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46 K. K. NORTON

Theorem 4.13. Suppose that there exists a real number y (E) > 0 such that
(1.7) holds. Let 8 > 0, and suppose that x ^ c34 (E, e) and

(log2 x)2 (log x)-1 < a 1 + {1 + log y (£) - e} (log2 x)-1

Then

x1'" exp j-c35 (E)^* j sï (x, a(log x) (log2 x)"1; co)

«,-exp + lasjLl
log2 X log2 xj

This can be obtained from Theorems 1.11 and 1.14 (take

y a (log x) (log2 x)"1

and use the inequalities

log2 y ^ log3 x, y ^ log2 x ^ y (E) log2 x).

Theorem 4.13 should be compared with Theorem 1.6.

§5. Proofs of Theorem 1.21 and related results

In estimating S (x, y ; E, £2) (defined by (1.1)), we do not need any assumption
such as (1.7). Hence we emphasize that throughout the remainder of this paper, E

is merely assumed to be any nonempty set ofprimes. (We shall sometimes assume

explicitly that E has at least two members.) The smallest member of E will always
be denoted by px (and the smallest member of E — (pj, if it exists, by p2). When

x and v are positive real numbers, the function A A (x, v ; E) is always defined

by (1.22).

The subsequent work depends heavily on the following elementary lemma

[13, p. 690]:

Lemma 5.1. If x > 0 and 1 < z < pl5 then

Y znin;E) < pl (Pi-z)"1 xe{z~1)Eix) + 4z.
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For the special case EP,thereis a recent paper of DeKoninck and

*
Hensley [1] giving various estimates for £ zn{n\ where z is complex and

n < x

indicates that the prime factors of n are restricted to lie in a certain range.

DeKoninck and Hensley get sharp results, but their work is rather complicated

and does not seem applicable to the problems discussed here.

If yis real and z ^ 1, then

£ ZU (n,-E)£znWE)
n^x n^x,SÎ(n; E)^y

^ zy card {n ^ x: Q (n; E) ^ y}

Hence Lemma 5.1 immediately yields

Lemma 5.2. If x > 0, y is real, and 1 ^ z < px, then

card {n ^ x : Q. (n ; E) ^ y}

< Pi (Pi~z)_1 x exP {(z_1) E(x) - y logz + 4z).

Lemma 5.3. Let x > 0, 0 < v ^ y < pxv. Then

card {n ^ x: Q(n; E) ^ y}

< c31 (p^ iPi-y/v)"1 x exp {y - v - y log (y/v) + A}

Proof: In Lemma 5.2, use the inequality E (x) ^ v + A and take z y/v
to get an approximate minimum. Q.E.D.

We observe in passing that Lemma 5.2 can also be used when y ^ pxv. In
order to get a reasonably good result in this case by the same method, one needs

to minimize the function

9 (z) (z~ 1) v - y log z - log (Pi-z)

on the interval 1 ^ z < pv Assuming that y is rather large, one can see with
some computation that g (z) is approximately minimized when

Z Pi (1 - (2y)"1),

and this z satisfies 1 < z < p1whenever ^ 1. With this value of z, Lemma 5.2

yields

card {n < x:fi(n;£) ^ y} < c38 (pt) (5.4)

for x > 0, y ^ 1. When E is the set of all primes and x ^ 3, we can take
v log2 x, A 0(1). Thus (5.4) is already sharper and more general
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than (1.20) (which is due to Erdös and Sarközy [3]). However, Theorem
1.18 shows that it may be of interest to take y as large as

(log x) (log pi)~1, and we shall now prove that when y is relatively large,
the factor y on the right-hand side of (5.4) can be replaced by a much
smaller quantity.

Lemma 5.5. Write F E — {px} (if F is empty, we define

fl(n;F) 0 for all n). Let x > 0, y ^ 0, and let k [y] + 1.

For integers a with 0 ^ a ^ k, define

Ca {m ^ xp(a: p1 J( m and Q (m; F) ^ k — a}

Then

S (x, y; E,Q)[xprk] + £ card Ca.
a 0

Proof : For 0 ^ a ^ k, define

Ba — {n ^ * : P\ II n and fi (np(a ; F) ^ k — a]

(recall that p\ || n means pax \ n and p\+1 f n). It is easy to see that

k- 1

{n ^ x : Q (n ; E) > y) {n ^ x : p\ \ n} u (J Ba.
a 0

Since the sets {n^x: p\\n},B0, Bu Bk_Y are disjoint, we have

k- 1

S(x, y; E, Q) card {n^x : p\card Ba
a 0

But the mapping n h* np(a establishes a one-to-one correspondence
between Ba and Ca9 so the result follows. Q.E.D.

