Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 25 (1979)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: INVARIANT SOLUTIONS OF ANALYTIC EQUATIONS

Autor: Bierstone, Edward / Milman, Pierre

Kapitel: 4. A PROJECTION FORMULA

DOI: https://doi.org/10.5169/seals-50374

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 30.01.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Remark 3.2. There are more precise formulations of Artin's approximation theorem (due to Artin [1] in the algebraic case, and John Wavrik [17] in the analytic case) which assert that for every positive integer α there is a positive integer $\beta(\alpha)$ such that for each $\beta \geqslant \beta(\alpha)$, every β -order formal solution $\bar{y}(x)$ of f(x, y) = 0 (i.e. $\bar{y}(x)$ such that $f(x, \bar{y}(x)) \equiv 0 \mod m^{\beta+1}$) may be approximated to order α by an algebraic or convergent solution. The method of our proof of Theorem B also provides invariant versions of these results. The one point worth noting is that for every positive integer γ , there exists a positive integer $\beta(\gamma)$ such that if $\bar{\eta}(u(x))$ is a $\beta(\gamma)$ -order solution of

$$\sum_{j=1}^{t} h_{j}(u(x), \eta) G_{j}(x) = 0$$

(we are using the above notation), then there exist $\overline{\phi}^k(u)$, k = 1, ..., m, such that $(\overline{\eta}(u), \overline{\phi}(u))$ is a γ -order solution of

$$h_{j}(u, \eta) = \sum_{k=1}^{m} \phi^{k} h_{j}^{k}(u), \quad 1 \leqslant j \leqslant t.$$

This statement follows from a simple extension of a theorem of Chevalley [14, 30.1].

4. A PROJECTION FORMULA

Let G be a compact Lie group and $M = L^2(G, dg)$ the space of complex-valued functions on G which are square integrable with respect to the normalized Haar measure dg. The mapping $f \to f^T$ from M into a space of continuous matrix-valued functions on G, defined for each irreducible complex representation T of G by the formula

$$f^{T}(h) = \int_{G} f(g^{-1}h) T(g) dg$$
$$= T(h) \cdot \int_{G} f(g^{-1}) T(g) dg,$$

where $h \in G$, is a generalized Fourier transform [10, Section 12] (cf. our proof of Theorem B in the complex analytic case). The Peter-Weyl theorem gives

$$f(h) = \sum_{T} \dim T \cdot \operatorname{tr} f^{T}(h),$$

where the sum is taken over all finite dimensional inequivalent irreducible complex representations T. Moreover, the mapping $\pi_T : M \to M$ defined by

$$(\pi_T f)(h) = \dim T \cdot \operatorname{tr} f^T(h),$$

where $h \in G$, is the projection onto the largest invariant subspace of M whose irreducible invariant subspaces are all equivalent to the representation space of T.

Now let G be a reductive algebraic group defined over a field k of characteristic zero. A vector space M on which G acts linearly will be called a G-module. We will obtain projection formulas similar to the above in the following cases:

- (a) M is a finite dimensional G-module;
- (b) $M = \mathbf{k} [x] \text{ or } \mathbf{k} [x]$;
- (c) $M = \mathbf{k} \{x\}$, with $\mathbf{k} = \mathbf{R}$ or \mathbf{C} ;

where, in cases (b) and (c), $x = (x_1, ..., x_n)$ denotes a coordinate system in a finite dimensional G-module V, and M has the induced action of G.

If L, M are G-modules, then the space $M^L = \operatorname{End}_{\mathbf{k}}(L, M)$ of \mathbf{k} -linear mappings $A: L \to M$ is a G-module, with the action of G defined by $g \cdot A = gAg^{-1}$. If L is an irreducible G-module, then $\mathbf{F}^L = \operatorname{End}_{\mathbf{k}}(L, L)^G$ is a field (in general not commutative). It is clear that \mathbf{k} is a subfield of \mathbf{F}^L , and that the action of G on L commutes with the multiplication of elements of L by elements of L.

