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The set T is called the universal Teichmüller space. An important result
due to Ahlfors and Bers shows that each Teichmüller space of a Riemann
surface R or of a Fuchsian group G has a canonical embedding in the

space T. See, for example, [3].

It is natural to ask if there exist relations, other than (1), between S

and T as subsets of B2. Compactness results for conformai mappings show
that S is closed in B2. Hence Bers asked in [2] and [3] if one can characterize

S in terms of T as follows.

Question. Is S the closure of T

We shall answer this question in the negative by sketching a proof for
the following result.

Theorem 1. There exists a (p in S which does not lie in the closure of T.

On the other hand, we have the following characterization of T in

terms of S. See [4].

Theorem 2. T is the interior of S.

2. Reformulations in the plane

A set E cz C is said to be a quasiconformal circle if there exists a quasi-
conformal mapping/defined in C which maps the unit circle {z: | z | 1}

onto E.
Theorems 1 and 2 are then respectively equivalent to the following

two results on plane domains D.

Theorem 3. There exists a simply connected domain D and a positive
constant ô such that f (D) is not bounded by a quasiconformal circle whenever

f is conformai in D with [j Sf ||D < §.

Theorem 4. A simply connected domain D is bounded by a

quasiconformal circle if and only if there exists a positive constant ô such that f
is univalent in D whenever f is meromorphic in D with || Sy ||D < <5.
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We give an argument to show the equivalence of Theorems 1 and 3.

Suppose first that Theorem 1 holds. Then there exists a cp e S and a ô > 0

such that || \jj - cp || > ô for all xj/eT. Choose g conformai in L with

Sg cp, let D - g (L) and suppose that / is conformai in D with |! Sf j(D

< ö. Then h f c g is conformai in L,

(2) Sh (Srg)(g')2 + Sg

by the composition law for the Schwarzian derivative, and hence \jt She S

with
I "A - <p\\ ls„ -Sg||L Sf D < <5.

Thus ifr $ T, h does not have a quasiconformal extension to C, and

df(D) dh (L) is not a quasiconformal circle. Hence Theorem 3 holds.

Suppose next that Theorem 3 holds, let cp Sg where g is any conformai

mapping of L onto D, and choose any ijj e S with || xj/ — cp )| < ô. Then

ij/ Sh where h is conformai in T, / h o g~x is conformai in D and

from (2) we obtain

|| Sf || D || S h ~~ S
g \\l — I ^ ~~ ^ || < ^ •

Hence dh (L) df(D) is not a quasiconformal circle, h does not have a

quasiconformal extension to C and \j/ $ T. Thus the distance from cp to T
is at least Ô and Theorem 1 holds.

A simple modification of the above argument yields the equivalence
of Theorems 2 and 4.

Theorems 1 and 3 are immediate consequences of the following result.

Theorem 5. There exists a simply connected domain D and a positive
constant ö such that f (D) is not a Jordan domain whenever f is conformai
in D with || Sf ||D < 3.

3. Spirals

The proof of Theorem 5 is based on two results for a class of spirals.

Definition. We say that an open arc oc in C is a b-spiral from z1
onto z2 if a has the representation

z (zx - z2) r (t) eif + z2 0 < t < oo

where r (t) is positive and continuous with
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