(\mathbf{P L}_{2}^{+}(\mathbf{R})\right)^{n}$ such that $\rho \Gamma \rho^{-1} \subset \mathbf{P L}_{2}^{+}(K)$, provided there is at least one parabolic orbit. Therefore, the field K is the same for all parabolic orbits. The conjecture of Selberg (1.5 Remark) remains unsettled, because, if we represent the elements of $\rho \Gamma \rho^{-1}$ by matrices with coefficients in \mathfrak{o}_{K}, we have no information on the determinants of these matrices.

A parabolic orbit will be called a cusp. We say that the cusp is of type (M, V). If x is a point in the parabolic orbit, we often say that the cusp is at x. Sometimes the cusp will be denoted by x.

For a given pair (M, V) with $V \subset U_{M}^{+}$(where V has rank $n-1$) we define

$$
G(M, V)=\left\{\left.\left(\begin{array}{cc}
\varepsilon & \mu \\
0 & 1
\end{array}\right) \right\rvert\, \varepsilon \in V, \mu \in M\right\}=M \rtimes V \quad \text { (semi-direct product) }
$$

For $n=2$, the element $\rho \in \mathbf{P L}_{2}^{+}(\mathbf{R})^{n}$ can be chosen in a such a way that $\rho \Gamma_{x} \rho^{-1}=G(M, V)$.

Let K be a totally real field of degree n over \mathbf{Q}, let M be a complete Z-module in K and V a subgroup of U_{M}^{+}of finite index. Suppose $(\mathfrak{F}$ is a group of matrices $\left(\begin{array}{ll}\varepsilon & \mu \\ 0 & 1\end{array}\right)$ (with $\varepsilon \in V, \mu \in K$, and $\mu \in M$ for $\varepsilon=1$) such that the sequence

$$
\begin{equation*}
0 \rightarrow M \rightarrow \mathfrak{b} \rightarrow V \rightarrow 1 \tag{1}
\end{equation*}
$$

is exact.
The group $\mathfrak{5}$ operates freely and properly discontinuously on \mathfrak{H}^{n}. We add one additional point ∞ to the complex manifold $\mathfrak{H}^{n} / \mathfrak{G}$. A complete
system of open neighborhoods of ∞ in the new space $\overline{\mathfrak{S}^{n} / \mathfrak{G}}=\mathfrak{S}^{n} / \mathfrak{G} \cup \infty$ is given by the sets

$$
\begin{equation*}
(\stackrel{\circ}{W}(d) / \mathfrak{G}) \cup \infty \tag{2}
\end{equation*}
$$

where, for any positive d,

$$
\begin{equation*}
\stackrel{\circ}{W}(d)=\left\{z \mid z \in \mathfrak{H}^{n}, \prod_{j=1}^{n} \operatorname{Im}\left(z_{j}\right)>d\right\} \tag{3}
\end{equation*}
$$

The local ring $\mathfrak{O}(5)$ at ∞ is defined as the ring of functions holomorphic in some neighborhood of ∞ (except ∞) and continuous in ∞. For $n>1$ the condition "continuous in ∞ " can be dropped ([71], p. 50, lemma 7).

If $\mathfrak{G}=G(M, V)$ we put $\mathfrak{D}(\mathfrak{F})=\mathfrak{D}(M, V)$. We shall only give the structure of $\mathfrak{D}(M, V)$ explicitly. For $n=2$ this is no loss of generality. The ring $\mathfrak{D}(M, V)$ has the following structure:

Let M^{*} be the complete module in K which is dual to M : An element $x \in K$ belongs to M^{*} if and only if the trace $\operatorname{tr}(x a)$ is an integer for all $a \in M$. We recall that

$$
\operatorname{tr}(x a)=\sum_{j=1}^{n} x^{(j)} a^{(j)}
$$

Let M^{*+} be the set of all totally positive elements of M. The local ring $\mathfrak{D}(M, V)$ is the ring of all Fourier series

$$
\begin{equation*}
f=a_{0}+\sum_{x \in M^{*+}} a_{x} \cdot e^{2 \pi i\left(x^{(1)} z_{1}+\ldots+x^{(n)} z_{n}\right)} \tag{4}
\end{equation*}
$$

for which the coefficients a_{x} satisfy $a_{\varepsilon x}=a_{x}$ for all $\varepsilon \in V$, and which converge on $\stackrel{\circ}{W}(d)$ for some positive d depending on f.

Proposition. The space $\mathfrak{S}^{n} / \mathfrak{5}$ with the local ring $\mathfrak{D}(\mathfrak{5})$ at ∞ is a normal complex space.

This is known for $n=1$, of course. For $n \geqq 2$ we have to check H. Cartan's condition ([67] Exposé 11, Théorème 1) that there is some neighbourhood U of ∞ such that for any two different points $p_{1}, p_{2} \in$ $U-\{\infty\}$ there exists a holomorphic function f in $U-\{\infty\}$ with $f\left(p_{1}\right) \neq f\left(p_{2}\right)$. If \mathfrak{b} occurs as group $\rho \Gamma_{x} \rho^{-1}$ for some cusp of a group Γ satisfying condition (F) of 1.5 , Cartan's condition is proved in the theory
of compactification (0.3) by the use of Γ-automorphic forms. The group $G\left(M, U_{M}^{+}\right)$occurs in such a way. Namely, M is strictly equivalent to an ideal in some order \mathfrak{v} of K (see [6]) where $\mathfrak{v}=\{x \in K \mid x M \subset M\}$. Therefore, we may assume that M is such an ideal. The cusp at ∞ of the arithmetic group (commensurable with the Hilbert modular group)

$$
\left\{\left.\left(\begin{array}{l}
\alpha \beta \\
\gamma \\
\delta
\end{array}\right) \right\rvert\, \alpha, \beta, \gamma, \delta \in \mathfrak{D}, \beta \in M, \alpha \delta-\beta \gamma \in U_{M}^{+}\right\}
$$

has the isotropy group $G\left(M, U_{M}^{+}\right)$.
As W. Meyer pointed out to me, the group $H^{2}(V, M)$-the set of all equivalence classes of extensions over V with kernel M and belonging to the action of V on M-is finite. (It vanishes for $n \leqq 2$.) This implies the existence of a translation $\rho \in \mathbf{P L}_{2}{ }^{+}(K)$ with $\rho z=z+a$ such that $\rho \mathscr{G} \rho^{-1} \subset G(\tilde{M}, V)$ where $\tilde{M}=\frac{1}{k} M$ and k is the order of the extension \mathfrak{F} as element of $H^{2}(V, M)$. Therefore $\rho \mathscr{5} \rho^{-1}$ is commensurable with $G\left(M, U_{M}^{+}\right)$, and it follows from general results on ramifications of complex spaces [18] that $\mathfrak{H}^{n} / \mathfrak{5}$ is a normal complex space. (See also 0.7 for quotients of normal complex spaces).