We define a k-homomorphism

$$J: \mathbf{F}^L \to \operatorname{End}_{\mathbf{k}}(\mathbf{F}^L, \mathbf{F}^L)$$

by

$$J(\lambda)(\mu) = \lambda \cdot \mu,$$

where λ , $\mu \in \mathbf{F}^L$, and let

$$\operatorname{tr}_L : \operatorname{End}_{\mathbf{k}}(L, L) \to \mathbf{k}$$
,

$$\operatorname{tr}_{\mathbf{F}^L} \colon \operatorname{End}_{\mathbf{k}}(\mathbf{F}^L,\mathbf{F}^L) \to \mathbf{k}$$

be the trace homomorphisms. It is not difficult to check that

$$\operatorname{tr}_{L}(\lambda) \, = \, m_{L} \operatorname{tr}_{\mathbf{F}^{L}} \big(J(\lambda) \big)$$

for all $\lambda \in \mathbf{F}^L$, where m_L is the dimension of L over \mathbf{F}^L .

For each $v^* \in \operatorname{End}_{\mathbf{k}}(L, \mathbf{k})$ and $f \in M$, we denote by $v^* \otimes f \in \operatorname{End}_{\mathbf{k}}(L, M)$ the mapping $(v^* \otimes f)(w) = v^*(w) \cdot f$, $w \in L$. We also define a generalized trace homomorphism

$$\operatorname{Tr}:\operatorname{End}_{\mathbf{F}^L}(L,\mathbf{F}^L)\to\operatorname{End}_{\mathbf{k}}(L,\mathbf{k})$$

by the formula

$$(\operatorname{Tr} v^{\#})(w) = \operatorname{tr}_{\mathbf{F}^{L}} J(v^{\#}(w)),$$

where $v^{\#} \in \operatorname{End}_{\mathbf{F}^{L}}(L, \mathbf{F}^{L})$ and $w \in L$.

In the following, E_M will denote a Reynolds operator for a G-module M; i.e. E_M is an invariant projection operator from M onto M^G [13, Definition 1.5].

PROPOSITION 4.1. Suppose L is a finite dimensional irreducible G-module. Let $\{v_{j,L}\}_{1 \leq j \leq m_L}$ be a basis for L over \mathbf{F}^L , and $\{v_{j,L}^\#\}_{1 \leq j \leq m_L}$ be its dual basis. We consider one of the following G-modules M:

- (a) M is a finite dimensional G-module;
- (b) $M = \mathbf{k} [x] \text{ or } \mathbf{k} [[x]];$
- (c) $M = k \{x\}, k = R \text{ or } C.$

(In the latter two cases, the action of G is induced by a linear action on the space of coordinates $x = (x_1, ..., x)$.) We define $\pi_L \in \operatorname{End}_k(M, M)$ by

$$\pi_L(f) = m_L \sum_{j=1}^{m_L} E_{ML}(\operatorname{Tr} v_{j,L}^{\#} \otimes f)(v_{j,L}),$$

where $f \in M$. Then

- (1) π_L is a projection from M onto an invariant subspace whose irreducible invariant subspaces are all equivalent to L;
 - (2) for each $f \in M$.

$$f = \sum_{L} \pi_L(f) \,,$$

where the sum is taken over all finite dimensional inequivalent irreducible G-modules L (in cases (b) and (c) the sum converges in the Krull topology);

(3) if I is an invariant ideal in M, in cases (b) and (c), then $\pi_L(f) \in I$ and

$$E_{ML}(\operatorname{Tr} v_{f,L}^{\#} \otimes f) \in \operatorname{End}_{\mathbf{k}}(L,I)$$

for all $f \in I$.