Proof of Theorem 1.21 : If E {pj, then by Lemma 5.5,

S (x, y; £, Q) ^ xp(y

and (1.23) follows. Thus we may assume that F E — {px} is not
empty. Let p2 be the smallest member of F, and let k [y] + 1. By
Lemma 5.5,

S (x, y ; E,ß)[xPrk] + X card (5.6)
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To estimate

card Ck-a card {m ^ xpa1~k: pkand Q(m; F) ^ a}

from above, we apply Lemma 5.2 (with E replaced by F and p i by
Since

F (xp1~k) < F(x)^ E(x)< + A

we obtain

card Q_fl
< Pi (Pi~z)_1 xp1~k exp {(z— 1) (t + A) — log z + 4z}

H (a,z), (5.7)

say, and this holds for each integer and each real z with
1 < z < p2.In applying (5.7), we are free to choose z to depend on a.

Write Q max {k, pkv}, and for each (1 let za be any real
number satisfying 1 =% za<p2.Then by (5.6) and (5.7),

S(x,y;E,Q)^xp1k + X H {a, zj
a 1

< xPîk +X H(a,zy z„)
1^ v v<a^p v

+ X H{d,Za). (5.8)
p v<a^Q

1

For 1 ^ a ^ v, take za 1. With this choice, we have

X H(a,za)« xpîk X « xPiy + "

1^ v

« xpîy e{pl~l)v. (5.9)

For v < a ^ pxv, the quantity (z— 1) v — a log z in (5.7) is minimized by
taking z a/v za. With this choice of za, we have 1 < za ^ p1 and

PliPl-Za) PliPl-Pl)'<1 +Pl,
SO

H (a,za)sSc39 (pj) xpi
k eipl v/a"e ").

By Stirling's formula, a"e~a » a!a"1/2, so we get

X H(fl,zaXc40(p1)xpr'ii1'2«-''+>»A x iPiv)"

v<a^p^v v<a^p v CI

< c40(Pi) xpïy v1'2 (5.10)

L'Enseignement mathém., t. XXVIII, fasc. 1-2. 4
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For pxv < a ^ Q, we let all the numbers za have the same value Pi (1 + 0),

where 0 is a real number about which we assume only that 0 < 0 < p2pï1 — 1

(the last inequality being needed in order to have za < p2). With this choice of za,

(5.7) yields

I H (a, za)
p v < a ^ Q

I

< Pi {Pi - Pi (1 + 9)}"1 xpïkexp{(Pi-l+PtQ)(v + A) + (1+0)}

x I (1+0)"°. (5.11)
p^v<a^Q

The last sum on the right does not exceed

X (1 + 0)'" < (1+0)0" 1(l+0)-pi". (5.12)
a> p v

1

After combining this estimate with (5.11), we would like to minimize the

contribution of the essential terms eplQv 0_1 (l+0)~pl,;. Since

log (1 + 0) ^ 0 - 02/2 for 0^0, (5.13)

we have

Pi$v — log 0 — pxv log (1 + 0) ^ —log 0 + Pit02/2,

and here the right-hand side would be minimized by taking 0 to be (Piv)~112.

However, we must also choose 0 < p2pî1 — 1 (so that za < p2). If we take

0 - (Ip^2)'1, (5.14)

then because of our assumption that v ^ 1, we have

0 < (2pi)-1 < PiPl1 ~ 1
•

Combining (5.11), (5.12), (5.13), and (5.14), and observing that

Pi {Pi ~ Pi (1 + 0)}"1 < Pi (p2~Pi —1/2)-1

1 + (Pi "F 1/2) (p2 —Pi — l/2)~1 <c41(pi),

we obtain finally
X H(a,za)< (5.15)

p^v<a^Q
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The theorem now follows from (5.8), (5.9), (5.10), and (5.15). Q.E.D.

Since

E (x) ^ £ P_1 log2 x + 0(1) for x^2,

one would always want to choose v ^ log2 x. Thus (1.23) is superior to (5.4)

whenever y ^ (log2 x)1/2. Furthermore, consideration of derivatives shows that

y — v — y log (y/v) ^ (pi — 1) v — y log for 0 < v ^ y ^ pyo

and hence Lemma 5.3 is superior to Theorem 1.21 whenever

1 ^ v ^ y ^ — v1/2
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