Remark. It would be interesting to check Cartan's condition directly using only the structure of the ring $\mathfrak{D}(\mathfrak{5})$. It seems to be unknown if every $(\mathfrak{G}$ occurs for a cusp of a group Γ of type (F). We shall call the point ∞ of the normal complex space $\overline{\mathfrak{H}^{n} / \mathfrak{F}}$ a "cusp", even if it does not occur for a group Γ.

The point ∞ (with the local ring $\mathfrak{D}(\mathfrak{G})$) is non-singular for $n=1$. Probably it is always singular for $n \geqq 2$. This was shown by Christian [11] to be true for the cusps of the Hilbert modular group of a totally real field of degree $n \geqq 2$. For $n=2$, see [21].

Our aim is to resolve the point ∞ of $\overline{\mathfrak{H}^{2} / G(M, V)}$ in the sense of the theory of resolution of singularities in a normal complex space of dimension 2 (see, for example, [35], [49]). This will be done in 2.4 and 2.5. The resolution process shows that ∞ is always a singular point.

It remains an open problem to give explicit resolutions also for $n>2$.
If Γ is a discrete irreducible subgroup of $\left(\mathbf{P L}_{2}^{+}(\mathbf{R})\right)^{n}$ satisfying the condition (F) of the definition in 1.5 , then $\mathfrak{G}^{n} / \Gamma$ can be compactified by adding t points (cusps) where t is the number of Γ-inequivalent parabolic points of Γ. The resulting space is a compact normal complex space. It is even a projective algebraic variety (0.3).
2.2. In the next sections we shall consider the case $n=2$, construct certain normal singularities of complex surfaces and show that they are cusps in the sense of 2.1 . The construction will be very much related to continued fractions.

Consider a function $k \mapsto b_{k}$ from the integers to the natural numbers greater or equal 2. For each integer k take a copy R_{k} of \mathbf{C}^{2} with coordinates u_{k}, v_{k}. We define R_{k}^{\prime} to be the complement of the line $u_{k}=0$ and $R_{k}^{\prime \prime}$ to be the complement of $v_{k}=0$. The equations

$$
\begin{align*}
u_{k+1} & =u_{k}^{b k} v_{k} \tag{5}\\
v_{k+1} & ={ }^{1} / u_{k}
\end{align*}
$$

give a biholomorphic map $\varphi_{k}: R_{k}^{\prime} \rightarrow R_{k+1}^{\prime \prime}$
In the disjoint union $\cup R_{k}$ we make all the identifications (5). We get a set Y. We may now consider each R_{k} as a subset of Y. Each R_{j} is mapped by (u_{j}, v_{j}) bijectively onto \mathbf{C}^{2}. This defines an atlas of Y. A subset of Y is open if and only if its intersection with each R_{j} is an open subset of R_{j}.

Lemma. The topological space Y defined by (5) satisfies the Hausdorff separation axiom.

Proof. Denote the map $R_{j} \rightarrow \mathbf{C}^{2}$ by ψ_{j}. Let k be an integer. According to Bourbaki [7] p. 36, we have to show that the graph of

$$
\begin{equation*}
\psi_{j+k}^{\circ} \psi_{j}^{-1}: \psi_{j}\left(R_{j} \cap R_{j+k}\right) \rightarrow \psi_{j+k}\left(R_{j} \cap R_{j+k}\right) \tag{6}
\end{equation*}
$$

is closed in $\psi_{j}\left(R_{j}\right) \times \psi_{j+k}\left(R_{j+k}\right)=\mathbf{C}^{2} \times \mathbf{C}^{2}$. Without loss of generality we may assume $j=0$ and $k>0$. The map $\psi_{k}{ }^{\circ} \psi_{0}{ }^{-1}$ is given by

$$
\begin{align*}
& u_{k}=u_{0}^{p k} \cdot v_{0}^{q k} \tag{7}\\
& v_{k}=u_{0}^{-p k-1} \cdot v_{0}^{-q q_{k-1}}
\end{align*}
$$

where

$$
\left(\begin{array}{cc}
p_{k} & q_{k} \\
-p_{k-1} & -q_{k-1}
\end{array}\right)=\left(\begin{array}{cc}
b_{k-1} & 1 \\
-1 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
b_{k-2} & 1 \\
-1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
b_{0} & 1 \\
-1 & 0
\end{array}\right)
$$

and

$$
\frac{p_{k}}{q_{k}}=b_{0}-\frac{1}{b_{1}}-.
$$

p_{k}, q_{k} are coprime. We define $p_{0}=1, q_{0}=0$ and have

$$
\begin{array}{rlr}
p_{k+1}=b_{k} p_{k}-p_{k-1} & \text { for } k \geqq 1, \\
q_{k+1}=b_{k} p_{k}-p_{k+1} & \text { for } k \geqq 1, \\
p_{k}>q_{k}, p_{k+1}>p_{k} \geqq 1, q_{k+1}>q_{k} \geqq 0, & \text { for } k \geqq 0 .
\end{array}
$$

The intersection $R_{0} \cap R_{k}$ as subset of R_{0} is given by $u_{0} \neq 0, v_{0} \neq 0$ for $k \geqq 2$ and by $u_{0} \neq 0$ for $k=1$. The graph of $\psi_{k} \cdot \psi_{0}{ }^{-1}$ (see (6)) is given by

$$
\begin{aligned}
& u_{k}=u_{0}^{p k} \cdot v_{0}^{q k}, v_{k} \cdot u_{0}^{p k-1} \cdot v_{0}^{q k-1}=1 \\
& u_{0} \neq 0, \quad v_{0} \neq 0 \quad(k \geqq 2) \\
& u_{0} \neq 0 \quad(k=1)
\end{aligned}
$$

But the inequalities follow from the equations. Therefore the graph is closed in $\mathbf{C}^{2} \times \mathbf{C}^{2}$. This finishes the proof of the lemma. The negative exponents in the second line of (7) were essential.

The argument would break down, for example, if $k=6$ and $b_{i}=1$ for $0 \leqq i \leqq 5$, because $\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)^{6}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

The topological space Y obviously has a countable basis. For any function $k \mapsto b_{k} \geqq 2$ we have constructed a complex manifold Y of complex dimension 2. In Y we have a string of compact rational curves S_{k} non-singularly embedded $(k \in \mathbf{Z})$. The curve S_{k} is given by $u_{k+1}=0$ in the $(k+1)$-th coordinate system and by $v_{k}=0$ in the k-th coordinate system. S_{k}, S_{k+1} intersect in just one point transversally, namely in the origin of the $(k+1)$-th coordinate system. $S_{i}, S_{k}(i<k)$ do not intersect, if $k-i \neq 1$. The union of all the S_{k} is a closed subset of Y.

Lemma. The self-intersection number of the curve S_{k} equals $-b_{k}$.
Proof. The coordinate function u_{k+1} extends to a meromorphic function on Y. Its divisor is an infinite integral linear combination of the S_{j} which because of (5) contains S_{k-1} with multiplicity b_{k}, the curve S_{k} with multiplicity 1 and the curve S_{k+1} with multiplicity 0 . The intersection number of S_{k} with this divisor is zero. Since it is also equal to $b_{k}+S_{k} \cdot S_{k}$, the result follows.

