Zeitschrift:	L'Enseignement Mathématique
Herausgeber:	Commission Internationale de l'Enseignement Mathématique
Band:	25 (1979)
Heft:	1-2: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	ACYCLIC MAPS
Autor:	Hausmann, Jean-Claude / Husemoller, Dale
Kapitel:	§6. ACYCLIC MAPS INTO A GIVEN SPACE
DOI:	https://doi.org/10.5169/seals-50372

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 13.03.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

We prove $X \to F$ is a homotopy equivalence with the same argument used in (5.6) to show P_k implies H_k . Since F is also the fibre of $X_N^+ \to [B\pi_1(X)]_N^+$ we have proved the theorem.

(5.8) Remark. Using (5.1), we see that for an acyclic map $f: X \to Y$ which is k-simple for all $k \ge 2$, the homotopy groups $\pi_*(Y)$ can be computed in terms of $\pi_*(X)$ and $\pi_*(B\pi_1(X)_N^+) \cong \pi_*(BN)^+$ for $i \ge 2$. Some computations of $\pi_*(BN^+)$ for a certain perfect group N can be found for instance in [H, Chapter 7].

§ 6. Acyclic maps into a given space

In this section we study acyclic maps $f: X \to Y$ into a fixed space Y. Two such map $f: X \to Y$ and $f': X' \to Y$ are called equivalent provided there is a homotopy equivalence $h: X \to X'$ with $f \simeq f'h$. Let AC(Y)denote the class of equivalence classes of acyclic $f: X \to Y$ over Y where X and Y are CW-spaces.

(6.1) DEFINITION. An extension data over a space Y is a triple (Φ, i, Φ) where

- (a) Φ is an extension $1 \to N \to G \to \pi_1(Y) \to 1$ with N perfect,
- (b) $i: BG \to BG_N^+$ is an acyclic map with ker $(\pi_1(i)) = N$ (whose equivalence class is well defined by (3.5)), and
- (c) $\phi : Y \to BG_N^+$ is a 2-connected map.

Two triples of extension data (Φ, i, ϕ) and (Φ', i', ϕ') are called equivalent provided there exists an isomorphism $g: G \to G'$ making the following diagrams commutative (up to homotopy for the second one).

where N' = g(N) and Bg^+ is the unique homotopy equivalence determined by g with (3.1).

We denote by ED(Y) the class of equivalence classes of extension data.

(6.2) DEFINITION. The data map ρ is the function $\rho : AC(Y) \to ED(Y)$ which assigns to an acyclic map $f: X \to Y$ the class $\rho(f) = (\Phi, i, \phi)$ of extension data defined as follows:

- (a) Φ is the extension $1 \to \ker \pi_1(f) \to \pi_1(X) \to \pi_1(Y) \to 1$.
- (b) (c) With the well defined $j: X \to BG$ for $G = \pi_1(X)$ we form the cocartesian diagram

$$\begin{array}{cccc} X & \stackrel{j}{\longrightarrow} & BG \\ f & \downarrow & & \downarrow i \\ Y & \stackrel{\phi}{\longrightarrow} & Y \underset{X}{\cup} BG \end{array}$$

Since f is acyclic, i is acyclic, and since $\pi_1(j)$ is an isomorphism, ker $(\pi_1(i)) = N$. Thus $Y \cup {}_{x}BG$ is BG_N^+ up to equivalence.

Now we have to check that the map $\phi: Y \to Y \cup {}_{X}BG = BG_{N}^{+}$ is 2-connected. Since $\pi_{1}(j)$ is an isomorphism, $\pi_{1}(\phi)$ is also an isomorphism. The fact that $\pi_{2}(\phi)$ is surjective comes from the diagram.

The surjectivity on the right is a classical result of Hopf which follows easily from the Serre spectral sequence of the fibration $\tilde{X} \to \tilde{X}_N \to BN$.

Now using (2.5) a simple argument, left to the reader, shows that $\rho : AC(Y) \rightarrow ED(Y)$ is well defined.

(6.3) THEOREM. Let Y be a CW-space. The map $\rho : AC(Y) \to ED(Y)$ surjective and its restriction to the subclass $AC_S(Y)$ of AC(Y) of $f: X \to Y$ which are k-simple for all $k \ge 2$ is a bijection.

Proof. To show ρ is surjective, consider extension data (Φ, i, ϕ) and form the cartesian square

Now f is acyclic by (2.2), and since its fiber is the same as i, we deduce by (5.2) that f is k-simple for all $k \ge 2$.

Next, let $\rho(f) = (\Phi_0, i_0, \phi_0)$ and we show this extension data is equivalent to (Φ, i, ϕ) . Using the homotopy exact sequences for $X \to Y$ and $BG \to BG_N^+$ and the fact that ϕ is 2-connected, we deduce from the five lemma that $\pi_1(\alpha) : \pi_1(X) \to G$ is an isomorphism. The following diagram shows that (Φ_0, i_0, ϕ_0) is equivalent to (Φ, i, ϕ) and ρ is surjective.

Now, if $f: X \to Y$ is an acyclic map which is k-simple for all $k \ge 2$ and with $\rho(f) = (\Phi, i, \phi)$, then we form the following commutative diagram.

