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ALTERNATION AND DECISION PROBLEM 141

space upper bound for the 3* V3 subcase is obtained at the same time. It
is easy to see that the class 3 * V is TVP-complete.

Section six contains the main result, namely the c"/log " lower bound for
the V33 case, and also a tight lower bound for the V3 case, as well as

some NP-complete problems. In the last section are some conclusions.

2. Some notions from logic

The formulas of first order logic (see e.g. Shoenfield [36]) are built
from:

— variables y9 xl9 x2, zl9 z2i

— function symbols f9g9fL9fR9fl9f2,
(we use c, cl9 c2, for 0-any function symbols, i.e. constants)

— predicate symbols P9Pl9Pl9 (and other capitals)

— auxiliary symbols

— equality symbol

— propositional symbols a v —i,
— quantifiers V, 3

We use F[x/t] to denote the result of the substitution of the term t for
the variable a in the formula F.

A formula Q1 x1 Q2 x2 Qn xn F0 with Qt quantifiers (for i 1,...,/?)
and F0 quantifier-free is in prenex form. F0 is called the matrix of the
formula.

We are investigating decision procedures for formulas of first order
logic without equality and without function symbols. But we use the
functional form of formulas.

The functional form of a formula in prenex form is constructed by
repeatedly changing

\/xl\/x2 \/xn3y F (F may contain quantifiers) to

Vxi Vx2... Vx„ F [y/fiOq,*„)]
using each time a new n-ary function symbol ft until no more existential
quantifiers appear.

A formula is satisfiable, iff its functional form is satisfiable. In addition,
both are satisfiable by structures of the same cardinality.
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We use a, a' to denote structures. A structure oc for a first order language
L consists of :

— a nonempty set ] oc | (the universe of a),

— a function /a : | a |n -» | a | for each n-ary function symbol / of L, (in
particular an individual element) ca of |a | for each constant c of L),

— a predicate Pa : | oc |" -> {true, false} for each w-ary predicate symbol
PinL.
fa and Pa are called interpretations of/ and P.

A structure for a language L defines a truth-value for each closed
formula (i.e. formula without free variables) of L in the obvious way (see

e.g. [36]). A structure a is a model of a set of closed formulas, if all the
formulas of the set get the value true (i.e. are valid in a). A formula F is

satisfiable, if its negation —i F is not valid.
Let a be the following structure for a language L without equality:
The universe | a | (the Herbrand universe) is the set of terms built with

the function symbols of L (resp. of L together with the constant c, if L
contains no constants 0-ary function symbols)). Each function symbol

/ is interpreted by fa with the property: For each term t, fa (t) is the term

/(*). We call such an a a Herbrand structure. If a formula F (in the language

L) is valid in oc, then we call oc a Herbrand model of F.

The following version of the Löwenheim Skolem theorem is very useful
for our investigations.

Theorem. The functional form of a closed formula without equality is

satisfiable iff it has a Herbrand model.

This theorem can be proved with the methods developed by Löwenheim
[29] and completed as well as simplified by Skolem [38]. The version of
Skolem [37] which uses the axiom of choice, has less connections with this
theorem. Also in Ackermann [2] and Büchi [8] versions of the above theorem

are present. Probably for the first time, Ackermann [1] constructs a kind
of Herbrand model, the other authors use natural numbers instead.

3. Some notions from computational complexity

We use one-tape Turing machines and multi-tape Turing machines with
a two-way read-only input tape and, if necessary, a one-way write-only
output tape. The other tapes are called work tapes. The Turing machine
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