Remark. The construction of Y is analogous to the resolution of a quotient singularity in [35], 3.4. For technical reasons we have changed
the notation by shifting the indices of S_{k} and b_{k} by 1 . This should also be taken into account when comparing with [39], § 4.
2.3. Let us assume that the function $k \mapsto b_{k} \geqq 2$ of 2.2 is periodic, i.e. there exists a natural number $r \geqq 1$ such that

$$
b_{k+r}=b_{k} .
$$

Continued fractions of the form

$$
a_{0}-\frac{1}{a}-\ddots-\frac{1}{a_{s}}
$$

shall be denoted by $\left[\left[a_{0}, \ldots, a_{s}\right]\right]$; similarly, $\left[\left[a_{0}, a_{1}, a_{2}, \ldots\right]\right]$ stands for infinite continued fractions of this kind. For our given function $k \mapsto b_{k} \geqq 2$ we consider the numbers

$$
\begin{equation*}
w_{k}=\left[\left[b_{k}, b_{k+1}, \ldots\right]\right], \quad k \in \mathbf{Z} \tag{8}
\end{equation*}
$$

The w_{k} are all equal to 1 if $b_{j}=2$ for all j. Therefore, we assume $b_{j} \geqq 3$ for at least one j. Then all w_{k} are quadratic irrationalities which are greater than 1 . They satisfy $w_{k+r}=w_{k}$ and all belong to the same real quadratic field K. We consider the complete \mathbf{Z}-module

$$
M=\mathbf{Z} w_{0}+\mathbf{Z} .1 \subset K
$$

Let $x \mapsto x^{\prime}$ be the non-trivial automorphism of K. Thus $x=x^{(1)}$ and $x^{\prime}=x^{(2)}$ in the notation of 1.3. The module M acts freely on \mathbf{C}^{2} by $\left(z_{1}, z_{2}\right) \mapsto\left(z_{1}+a, z_{2}+a^{\prime}\right)$ for $a \in M$. For our function $j \mapsto b_{j} \geqq 2$ we have constructed in 2.2 a complex manifold Y. We now define a biholomorphic map

$$
\begin{aligned}
& \Phi: Y-\underset{j \in z}{\cup} S_{j} \rightarrow \mathbf{C}^{2} / M \\
& \Phi:\left(u_{0}, v_{0}\right) \mapsto\left(z_{1}, z_{2}\right)
\end{aligned}
$$

by

$$
\begin{align*}
& 2 \pi i z_{1}=w_{0} \log u_{0}+\log v_{0} \tag{9}\\
& 2 \pi i z_{2}=w_{0}^{\prime} \log u_{0}+\log v_{0}
\end{align*}
$$

The logarithms are defined modulo integral multiples of $2 \pi i$, thus $\left(z_{1}, z_{2}\right)$ is well-defined modulo M. Observe that

$$
Y-\underset{j \in z}{\cup} S_{j}=\left\{\left(u_{0}, v_{0}\right) \mid u_{0} \neq 0, v_{0} \neq 0\right\}
$$

Since the determinant $\left|\begin{array}{cc}w_{0} & w_{0}^{\prime} \\ 1 & 1\end{array}\right| \neq 0$, we can solve (9) for $\log u_{0}$ and $\log v_{0}$ and obviously have a biholomorphic map. The map Φ can be written down with respect to the k-th coordinate system $(k \in \mathbf{Z})$. The result is as follows.

Put $A_{0}=1$ and $A_{k+1}=w_{k+1}^{-1} \cdot A_{k}$. This defines A_{k} inductively for any integer k :

$$
\begin{gathered}
A_{k}=\left(w_{1} w_{2} \ldots w_{k}\right)^{-1} \text { for } k \geqq 1, A_{-k}=w_{0} w_{-1} \ldots w_{-k+1} \text { for } k \geqq 1, \\
0<A_{k+1}<A_{k} \text { for } k \in \mathbf{Z}, A_{k} \neq 1 \text { for } k \neq 0 .
\end{gathered}
$$

Formula (8) implies $w_{k}=b_{k}-\frac{1}{w_{k+1}}$ and

$$
\begin{equation*}
b_{k} A_{k}=A_{k-1}+A_{k+1} \tag{10}
\end{equation*}
$$

For any integer k, the numbers A_{k-1}, A_{k} are a basis for M. From the coordinate transformations (5) we get the expression for the map Φ in the k-th coordinate system

$$
\begin{align*}
& 2 \pi i z_{1}=A_{k-1} \cdot \log u_{k}+A_{k} \cdot \log v_{k} \tag{11}\\
& 2 \pi i z_{2}=A_{k-1}^{\prime} \cdot \log u_{k}+A_{k}^{\prime} \cdot \log v_{k}
\end{align*}
$$

We had assumed that the b_{j} are periodic with period r which implies $w_{k+r}=w_{k}$ for any k. Therefore, A_{r}^{-1} equals the product of any r consecutive w_{j} which gives

$$
\begin{array}{ll}
A_{k+r}=A_{r} A_{k} & \text { for any } k \in \mathbf{Z} \tag{12}\\
\left(A_{r}\right)^{n}=A_{n r} & \text { for any } n \in \mathbf{Z} .
\end{array}
$$

This implies that $A_{r} M=M$. Therefore A_{r} is an algebraic integer and a unit $\neq 1$.

If we apply the non-trivial automorphism of K to the equation $w_{k}=b_{k}-\frac{1}{w_{k+1}}$ and use the periodicity we get

$$
\begin{align*}
& w_{k+1}^{\prime-1}=b_{k}-\frac{1}{w_{k}^{\prime-1}} \tag{13}\\
& w_{k+1}^{\prime-1}=\left[\left[b_{k}, b_{k-1}, \ldots\right]\right]>1
\end{align*}
$$

Therefore,

$$
\begin{equation*}
0<w_{k}^{\prime}<1<w_{k} \quad \text { for } k \in \mathbf{Z} \tag{14}
\end{equation*}
$$

Thus the w_{k} and the A_{k} are totally positive. Let V be the (infinite cyclic) subgroup of U_{M}^{+}generated by A_{r}. Thus we have associated to our function $j \mapsto b_{j} \geqq 2$ (at least one $b_{j} \geqq 3$) and the given period r (which need not be the smallest one) a pair (M, V) and a group $G(M, V)$ (see 2.1) which determines a cusp singularity. We shall use the complex manifold Y constructed in 2.2 for a resolution of this cusp singularity.