Remark 4.2. For each of the G-modules M of Proposition 4.1, there is a unique Reynolds operator E_{ML} , and the mapping $M \to E_{ML}$ is functorial. If M is finite dimensional, then this follows from the definition of "reductive". If $M = \mathbf{k}[x]$ or $\mathbf{k}[x]$ it follows from Cartier's lemma [13, p. 25]. If $M = \mathbf{C}\{x\}$ we define

$$E_{ML}(f) = \int_{H} h \cdot f \, dh \,,$$

where $f \in M^L$ and H is a maximal compact subgroup of G. Finally if $M = \mathbf{R} \{x\}$, we put $E_{ML}(f) = \operatorname{Re} E(f)$ for $f \in M^L$, where E is the Reynolds operator for the action of the complexification G^C of G on $\mathbf{C} \otimes_{\mathbf{R}} M^L$, and $\operatorname{Re}: \mathbf{C} \otimes_{\mathbf{R}} M^L \to M^L$ is the mapping $\operatorname{Re}(f) = \frac{1}{2}(f + \bar{f})$.

Remark 4.3. Proposition 4.1 provides an alternative proof of Theorem B when char $\mathbf{k} = 0$. Let I be the ideal in $\mathbf{k}[x]$ of an invariant algebraic subset of \mathbf{k}^n (respectively the ideal in $\mathbf{k}\{x\}$ of a germ at 0 of an invariant analytic subset of \mathbf{k}^n , $\mathbf{k} = \mathbf{R}$ or \mathbf{C}). Then for each $f \in I$ and $v^{\#} \in \operatorname{End}_{\mathbf{F}^L}(L, \mathbf{F}^L)$, we define a polynomial mapping (respectively a germ at 0 of an analytic mapping)

$$F_{f, v^{\#}}: \mathbf{k}^{n} \to \operatorname{End}_{\mathbf{k}}(L, \mathbf{k})$$

by the formula

$$F_{f, v^{\#}}(x)(w) = \left(E_{M^{L}}(\operatorname{Tr} v^{\#} \otimes f)(w)\right)(x),$$

where $x \in \mathbf{k}^n$ and $w \in L$. Then $F_{f,v\#}$ is equivariant and $X \subset F_{f,v\#}^{-1}$ (0). We may now argue as in our proof of the algebraic case 2.3 of Theorem B. We use the facts that $(E_{ML} (\operatorname{Tr} v_{j,L}^{\#} \otimes f) (v_{j,L}))$ (x) is a coordinate function of $F_{f,v\#_{j,L}}$ and that $\Sigma_L \pi_L (f)$ converges to f in the Krull topology, to show that the ideal I coincides with the ideal in \mathbf{k} [x] (respectively \mathbf{k} $\{x\}$) generated by the coordinate functions of all equivariant polynomial mappings (respectively germs at 0 of equivariant analytic mappings) F such that $X \subset F^{-1}$ (0).

Proof of Proposition 4.1. We first consider the case (a) that M is a finite dimensional G-module. We write M as a direct sum $M = \bigoplus_L M_L$ of G-submodules M_L , where the sum is taken over inequivalent irreducible G-submodules L, in such a way that each nonzero irreducible G-submodule of M_L is equivalent to L. Let $f = \sum_L f_L$, where $f_L \in M_L$. It is enough to prove that $\pi_L f = f_L$; in other words that $\pi_L f_{L'} = 0$ if $L \neq L'$, and $\pi_L f_L = f_L$.

The first condition follows from the fact that $\operatorname{End}_{\mathbf{k}}(L, L')^G = 0$. Using the functorial property of the Reynolds operators, we reduce the second to the case M = L; i.e. we must prove $\pi_L f = f$ for all $f \in L$. Since

$$f = \sum_{j=1}^{m_L} v_{j,L}^{\#}(f) \cdot v_{j,L},$$

it is enough to show that

$$m_L \cdot E_{LL}(\operatorname{Tr} v^{\#} \otimes f) = v^{\#} (f)$$

for all $f \in L$ and $v^{\#} \in \operatorname{End}_{\mathbf{F}^{L}}(L, \mathbf{F}^{L})$.

For each $\beta \in \mathbb{F}^L$, we define a homomorphism

$$\operatorname{tr}_{\beta}: \operatorname{End}_{\mathbf{k}}(L, L) \to \mathbf{k}$$

by the formula $\operatorname{tr}_{\beta}(A) = \operatorname{tr}_{L}(\beta \cdot A)$, $A \in \operatorname{End}_{k}(L, L)$. Then $\operatorname{tr}_{\beta}$ is G-invariant, so that

$$\operatorname{tr}_{\beta} \circ E_{IL} = \operatorname{tr}_{\beta}$$
.