As we have seen in the proof the surjectivity of ρ , the map f_0 is acyclic and k-simple for $k \ge 2$. The map d induces an isomorphism on the fundamental groups and on homology with $\mathbb{Z} \pi_1(Y)$ twisted coefficients. By (5.3), the map d is a homotopy equivalence. This proves that the acyclic map f is equivalent to the induced map f_0 . Thus ρ restricted to $AC_s(U) \rightarrow ED(Y)$ is a bijection. (6.4) *Remark*. This theorem leaves open the question of the fibres of the function.

$$\rho: AC(Y) \to ED(Y).$$

In the next theorem we factor an acyclic map by ones having simplicity properties.

(6.5) Remark. In theorem (6.3), if one fixes an extension $\Phi: 1 \to N \to G \to \pi_1(Y) \to 1$, then the same proof permits us to classify acyclic maps $f: X \to Y$ which are k-simple for k > 2 together with an identification $d: \pi_1(X) \to G$ such that $\Phi d = \pi_1(f)$. The objects of ED(Y) have to be replaced by couples (i, ϕ) where $i: BG \to BG_N^+$ is as above and $\phi: Y \to BG_N^+$ is 2-connected with the following diagram commuting up to homotopy.

This is what is done implicitely in [H, Sections 2 and 4]. Observe that we are dealing here with classes which are sets.

(6.6) LEMMA. Let X be a CW-space and N a perfect normal subgroup of $\pi_1(X)$. Let $X \to P_n X$ denote the nth stage of the Postnikov decomposition of X. Then for all $n \ge 1$ we have that

- (1) $\pi_j(X_N^+) \to \pi_j((P_nX)_N^+)$ is an isomorphism for $j \leq n$ and an epimorphism for j = n + 1, and
- (2) $\pi_j(AX_N) \to \pi_j(A(P_nX_N))$ is an isomorphism for $j \leq n$ and an epimorphism for j = n + 1.

Proof. Consider the following homotopy commutative diagram of fibre sequences

Clearly $\pi_i(F) = 0$ for $i \leq n + 1$. The spaces X_N and $P_n X_N$ have the same (n+1)-skeleton and the same can be assumed for \tilde{X}_N^+ and $(P_n \tilde{X}_N)^+$. Hence $\pi_i(G) = 0$ for $i \leq n + 1$. Now (1) follows because G is the fibre of $X_N^+ \to (P_n X)^+$.

By comparing Serre spectral sequences, we obtain the surjectivity of

$$H_0(N, H_{n+1}(F)) \to H_0(N, H_{n+1}(G)) = H_{n+1}(G) = \pi_{n+1}(G).$$

Thus $\pi_j(T) = 0$ for $j \leq n$ and (2) follows.

(6.7) THEOREM. Let $f: X \rightarrow Y$ be a map between CW-spaces. Then there is a factorization

such that β_i is i-connected and α_i is an acyclic map which is k-simple for k > i.

Such a decomposition is unique up to a homotopy equivalence.

Proof. The ith stage X_i is defined by the cartesian diagram

$$Y \times {}_{T}P_{i}(X) \longrightarrow P_{i}X$$

$$\downarrow \qquad \qquad \downarrow$$

$$Y \longrightarrow (P_{i}X)^{+}_{N} = T$$

where $N = \ker (\pi_1(X) \to \pi_1(Y))$. By (6.6) the map β_i is *i*-connected since the fiber of the two vertical arrows is $A(P_n \tilde{X})_N$. Now by (5.4) we see that α_i is simple for k > i.

For two decompositions (X'_i) and (X''_i) of $f: X \to Y$ satisfying the above conditions, we have $P_i X'_i = P_i X''_i$ and both X'_i and X''_i map into X_i , constructed above, such that the resulting diagrams are homotopy commutative. The connectivity of the β_i and (5.1) shows that these maps are all homotopy equivalences. This proves the theorem.

(6.8) *Remarks.* This theorem (6.7) coincides with the Dror results for Y a point [D1, Theorem 1.3] and $Y = S^n$ [D2]. An interesting problem is to describe the ith stage X_i in terms of invariants of X_{i-1} as in [D1] and [D2]. (See the footnote in the introduction.)

APPENDIX — SIMPLICITY PROPERTIES OF FIBERS

In the proof of (5.4) we used the fact that for a fibration $F \to E \xrightarrow{f} B$ the action of $\pi_1(F)$ on $\text{Im}(\partial : \pi_{k+1}(B) \to \pi_k(F))$ is trivial. This assertion does not seem to be in the literature so we include a proof here.

We extend the mapping sequence of the fibration f to $\Omega B \to F \to E \xrightarrow{f} B$ and study F as the total space of a principal fibration with fibre the H-space ΩB . If G is an H-space, then $\pi_1(G)$ acts trivally on $\pi_*(G)$ because the covering transformations $\tilde{G} \to G$ on the universal covering \tilde{G} of G are homotopic to the identity. This is proved by lifting a loop to a path in \tilde{G} and using the H-space structure on \tilde{G} to deform the identity along this path to the covering transformation defined by the homotopy class of the loop. Recall that a principal fibration is induced from $G \to E_G \to B_G$ up to fibre homotopy equivalence.

(A.1) PROPOSITION. Let $G \to X \xrightarrow{\pi} Y$ be a principal fibration with fibre G acting on X. Then we have:

(a) im (π₁ (G) → π₁ (X)) acts trivially on π_{*} (X), and
(b) π₁ (X) acts trivially on im (π_{*} (G) → π_{*} (X)).

Proof. For (a) we have the following commutative diagram induced by a covering transformation $T: \tilde{G} \to \tilde{G}$.