We restrict Φ to the open subset $\Phi^{-1}\left(\mathfrak{G}^{2} / M\right)$ of Y. According to (11) this set is given by

$$
\begin{aligned}
& A_{k-1} \cdot \log \left|u_{k}\right|+A_{k} \cdot \log \left|v_{k}\right|<0 \\
& A_{k-1}^{\prime} \cdot \log \left|u_{k}\right|+A_{k}^{\prime} \cdot \log \left|v_{k}\right|<0
\end{aligned}
$$

Since $v_{k}=0$ or $u_{k+1}=0$ for a point on S_{k} and the above inequalities do not depend on the coordinate system, it follows that

$$
Y^{+}=\Phi^{-1}\left(\mathfrak{H}^{2} / M\right) \cup \underset{k \in \mathbb{Z}}{\cup} S_{k}
$$

is an open subset of Y. The group

$$
V=\left\{\left(A_{r}\right)^{n} \mid n \in \mathbf{Z}\right\}
$$

acts on Y^{+}as follows:
$\left(A_{r}\right)^{n}$ sends a point with coordinates u_{k}, v_{k} in the k-th coordinate system to the point with the same coordinates in the $(k+n r)$-th coordinate system. Because of the periodicity $b_{j+r}=b_{j}$, this is compatible with the identifications (5). Therefore the action of the infinite cyclic group V on the complex manifold Y^{+}is well-defined. We have the exact sequence

$$
0 \rightarrow M \rightarrow G(M, V) \rightarrow V \rightarrow 1
$$

Thus V acts on \mathfrak{G}^{2} / M. On the other hand we have a biholomorphic map

$$
\Phi: Y^{+}-\underset{k \in Z}{\cup} S_{k} \rightarrow \mathfrak{Y}^{2} / M
$$

Lemma. The actions of V on Y^{+}and \mathfrak{S}^{2} / M are compatible with Φ.

Proof. If a point p has coordinates u_{k}, v_{k} in the k-th system, its image point $\left(z_{1}, z_{2}\right)$ under Φ is given by (11). If we let A_{r} act on p, its image point
is mapped under Φ (use formula (11) for the $(k+r)$-th coordinate system and (12)) to ($A_{r} z_{1}, A_{r}^{\prime} z_{2}$).

Lemma. The action of V on Y^{+}is free and properly discontinuous.

Proof. In view of the preceding lemma the action is free on $Y^{+}-\cup S_{k}$. By A_{r}^{n} (assume $n \neq 0$) a point on S_{k} is mapped to a point ${ }_{k \in Z}$ If it is fixed, it will be an intersection point $S_{j-1} \cap S_{j}$ of two on $S_{k+n r}$. If it is fixed, it will be an intersection point $S_{j-1} \cap S_{j}$ of two consecutive curves, but this point is carried to $S_{j+n r-1} \cap S_{j+n r}$.

To prove that V is properly discontinuous we must show that for points p, q on Y^{+}there exist neighborhoods U_{1} and U_{2} of p and q such that $g U_{1} \cap U_{2} \neq \varnothing$ only for finitely many $g \in V$. Since V acts properly discontinuously on \mathfrak{H}^{2} / M and $\cup S_{k}$ is closed in Y^{+}, this is clear if p and $k \in \mathbf{Z}$ q both do not belong to $\cup{ }_{k \in \mathcal{Z}}^{\cup} S_{k}$. If $p \in \underset{k \in Z}{\cup} S_{k}$ and $q \notin \underset{k \in Z}{\cup} S_{k}$ we use the function Φ.

For $\left(z_{1}, z_{2}\right) \in \mathfrak{H}^{2}$ put $\rho\left(z_{1}, z_{2}\right)=\operatorname{Im} z_{1} \cdot \operatorname{Im} z_{2}$ and set

$$
U_{1}=\left\{u \mid u \in Y^{+}, \rho \Phi(u)<\rho \Phi(p)+1\right\},
$$

and let U_{2} be the complement of \bar{U}_{1} in Y^{+}.
Then $U_{1} \cap U_{2}=\varnothing$ and $g U_{1}=U_{1}$ for $g \in V$.
Now suppose both points p and q lie on $\cup{ }_{k \in Z} S_{k}$. It is sufficient to prove the existence of neighborhoods U_{1} and U_{2} of p and q such that $g U_{1} \cap U_{2} \neq \varnothing$ for only finitely many $g=\left(A_{r}\right)^{n}$ with $n<0$. Recall that A_{r} generates V. If q lies on S_{j} and in the j-th coordinate system and p on S_{k} and in the k-th system, then a neighborhood U_{2} of q is given by

$$
0 \leqq\left|u_{j}\right|<\frac{1}{\varepsilon},\left|v_{j}\right|<\varepsilon \quad(\text { for } \varepsilon \text { sufficiently small). }
$$

A neighborhood U_{1} of p is given by

$$
0 \leqq\left|u_{k}\right|<\frac{1}{\varepsilon},\left|v_{k}\right|<\varepsilon \quad \text { (for } \varepsilon \text { sufficiently small). }
$$

Suppose that $|n| \geqq k-j+1$. Then a point $\left(u_{k}, v_{k}\right)$ in the k-th system is mapped under $\left(A_{r}\right)^{n}(n<0)$ to a point $\left(u_{j}, v_{j}\right)$ in the j-th system if and only if

$$
\begin{align*}
& u_{j}=u_{k}^{a} \cdot v_{k}^{b} \tag{15}\\
& u_{j} \cdot u_{k}^{c} \cdot v_{k}^{d}=1
\end{align*}
$$

where a, b, c, d are non-negative integers and $c>d$. In fact $\left(\begin{array}{cc}a & b \\ -c & -d\end{array}\right)$ is a matrix of type (7) depending on n, of course. If the points $\left(u_{j}, v_{j}\right)$ and (u_{k}, v_{k}) lie in the chosen neighborhoods of p and q we obtain from (15) the inequality

$$
\varepsilon^{d-c-1}<1
$$

which is not true for $\varepsilon \leqq 1$. Therefore, the image of U_{1} under $\left(A_{r}\right)^{n}$ does not intersect U_{2} for $n<0$ and $|n| \geqq k-j+1$.

Remark. The elements of $M=\mathbf{Z} w_{0}+\mathbf{Z}$ can be written in the form $y-x w_{0}$ with $x, y \in \mathbf{Z}$. The number $y-x w_{0}$ is totally positive if and only if

$$
y-x w_{0}>0 \text { and } y-x w_{0}^{\prime}>0
$$

Since $w_{0}>1>w_{0}^{\prime}>0$, the totally positive elements of M correspond exactly to the integral points in the (x, y)-plane which lie in the quadrant (angle $<180^{\circ}$) bounded by $y-x w_{0}=0(x \geqq 0)$ and $y-x w_{0}^{\prime}=0(x \leqq 0)$. If we write $A_{k}=p_{k}-q_{k} w_{0}$, then for $k \geqq 0$ these are the p_{k}, q_{k} of 2.2. We have

$$
\lim _{k \rightarrow \infty} \frac{p_{k}}{q_{k}}=w_{0}, \quad \lim _{k \rightarrow-\infty} \frac{p_{k}}{q_{k}}=w_{0}^{\prime}
$$