By a direct computation, we also check that

$$\operatorname{tr}_{\beta} (\operatorname{Tr} v^{\#} \otimes f) = \operatorname{tr}_{pL} J (v^{\#} (\beta \cdot f)).$$

Hence for each $\beta \in \mathbb{F}^L$,

$$\operatorname{tr}_{\beta} \left(m_{L} E_{LL} \left(\operatorname{Tr} v^{\#} \otimes f \right) \right) = m_{L} \operatorname{tr}_{FL} J \left(v^{\#} \left(\beta \cdot f \right) \right)$$
$$= \operatorname{tr}_{\beta} v^{\#} \left(f \right).$$

This implies that

$$m_L E_{\tau L} (\operatorname{Tr} v^{\#} \otimes f) = v^{\#} (f),$$

because otherwise, letting β be the reciprocal of $m_L E_{LL}$ (Tr $v^{\#} \otimes f$) – $v^{\#}(f)$ in \mathbf{F}^L , we would have $\dim_{\mathbf{k}} L = \operatorname{tr}_L(\operatorname{id}) = 0$, contradicting char $\mathbf{k} = 0$. This completes the proof of Proposition 4.1 in the case (a).

In the case $M = \mathbf{k}[x]$, it follows from the functorial property of the Reynolds operators that $\pi_L(\mathbf{k}[x]_c) \subset \mathbf{k}[x]_c$ for all $c \in \mathbb{N}$. Hence properties (1) and (2) of Proposition 4.1 follow from the finite dimensional case (a). Moreover, if I is an invariant ideal in $\mathbf{k}[x]$, then $I \cap \mathbf{k}[x]_c$ is an invariant subspace of $\mathbf{k}[x]_c$, and

$$I = \bigcup_{c \in \mathbb{N}} I \cap \mathbb{k} [x]_c.$$

Therefore $\pi_L f \in I$ and

$$E_{\mathbf{M}^L}(\operatorname{Tr} v_{\mathbf{j},L}^{\#} \otimes f) \in \operatorname{End}_{\mathbf{k}}(L,I)$$

as required in property (c).

It remains to consider the cases $M = \mathbf{k}[[x]]$, and $M = \mathbf{k}\{x\}$ with $\mathbf{k} = \mathbf{R}$, \mathbf{C} . In each case let \mathbf{m} be the maximal ideal and let M_c , $c \in \mathbf{N}$, be the invariant subspace of M of polynomials of degree at most c. If $f \in \mathfrak{m}^c$, then $\operatorname{Tr} v^{\#} \otimes f \in \operatorname{End}_{\mathbf{k}}(L,\mathfrak{m}^c)$ for all $v^{\#} \in \operatorname{End}_{\mathbf{k}}(L,\mathbf{F}^L)$, so that $\pi_L f \in \mathfrak{m}^c$. Likewise if $f \in M_c$ then $\pi_L f \in M_c$. For each $f \in M$ and $c \in \mathbf{N}$, we write

$$f = T^c f + R^c f,$$

where $T^c f \in M_c$ and $R^c f \in \mathfrak{m}^{c+1}$. Then for all $f \in M$ and $c \in \mathbb{N}$,

$$\pi_L^2 f - \pi_L f = \pi_L^2 (R^c f) - \pi_L (R^c f) \in \mathfrak{m}^{c+1}$$

so that $\pi_L^2 = \pi_L$.

For each $c \in \mathbb{N}$, let P_c be the natural projection from M to its subspace of homogeneous polynomials of degree c. Each $f \in M$ may be written $f = \Sigma_c P_c f$. Then $\pi_L \circ P_c = P_c \circ \pi_L$ for every $c \in \mathbb{N}$ and every irreducible G-module L. Suppose that N is a nonzero irreducible G-submodule of $\pi_L(M)$. Then either $P_c(N) = 0$ or $P_c : N \to P_c(N)$ is an equivalence of G-modules. Choose $c \in \mathbb{N}$ such that $P_c(N) \neq 0$. Then N is equivalent to $P_c(N)$ and $P_c(N) = \pi_L(P_c(N)) \subset \pi_L(M_c)$ is equivalent to L, by the finite dimensional case (a). This completes the proof of property (1) for $M = \mathbf{k}[[x]]$ or $\mathbf{k}\{x\}$.

