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implies that xt>1 since xt— Xj > 0. Similarly if 5s 1. If Xj, < 0

then Xj+ xk - x; > 0 ensures that xt < 0.

Claim 2. If val (vt)0 then Et u { xt<0 } has a solution. If val (?»,•)

1 then Et u { > 1 } has a solution.

Proof. By induction on z it is easy to see that the point

f 1 if val (Vf 1

Xj [O if val (Vf 0

for 1 <y < z is a solution of Ef.

Claim 3. If for some i,j (j < i) Et vj { Xj > 1 } has a solution in reals

then val (Yy) 1.

Proo/. By Claim 1, if E{ u { xj > 1 } has a solution then u { ^ < 0 }

has no solution. Hence by Claim 2 val (vj) 1.

Finally we observe that the given program of size C for Pm translates

to 3C + 2m inequalities in Ec, of which the 2m of E0 depend on the values

of yl9 while the remaining 3C are fixed. It remains to note that Pm

is the projection under a of LP2n(<n+1) for n 3C + 2m, where a maps 3C

of the inequalities to those of Ec - Eoi and the remaining 2m values of i
as follows. If vt equals yj or yj then: a (aik) a (bih) — 0 if j # k, a (dt)

0,(7 (atj) a (et) vh <7 (Z?0-) v{.

Acknowledgements. It is a pleasure to thank Volker Strassen and
Mark Jerrum for suggesting corrections and simplifications on a first
draft of this paper.

Appendix 1

We show here that in the concept of ^-definability it is immaterial
whether the defining polynomials allowed are the ^-computable ones or
merely those of ^-bounded formula size. We shall suppose that the family P
is ^-definable in the sense of Definition 3, i.e.

Pn (Xi, Xn) X m-n
Qm C*1 » •••> xn> ^n+ls •••j ^m)

be{ 0,1 }

It will suffice to prove that any /»-computable family, such as Q, is p-definable
in the sense of Definition 4. By Theorem 5 it then follows that P itself is
also /»-definable in the sense of Definition 4.
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It is known that any ^-computable family of homogeneous polynomials
has homogeneous program size at most polynomially larger than its
unrestricted program size [12]. The inductive proof to follow assumes the
former measure throughout and supports homogeneity. We shall assume
that Qm is itself homogeneous. If it were not then we would consider each

of its homogeneous components separately in the same way.
Suppose that Qm (xu xm) has degree d and a minimal program p of

complexity C. Let U be the subset of the computed terms {vt} such that
(i) deg (vt) > d/2 and (ii) vt <- ^ x vk with deg {vf) < d/2 and deg (vk)

< d/2. Let W be the subset {vj} such that vt <- Vj x vk or vf <- vk x Vj
for some vt e U. For convenience rename the elements of U and W by
{ uu ur } and { w1? ws } respectively.

Claim 1. There is a polynomial Sm+r+1 {xu xm, e0, ^r) of degree
L d/2 J + 1 and homogeneous program complexity at most 2C + d

such that
rQm(VZ val (h,) • compl;

i 1

where comply Sm+r+1 (x, e) when e0 et 1 and ^ 0 for 0 ^ j
¥= i.

Proof. In p replace each occurrence of ut on the right hand side of an
assignment by an occurrence of ^e0deg (ui)~Ld/2J~1, (Actually this would
be simulated by a subprogram that raises e0 to every power and multiplies
by et as appropriate.)

Claim 2. There is a polynomial Tn + S+1 (xu xm, c0,..., cs) of degree
L d/2 J +1 and homogeneous program complexity at most 3 C + d such

that for each i (1 < i < s)

val(wj) Tm+s+1(x,c)

when c0 ct 1 and Cj 0 for 0 ^ j # /.

Proof. Delete from p every instruction with degree greater than d/2.
Add a subprogram equivalent to the set of instructions

zt<- wt x qc0Li//2J"de8

for / 1,..., Add further instructions to sum zu zs.

Now for each i val (ut) val (wf val (wk) for some y, k specified by p.
Hence each of the r additive contributions to jgm is some product
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Tm + s+ 1 (X> C) Tm + s+ 1 (X> C ^m + r+1 (X> C)

where (c, c#, e) is a fixed (0, l)-vector of 2s + r+3 elements. But any such

vector can be specified by a conjunction of 2s + r + 3 Boolean literals.

Consider the disjunction of the r such conjunctions and let R (c, c', e)

be the polynomial that simulates this Boolean formula at (0, 1) values.

Then clearly

Qm (X) Z T (X> C) T (X' C') S (X' ^ R (C> °'>e) 9

where summation is over (c, c', e) e { 0, 1 } 2s+r+3.

Let A (C, rf) be the upper bound over every homogeneous polynomial

having degree d and homogeneous program complexity C, of the minimal

size of formula needed to define it in Definition 4. Then the above recursive

expression ensures that

A(C,d)<3A(3C+d,Ldl21 +1) + 0(C).

Clearly also A (C, 1) < 2C. Hence if d is ^-bounded in m then so is the

solution to this recurrence.

Appendix 2

For completeness we describe here a direct proof of the ^-definability
of HC in the sense of Definition 1. HCnXn (xitj) will be the projection under

a (uk) m) 1 for 1 < k, m < n

of the polynomial in { xi)j9 uKm } defined byÔ„Xj)Q„X„ (zki R"

with the association yUj <-> and zk>m Here QnXn is the
polynomial that defines the permanent in §3. Its first occurrence with argument y
plays exactly the same role as in the permanent and ensures a cycle cover.
The intention of zk>m is to denote whether the kth node in the circuit (starting
from node 1, say) is node m. QnXn(zk,m) ensures that this intention is

realised. For each k Rk captures the fact that if zk)Tn and zk+1>r are both
1 then ym>r must be also. In Boolean notation we require

y m, r V (Zfc, ^k+1, r) •

As is well known such Boolean formulae can be simulated by polynomials
at {0, 1 } values (e.g. see Proposition 2 in [13]). To guarantee just one
monomial for each cycle wefix i?1 zn.
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