More precisely, it can be shown [12] that the A_{k} are exactly the lattice points of the support polygon, i.e the polygon which bounds the convex hull of the lattice points in the above quadrant. It follows [12] that every totally positive number of M can be written uniquely as a linear combination of one or of two consecutive numbers A_{k} with positive integers as coefficients.
2.4. In section 2.3 we have constructed for a periodic function $k \mapsto b_{k} \geqq 2$ (with $b_{j} \geqq 3$ for at least one j) a complex manifold Y^{+} together with a free properly discontinuous action of an infinite cyclic group V on Y^{+}. The orbit space Y^{+} / V is a complex manifold. The curve S_{k} in Y^{+}was mapped by the generator A_{r} of V onto the curve S_{k+r} where r was the period. Thus S_{k} and S_{k+r} become the same curve in Y^{+} / V. We shall denote the curves in Y^{+} / V again by $S_{k}(k \in \mathbf{Z})$ with the understanding
that we have $S_{k}=S_{k+r}$. We have in Y^{+} / V for $r \geqq 3$ a cycle $S_{0}, S_{1}, \ldots, S_{r-1}$ of non-singular rational curves such that S_{k} and S_{k+1} intersect transversally in exactly one point ($k \in \mathbf{Z} / r \mathbf{Z}$) and the selfintersection number $S_{k} \cdot S_{k}$ equals $-b_{k}$. Otherwise there are no intersections. The configuration is illustrated by the diagram:

For $r=2$ the configuration looks as follows:

There are two transversal intersections of S_{0} and S_{1}.
If $r=1$, there is a special situation because the curves S_{0} and S_{1} of Y^{+}intersect transversally in one point and S_{0} and S_{1} become identified under V. Thus under the map $Y^{+} \rightarrow Y^{+} / V$ the string of rational curves S_{k} is mapped onto one rational curve S_{0} in Y^{+} / V with one ordinary double point (which was previously also denoted by S_{0}, but must here be distinguished).

$$
\begin{equation*}
r=1 \tag{18}
\end{equation*}
$$

Lemma. For $r=1$ we have in Y^{+} / V

$$
-\tilde{S}_{0} \cdot \tilde{S}_{0}=b_{0}-2
$$

Proof. Let c_{1} and \dot{c}_{1} denote the first Chern classes of Y^{+}and Y^{+} / V respectively. Let π be the map $Y^{+} \rightarrow Y^{+} / V$. Then $\pi^{*} \tilde{c}_{1}=c_{1}$ and

$$
\tilde{c}_{1}\left(\tilde{S_{0}}\right)=c_{1}\left(S_{0}\right)
$$

where we evaluated the first Chern classes on the cycles \tilde{S}_{0} and S_{0}. By the adjunction formula (0.6)

$$
\begin{aligned}
& c_{1}\left(S_{0}\right)-S_{0} \cdot S_{0}=2 \\
& c_{1}\left(\tilde{S}_{0}\right)-\tilde{S}_{0} \cdot \tilde{S}_{0}+2=2
\end{aligned}
$$

The summand 2 on the left side of the second formula is the contribution of the double point of \tilde{S}_{0} in the adjunction formula. We get

$$
\tilde{S}_{0} \cdot \tilde{S}_{0}=S_{0} \cdot S_{0}+2=-b_{0}+2
$$

which completes the proof.
By $\left(\left(b_{0}, b_{1}, \ldots, b_{r-1}\right)\right)$ we denote a cycle of numbers. (A cycle is given by an ordered set of r numbers. Two ordered sets are identified if they can be obtained from each other by a cyclic permutation.)

For any cycle $\left(\left(b_{0}, b_{1}, \ldots, b_{r-1}\right)\right)$ of natural numbers $\geqq 2$ (at least one $b_{j} \geqq 3$) we have constructed a complex manifold Y^{+} / V which we shall denote now by $Y\left(\left(b_{0}, \ldots, b_{r-1}\right)\right)$.

In this complex manifold of complex dimension 2 (we shall often say "complex surface") we have a configuration (16), (17) or (18) of rational curves. The corresponding matrices of intersection numbers are

$$
\left[\begin{array}{cccccc}
-b_{0} & 1 & 0 & \ldots & 0 & 1 \\
1 & -b_{1} & 1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & 1 & -b_{r-2} & 1 \\
1 & 0 & \ldots & 0 & 1 & -b_{r-1}
\end{array}\right] \quad \text { for } r \geqq 3
$$

and

$$
\left(\begin{array}{ccc}
-b_{0} & 2 \\
2 & -b_{1}
\end{array}\right) \quad \text { for } r=2
$$

By the lemma we have for $r=1$ the 1×1-matrix $\left(-b_{0}+2\right)$. It is easy to show that these matrices are negative definite in all cases.

If all the b_{i} of a cycle equal 2 , then the matrix is negative semi-definite with a null-space of dimension 1 . Thus to get negative definiteness we do need the assumption $b_{j} \geqq 3$ for at least one j.

The negative definiteness implies, according to Grauert [17], that the configurations (16), (17) or (18) can be blown down to give an isolated normal point P in a complex space $\bar{Y}\left(\left(b_{0}, \ldots, b_{r-1}\right)\right.$. We have a holomorphic map

$$
\sigma: Y\left(\left(b_{0}, \ldots, b_{r-1}\right)\right) \rightarrow \bar{Y}\left(\left(b_{0}, \ldots, b_{r-1}\right)\right)
$$

with

$$
\sigma\left(\bigcup_{k=0}^{r-1} S_{k}\right)=P
$$

The map

$$
\sigma: Y\left(\left(b_{0}, \ldots, b_{r-1}\right)\right)-\bigcup_{k=0}^{r-1} S_{k} \rightarrow \bar{Y}\left(\left(b_{0}, \ldots, b_{r-1}\right)\right)-\{P\}
$$

is biholomorphic. The configurations (16), (17), (18) represent the unique minimal resolution of the point P, because they do not contain exceptional curves of the first kind, i.e. non-singular rational curves of selfintersection number -1 . Thus the point P is singular.

The first lemma of 2.3 shows that we have a natural map

$$
Y\left(\left(b_{0}, \ldots, b_{r-1}\right)\right) \rightarrow \overline{\mathfrak{H}^{2} / G(M, V)}
$$

and a commutative diagram

$$
\begin{gathered}
Y\left(\left(b_{0}, \ldots, b_{r-1}\right)\right) \rightarrow \overline{\mathfrak{S}^{2} / G(M, V)} \\
\downarrow \sigma \\
\bar{Y}\left(\left(b_{0}, \ldots, b_{r-1}\right)\right)
\end{gathered}
$$

where $\tilde{\sigma}$ is biholomorphic and $\tilde{\sigma}(P)=\infty$ (in the notation of 2.1). The map $\tilde{\sigma}$ is biholomorphic also in P because one can introduce at most one normal complex structure in $\overline{\mathfrak{H}^{2} / G(M, V)}$ extending the complex structure of $\mathfrak{G}^{2} / G(M, V)$.

