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2. THE MAZUR-GELFAND THEOREM

A normed algebra is an associative linear algebra 4 over the real or
complex field which is also a normed linear space satisfying || xy || < || x ||
. H y H for every x and y in 4. If A4 is complete in this norm, it is called a
Banach algebra.

In 1938 Stanislaw Mazur [57] announced the following classification
theorem for real normed division algebras:

THEOREM 2.1. [Mazur]. A real normed algebra with identity in which
every nonzero element has an inverse is isomorphic to either R, C, or the
quaternions H.

An immediate consequence of this result, which classifies normed
division algebras over C, is known as the Mazur-Gelfand theorem:

THEOREM 2.2. [Mazur-Gelfand]. A complex normed algebra with
identity in which every nonzero element has an inverse is isomorphic to the
complex numbers.

This complex version follows in a standard way from Theorem 2.1
since every complex normed algebra is also a real normed algebra, and the
possibilities of R and H are easily eliminated in the complex case.

An historical precursor to Mazur’s theorem was published by Alexander
Ostrowski in 1918 [65]. It states that every field with an archimedean
valuation is topologically isomorphic with a subfield of C carrying the
ordinary absolute value as its valuation. If the field has additionally the
structure of a real vector space, then the possibilities are further reduced
to R or C.

The details of Mazur’s proof were too lengthy to be included in his
announcement, and it was Gelfand who furnished the first published
proof [38] of the complex version, which bears his name. His proof, different
from Mazur’s, uses a generalized form of Liouville’s theorem from complex
analysis. The theorem was established independently by Lorch [55] whose
proof likewise was based on Liouville’s theorem; he points out that sub-
stantially the same argument was given earlier by Taylor [91]. We now
record this elegant proof in a form which uses the classical version of
Liouville’s theorem.

Gelfand’s proof of the Mazur-Gelfand Theorem 2.2. For any element x
of the complex normed algebra A4 with identity e, we show that x = Je
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for some complex 1. Suppose to the contrary that x — le # 0 for all A
‘n C. Since A is a division algebra, it follows that x — le is invertible for
all 1, i.e., (x—Ae)~ ! exists. Let x (1) = (x—Ae)”'. By the Hahn-Banach
theorem there is a bounded linear functional L on A such that L (x~ ) = 1.
Define g : C—» C by g (1) = L(x(1); then g (0) = 1. Moreover, g is
an entire function. Indeed, since x (1) — x(u) = (A—w) x () x (u) for
4, win C, it follows that

lim 7 B W = lim L(x()x(w) = L (x(w?).

Aop A—wu Aop
Further |g (1) | <||L|| || x () || and since x (1) = O as | A= 0, g ()
— 0. By Liouville’s theorem the bounded entire function g is constant;
hence g = 0. This is a contradiction since g (0) = 1, and the proof is com-
plete.

The spectrum of an element x of a complex algebra with identity e is
the set o (x) = {leC :x — le 18 singular}, so Gelfand’s proof can be
viewed as a demonstration that the spectrum of any element of a complex
normed algebra with identity is nonempty. This fact together with the
application of Liouville’s theorem forms a continuous thread running
through the generalizations and related results presented in this paper.

3. CLASSIFICATION OF REAL NORMED DIVISION ALGEBRAS

Although it does not appear to be widely known, Mazur’s original paper
on normed division algebras [57] considers only the case of algebras over R.
If a real division algebra is also finite-dimensional, the classical theorem
of Frobenius classifies it as R, C ,or H. Mazur demonstrated finite-dimen-
sionality in two steps: first he used a rather lengthy argument involving
analytic function theory to show that it cannot contain a subalgebra iso-
morphic to the rational functions in one indeterminate with real coefficients.
He then quoted an algebraic theorem to the effect that every real infinite-
dimensional division algebra must contain such a subalgebra. The details
of the first step may now be found in W. Zelazko’s book [109, pp. 18-22].

F. F. Bonsall and J. Duncan [30] have given a more direct and self-
contained proof of Mazur’s theorem, which relies on precisely the same
analytic fact as Gelfand’s proof of the complex version; namely that every
element of a complex normed algebra with identity has nonempty spectrum.
They modify a standard proof of Frobenius’ theorem (vid. Pontrjagin
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