To obtain property (2), we let $N(-1) = \emptyset$ and let N(c), $c \in \mathbb{N}$, be the set of all inequivalent irreducible G-modules appearing in the decomposition of M_c as a direct sum of irreducible G-modules. Then for each $c \in \mathbb{N}$,

$$f - \sum_{L \in N(c)} \pi_L f = R^c f - \sum_{L \in N(c)} \pi_L R^c f \in \mathfrak{m}^{c+1}$$
.

Since $\pi_L f = 0$ if $L \notin \bigcup_c N(c)$, then $\Sigma_L \pi_L f$ converges to f in the Krull topology.

We finally consider property (3) for $M = \mathbf{k}[[x]]$ or $\mathbf{k}\{x\}$. Let I be an invariant ideal in M. Then $I \cap M_c$ is an invariant subspace of M_c . It follows that if $f \in I$, then $\pi_L f \in I + \mathfrak{m}^{c+1}$ for all $c \in \mathbb{N}$, so that $\pi_L f \in I$ by Krull's theorem [14, 16.7]. Moreover

$$\operatorname{End}_{\mathbf{k}}(L,I) = \bigcap_{c \in \mathbf{N}} \operatorname{End}_{\mathbf{k}}(L,I+\mathfrak{m}^{c+1}).$$

Let $f \in I$. Writing $f = T^c f + R^c f$ and using the functorial property of the Reynolds operators, we have

$$E_{ML}(\operatorname{Tr} v_{j,L}^{\#} \otimes T^{c} f) \in \operatorname{End}_{\mathbf{k}}(L, I \cap M_{c}),$$

$$E_{\mathbf{M}^L}(\operatorname{Tr} v_j^{\#}, L \otimes R^c f) \in \operatorname{End}_{\mathbf{k}}(L, \mathfrak{m}^{c+1})$$

for all $c \in \mathbb{N}$. Since $I + \mathfrak{m}^{c+1} = I \cap M_c + \mathfrak{m}^{c+1}$, it follows that

$$E_{ML}(\operatorname{Tr} v_{j,L}^{\#} \otimes f) \in \operatorname{End}_{\mathbf{k}}(L,I).$$

This completes the proof of Proposition 4.1.

REFERENCES

- [1] ARTIN, M. Algebraic approximation of structures over complete local rings. *Inst. Hautes Etudes Sci. Publ. Math.* 36 (1969), pp. 23-58.
- [2] Algebraic spaces. Yale Math. Monographs 3, Yale University Press, New Haven, Connecticut, 1971.
- [3] —— On the solutions of analytic equations. *Inventiones Math.* 5 (1968), pp. 277-291.
- [4] Becker, J. A counterexample to Artin approximation with respect to subrings. *Math. Ann. 230* (1977), pp. 195-196.
- [5] BIERSTONE, E. General position of equivariant maps. Trans. Amer. Math. Soc. 234 (1977), pp. 447-466.
- [6] Gabrielov, A. M. The formal relations between analytic functions. *Funkcional*. *Anal. i Prilozen 5* (1971), pp. 64-65 = *Functional Anal. Appl. 5* (1971), pp. 318-319.
- [7] Formal relations between analytic functions. Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), pp. 1056-1090 = Math. USSR Izvestija 7 (1973), pp. 1056-1088.
- [8] Hochschild, G. The Structure of Lie Groups. Holden-Day, San Francisco, 1965.
- [9] Hochschild, G. and G. D. Mostow. Representations and representative functions of Lie groups. III. *Ann. of Math.* 70 (1959), pp. 85-100.
- 10] Kirillov, A. Eléments de la Théorie des Représentations. Editions Mir, Moscow, 1974.