We have established the existence of the normal complex space $\overline{\mathfrak{H}^{2} / G(M, V)}$ directly without using the Proposition given in 2.1. We need only define $\tilde{\sigma}$ to be biholomorphic. Also we have given the resolution of the singular point ∞ which was added to $\mathfrak{H}^{2} / G(M, V)$. We summarize our results:

Theorem. Let $\left(\left(b_{0}, b_{1}, \ldots, b_{r-1}\right)\right)$ be a cycle of natural numbers $\geqq 2$ (at least one $b_{j} \geqq 3$). Put

$$
w_{0}=\left[\left[b_{0}, \ldots, b_{r-1}, b_{0}, \ldots, b_{r-1}, \ldots\right]\right]=\left[\left[\overline{b_{0}, \ldots, b_{r-1}}\right]\right]
$$

(infinite periodic continued fraction). Then $K=\mathbf{Q}\left(w_{0}\right)$ is a real quadratic field and $M=\mathbf{Z} w_{0}+\mathbf{Z} .1$ a complete \mathbf{Z}-module of K. The cycle $\left(\left(b_{0}, \ldots, b_{r-1}\right)\right)$ determines a totally positive unit A_{r} of K with $A_{r} M=M$. The unit A_{r} generates an infinite cyclic subgroup V of U_{M}^{+}, the group of all totally positive units ε of K with $\varepsilon M=M$. The unique singular point ∞ of $\overline{\mathfrak{S}^{2} / G(M, V)}$, where $G(M, V)$ is the natural semi-direct product of M and V, admits a cyclic resolution by rational curves S_{k} (configuration (16), (17) or (18)) with selfintersection numbers $S_{k} \cdot S_{k}=-b_{k}$ (for $r=1$ we have $\tilde{S}_{0} \cdot \tilde{S}_{0}=-b_{0}+2$). This resolution is given by the complex surface $Y\left(\left(b_{0}, \ldots, b_{r-1}\right)\right)$ which we canonically associated to a cycle.

Remark 1. Laufer [50] has shown that two normal singular points (in complex dimension 2) which admit a resolution with a given cyclic configuration of rational curves of type (16), (17) or (18) and given selfintersection numbers are isomorphic. Hence the singularity P of $Y\left(\left(b_{0}, \ldots, b_{r-1}\right)\right)$ which we have constructed is up to isomorphism the unique singularity with the given cyclic configuration of rational curves and the given selfintersection numbers. (These singularities are called cyclic singularities.) Reversal of the cycle gives an isomorphic singularity.

Remark 2. The construction of Y in 2.2 applies also to the case where all b_{k} equal 2. Then we have $u_{j} \cdot v_{j}=u_{k} \cdot v_{k}$ (compare (5)) and hence obtain a holomorphic function $f: Y \rightarrow \mathbf{C}$. As in 2.3, we have a properly discontinuous action of an infinite cyclic group V on $Y^{\varepsilon}=\{p|p \in Y,|f(p)|<\varepsilon\}$, for ε positive and sufficiently small, whose generator maps the curve S_{k} to S_{k+r}. The period $r \geqq 1$ can be choosen arbitrarily.

The function f is invariant under V; thus we get a holomorphic map

$$
f: Y^{\varepsilon} / V \rightarrow\{z| | z \mid<\varepsilon\}
$$

All fibres of f are non-singular elliptic curves except $f^{-1}(0)$ which is a configuration of rational curves of type (16), (17), (18) where now all b_{k} equal 2. The fibring we have constructed is of type ${ }_{1} I_{r}$ in the sense of Kodaira [45], Part II. We have seen:

Cycles $((2, \ldots, 2))$ give an infinite continued fraction of value 1 and correspond to an elliptic fibring. Cycles $\left(\left(b_{0}, \ldots, b_{r-1}\right)\right),\left(b_{k} \geqq 2\right.$, at least one $b_{j} \geqq 3$), give an infinite continued fraction whose value is a quadratic irrationality. These cycles determine singular points.
2.5. The theorem in 2.4 actually provides a resolution of the singular point of $\overline{\mathfrak{S}^{2} / G(M, V)}$ (see 2.1 with $n=2$) for any complete Z-module M of a real quadratic field K and an infinite cyclic subgroup V of U_{M}^{+}of any given index $a=\left[U_{M}^{+}: V\right]$. We need a lemma.

Lemma. Consider the Z-module M defined by a periodic function $k \mapsto b_{k} \geqq 2$ (with $b_{j} \geqq 3$ for at least one j). Let $r \geqq 1$ be the smallest period. Then A_{r} (see 2.3) is a generator of U_{M}^{+}.

Proof. We shall denote ordinary continued fractions

$$
a_{0}+\frac{1}{a_{1}}+\frac{1}{a_{2}}+
$$

by $\left[a_{0}, a_{1}, a_{2}, \ldots\right]$. The relation between the two types of continued fractions is as follows:

$$
\begin{equation*}
\left[a_{0}, a_{1}, z\right]=[[a_{0}+1, \underbrace{2, \ldots, 2}_{a_{1}-1}, z+1]] \tag{19}
\end{equation*}
$$

where z is an indeterminante and a_{1} a natural number $\geqq 1$. Using (19) the lemma can be derived from similar results for ordinary continued fractions (compare [6], Kap. II, § 7). A proof is also given in [12]. Another proof was communicated to the author by J. Rohlfs.

Two complete Z-modules M_{1}, M_{2} of the same real quadratic field K are strictly equivalent (2.1) if there exists a totally positive number $\alpha \in K$ with $\alpha M_{1}=M_{2}$. We have $U_{M_{1}}^{+}=U_{M_{2}}^{+}$.

The actions of $G\left(M_{1}, V\right)$ and $G\left(M_{2}, V\right)$ on \mathfrak{G}^{2} are equivalent under the automorphism $\left(z_{1}, z_{2}\right) \mapsto\left(\alpha z_{1}, \alpha z_{2}\right)$ of \mathfrak{H}^{2}. Any module M_{1} is strictly equivalent to a module of the form $M_{2}=\mathbf{Z} w_{0}+\mathbf{Z} \cdot 1$ where $w_{0} \in K$ and $0<w_{0}^{\prime}<1<w_{0}$. (This is easy to prove, as was shown to me by H. Cohn.) Then the continued fraction $w_{0}=\left[\left[b_{0}, b_{1}, \ldots\right]\right]$ is purely periodic, i.e. periodicity starts with b_{0}. This can be proved in the same way as an analogous result for ordinary continued fractions ([60], §22). Let r be the smallest
period. We can resolve the singularity of $\overline{\mathfrak{S}^{2} / G\left(M_{2}, U_{M_{2}}^{+}\right)}$by the method of 2.3 and 2.4, since by the preceding lemma $U_{M_{2}}^{+}=\left\{\left(A_{r}\right)^{n} \mid n \in \mathbf{Z}\right\}$. The resolution is described by the primitive cycle $\left(\left(b_{0}, \ldots, b_{r-1}\right)\right)$ where primitive means that the cycle cannot be written as an "unramified covering" of degree >1. The cycle $((2,3,5,2,3,5))=((2,3,5))^{2}$ is not primitive, for example.

For any primitive cycle $\left(\left(b_{0}, \ldots, b_{r-1}\right)\right)$ we obtain a module $\mathbf{Z} w_{0}+\mathbf{Z} \cdot 1$ with $w_{0}=\left[\left[b_{0}, b_{1}, \ldots\right]\right]$. In the cycle we must allow cyclic permutations. This changes the module to a module $\mathbf{Z} w_{k}+\mathbf{Z} \cdot 1$ (see 2.3). But $\mathbf{Z} w_{0}+\mathbf{Z} \cdot 1$ $=\mathbf{Z} A_{k-1}+\mathbf{Z} A_{k}$ and $A_{k-1} / A_{k}=w_{k}$, where A_{k} is totally positive (see 2.3). Therefore, the strict equivalence class of the module only depends on the cycle. If one reverses the order (orientation) of the cycle, the associated equivalence class of modules is replaced by the conjugate one (see (13)).

If we start from a strict equivalence class of modules, it determines, as explained above, an isomorphism class of singularities (represented by the singularity of $\mathfrak{S}^{2} / G\left(M_{2}, U_{M_{2}}^{+}\right)$).

But isomorphic singularities must give the same unoriented cycle in their canonical minimal resolutions. "Unoriented" means that we cannot distinguish between $\left(\left(b_{0}, \ldots, b_{r-1}\right)\right)$ and $\left(\left(b_{r-1}, \ldots, b_{0}\right)\right)$. But, in fact, if we represent the class of modules as above by $M_{2}=\mathbf{Z} w_{0}+\mathbf{Z} \cdot 1$, then the cycle of w_{0} is uniquely determined including the orientation. If this were not the case, it would follow that M_{2} and M_{2}^{\prime} are strictly equivalent. Then the singularity and its resolution admit an involution showing that the cycles $\left(\left(b_{0}, \ldots, b_{r-1}\right)\right)$ and $\left(\left(b_{r-1}, \ldots, b_{0}\right)\right)$ are equal. (Details are left to the reader. The relation between strict equivalence classes of modules and primitive cycles can be derived, of course, also without using the resolution, compare 2.6.)

We have established a bijective map between primitive admissible cycles (all $b_{k} \geqq 2$ and at least one $b_{j} \geqq 3$) and the strict equivalence classes of complete \mathbf{Z}-modules (where the real quadratic field K varies).

The preceding discussion yields the following theorem.

Theorem. Let K be a real quadratic field and M a complete \mathbf{Z}-module in K. Let $\left(\left(b_{0}, b_{1}, \ldots, b_{r-1}\right)\right)$ be the primitive cycle belonging to M. Let V be the subgroup of U_{M}^{+}of index a. Then the resolution of the singular point of $\overline{\mathfrak{S}^{2} / G(M, V)}$ is given by the cycle $\left(\left(b_{0}, b_{1}, \ldots, b_{r-1}\right)\right)^{a}$.

Remark. The structure of the local ring $\mathcal{D}(M, V)$ at the point ∞ of $\overline{\mathfrak{H}^{2} / G(M, V)}$ was described in 2.1. For any admissible cycle $\left(\left(b_{0}, \ldots, b_{r-1}\right)\right)$, not necessarily primitive, the functions $f \in \mathfrak{D}(M, V)$ can be written as power series' in u_{0}, v_{0} where u_{0}, v_{0} is the coordinate system of 2.3 (11) with $A_{0}=1$ and $A_{-1}=w_{0}=\left[\left[\overline{b_{0}, \ldots, b_{r-1}}\right]\right]$. We could use also any other coordinate system u_{k}, v_{k}.

Let $\left(u_{0}, v_{0}\right)^{n}=u_{0}{ }^{n 1} \cdot v_{0}{ }^{n_{2}}$ for $n=\left(n_{1}, n_{2}\right)$ and

$$
\operatorname{Tn}=\left(\begin{array}{cc}
-q_{r-1} & p_{r-1} \\
-q_{r} & p_{r}
\end{array}\right)\binom{n_{1}}{n_{2}}, \text { see } 2.2(7)
$$

then $\mathfrak{D}(M, V)$ is the ring of all power series'

$$
f=a_{0}+\sum_{n} a_{n}\left(u_{0}, v_{0}\right)^{n}
$$

where the summation extends over all pairs $n=\left(n_{1}, n_{2}\right)$ of positive integers with $w_{0}^{\prime} \leqq n_{1} / n_{2} \leqq w_{0}$, the coefficients satisfy $a_{T n}=a_{n}$, and the power series converges for

$$
\begin{aligned}
& w_{0} \log \left|u_{0}\right|+\log \left|v_{0}\right|<0, w_{0}^{\prime} \log \left|u_{0}\right|+\log \left|v_{0}\right|<0 \\
& \left(w_{0} \log \left|u_{0}\right|+\log \left|v_{0}\right|\right) \cdot\left(w_{0}^{\prime} \log \left|u_{0}\right|+\log \left|v_{0}\right|\right)>\frac{1}{c}
\end{aligned}
$$

(the positive constant c depending on f).
Observe that T (as fractional linear transformation) maps the intervall [w_{0}^{\prime}, w_{0}] bijectively onto itself $\left(T w_{0}^{\prime}=w_{0}^{\prime}, T w_{0}=w_{0}\right)$. We have $T x<x$ for $w_{0}^{\prime}<x<w_{0}$ and therefore
$\lim _{k \rightarrow \infty} T^{k} x=w_{0}^{\prime}\left(\right.$ for $\left.w_{0}^{\prime} \leqq x<w_{0}\right)$ and $\lim _{k \rightarrow-\infty} T^{k} x=w_{0}\left(\right.$ for $\left.w_{0}^{\prime}<x \leqq w_{0}\right)$

Example. Consider the Fibonacci numbers

$$
\ldots,-8,5,-3,2,-1,1,0,1,1,2,3,5,8,13
$$

where $F_{0}=0, F_{1}=1$ and $F_{k+1}=F_{k}+F_{k-1}(k \in \mathbf{Z})$. The numbers $G_{k}=F_{2 k+1}(k \in \mathbf{Z})$ are all positive and satisfy $G_{k+1}=3 G_{k}-G_{k-1}$. The function

$$
f\left(u_{0}, v_{0}\right)=\sum_{k=-\infty}^{\infty} u_{0}{ }^{G_{k-1}} \cdot v_{0}{ }^{G_{k}}
$$

represents an element of $\mathfrak{D}\left(M, U_{M}^{+}\right)$where

$$
M=\mathbf{Z} w_{0}+\mathbf{Z} \quad \text { and } \quad w_{0}=[[\overline{3}]]=\frac{1}{2}(3+\sqrt{5})
$$

2.6. The primitive cycle associated to a module M can be found also without using a base $w_{0}, 1$ of M with $0<w_{0}^{\prime}<1<w_{0}$: Real numbers x, y are called strictly equivalent if there exists an element $\left(\begin{array}{l}a \\ c \\ c\end{array}\right) \in \mathbf{S L}_{2}(\mathbf{Z})$ such that

$$
y=\frac{a x+b}{c x+d}
$$

Any irrational number x has a unique infinite continued fraction development

$$
x=\left[\left[a_{0}, a_{1}, a_{2}, \ldots\right]\right]
$$

where $a_{i} \in \mathbb{Z}$ and $a_{i} \geqq 2$ for $i \geqq 1$ and where $a_{i} \geqq 3$ for infinitely many indices i. Two irrational numbers are strictly equivalent if and only if their continued fractions $\left[\left[a_{0}, a_{1}, \ldots\right]\right]$ and $\left[\left[a_{0}^{\prime}, a_{1}^{\prime}, \ldots\right]\right]$ coincide from certain points on, i.e. $a_{j+i}=a_{k+i}^{\prime}$ for some j and k and for all $i \geqq 0$. This is analogous to a classical result on ordinary continued fractions ([60], Satz 2.24).

A quadratic irrationality w admits a continued fraction which is periodic from a certain point on. It is purely periodic if and only if $0<w^{\prime}<1<w$ as mentioned before. The periodicity of the continued fraction of w determines a primitive cycle $\left(\left(b_{0}, \ldots, b_{r-1}\right)\right)$ which is admissible (all $b_{i} \geqq 2$, at least one $b_{j} \geqq 3$). Thus two quadratic irrationalities are strictly equivalent if and only if their cycles agree, and we have a bijection between strict equivalence classes of quadratic irrationalities and admissible primitive cycles. The admissible primitive cycles are in one-to-one correspondence with the strict equivalence classes of complete Z-modules in real quadratic fields K where K varies (see 2.5).

A complete \mathbf{Z}-module M of a real quadratic field K will be oriented by using the admissible bases $\left(\beta_{1}, \beta_{2}\right)$ of M with $\beta_{1} \beta_{2}^{\prime}-\beta_{2} \beta_{1}^{\prime}>0$. By restricting the norm function $\left(N(x)=x x^{\prime}\right.$ for $\left.x \in K\right)$ to M we obtain an indefinite quadratic form f on M with rational values. The exists a unique positive rational number m such that $m \cdot f$ is integral and with respect to an admissible base of M can be written as

$$
a u^{2}+b u v+c v^{2}
$$

where $a, b, c \in \mathbf{Z}$ and $(a, b, c)=1$. The pairs (u, v) are in $\mathbf{Z} \oplus \mathbf{Z} \cong M$. The discriminant $D_{M}=b^{2}-4 a c$ is positive and not a square number.

In this way, we get a bijection between strict equivalence classes of complete Z-modules of real quadratic fields and the isomorphism classes under $\mathbf{S L}_{2}(\mathbf{Z})$ of integral indefinite primitive binary quadratic forms of non-square discriminant.

Remark. The discriminant D of such a quadratic form can be written uniquely as

$$
D=D_{K} \cdot f^{2}, \quad f \geqq 1,
$$

where D_{K} is the discriminant of the real quadratic field $K=\mathbf{Q}(\sqrt{D})$. Then the corresponding strict equivalence class of modules can be represented by an ideal in the order (subring of \mathfrak{p}_{K}) which as an additive group has index f in $\mathfrak{0}_{K}$, and this is the smallest f such that the equivalence class of M can be represented in this way.

The strict equivalence class of the "first root"

$$
\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, \text { where } \sqrt{b^{2}-4 a c}>0
$$

depends only on the equivalence class of the quadratic form.
We obtain a bijection between $\mathbf{S L}_{\mathbf{2}} \mathbf{(\mathbf { Z }) \text { -equivalence classes of integral }}$ indefinite primitive binary quadratic forms of non-square discriminant and strict equivalence classes of quadratic irrationalities.

All the bijections are compatible with each other as can be checked easily. Let us collect the bijections:
strict equivalence classes of complete \mathbf{Z}-modules in real quadratic fields

$$
\begin{aligned}
& \leftrightarrow \\
& \leftrightarrow \\
& \leftrightarrow
\end{aligned}
$$

admissible primitive cycles of natural numbers
strict equivalence classes of quadratic irrationalities
$\mathbf{S L}_{2}(\mathbf{Z})$-equivalence classes of integral indefinite primitive binary quadratic forms of non-square discriminant
isomorphism classes of cyclic singularities with a primitive cycle and as additional structure a prefered orientation of the cycle (compare 2.4, Remark 1).

Example. Let d be a square-free number >1 and suppose $d \equiv 2 \bmod 4$ or $d \equiv 3 \bmod 4$. The $(\sqrt{d}, 1)$ is an admissible Z-base of the ideal (1) in \mathfrak{v}_{K} for $K=\mathbf{Q}(\sqrt{d})$. The quadratic form is given by

$$
-u^{2} d+v^{2}
$$

and has discriminant $4 d$. The first root equals $\frac{-\sqrt{d}}{d}=-\frac{1}{\sqrt{d}}$ which is equivalent to \sqrt{d}. (Take always the positive square root). The admissible cycle of natural numbers is obtained by developing \sqrt{d} in a continued fraction.

§ 3. Numerical invariants of singularities and of Hilbert modular surfaces

3.1. Let X be a compact oriented manifold of dimension $4 k$ with or without boundary. Then $H^{2 k}(X, \partial X ; \mathbf{R})$ is a finite dimensional real vector space over which we have a bilinear symmetric form B with

$$
B(x, y)=(x \cup y)[X, \partial X], \text { for } x, y \in H^{2 k}(X, \partial X ; \mathbf{R}),
$$

where $[X, \partial X]$ denotes the generator of $H_{4 k}(X, \partial X ; \mathbf{Z})$ defined by the orientation. The signature of B, i.e., the number of positive entries minus the number of negative entries in a diagonalized version, is called $\operatorname{sign}(X)$. If X has no boundary and is differentiable, then according to the signature theorem ([36], p. 86)

$$
\begin{equation*}
\operatorname{sign}(X)=L_{k}\left(p_{1}, \ldots, p_{k}\right)[X], \tag{1}
\end{equation*}
$$

where L_{k} is a certain polynomial of weight k in the Pontrjagin classes of X with rational coefficients $\left(p_{j} \in H^{4 j}(X, Z)\right)$.

Let N be a compact oriented differentiable manifold without boundary of dimension $4 k-1$ together with a given trivialization α of its stable tangent bundle. (Such a trivialization need not exist). We shall associate to the pair (N, α) a rational number $\delta(N, \alpha)$. Since N has a trivial stable tangent bundle, all its Pontrjagin and Stiefel-Whitney numbers vanish. Therefore N bounds a $4 k$-dimensional compact oriented differentiable manifold X. By the parallelization α we get from the stable tangent bundle of X an SO-bundle over X / N. We denote its Pontrjagin classes by

