6. The Method of Recursive Definition

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 28 (1982)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
21.07.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Since DAG is logspace complete in $N S P A C E(\log n)$, it suffices to show that

$$
\mathrm{DAG} \in D S P A C E(\log n) / \log \Rightarrow \mathrm{DAG} \in D S P A C E(\log n)
$$

Suppose that DAG $=\mathrm{S}: h$, where $\mathrm{S} \in D S P A C E(\log n)$ and

$$
|h(n)| \leqslant k \log _{2} n .
$$

Then, guided by the self-reducibility of DAG, we can test whether $(\Psi, s, t) \in \mathrm{DAG}$ by performing the following computation for each string w of length $\leqslant k \log _{2} n$:

$$
\begin{aligned}
& v:=s \\
& \text { while } v \text { has out-degree } 2 \text { do } \\
& v:=\text { if } w \cdot\left(\Psi, v_{0}, t\right) \in \mathrm{S} \text { then } v_{0} \text { else } v_{1} .
\end{aligned}
$$

If v is ever set equal to t then accept (Ψ, s, t); otherwise, reject it. It is clear that this method recognizes DAG deterministically within space $0(\log n)$.

6. The Method of Recursive Definition

Let K be a subset of $\{0,1\}^{*}$, and let $C_{K}:\{0,1\}^{*} \rightarrow\{0,1\}$ be the characteristic function of K. By a recursive definition of C_{K} we mean a rule that specifies C_{K} on a "basis set" $\mathrm{A} \subseteq\{0,1\}^{*}$, and uniquely determines C_{K} on the rest of $\{0,1\}^{*}$ by a recurrence formula of the form

$$
\begin{gathered}
C_{K}(x)=F\left(x, C_{K}\left(f_{1}(x)\right), C_{K}\left(f_{2}(x)\right), \ldots, C_{K}\left(f_{t}(x)\right)\right), \\
x \in\{0,1\}^{*}-\mathrm{A} .
\end{gathered}
$$

Example 1. Let G be a game, as defined in Section 4, and let G be the set of positions from which the player to move can force a win. Then G is uniquely determined by
(i) if $x \in \mathrm{~W}$ then $x \in \mathrm{G}$
(ii) if $x \in\{0,1\}^{*}-\mathrm{W}$ then $x \in \mathrm{G} \Leftrightarrow F_{0}(x) \notin \mathrm{G}$ or $F_{1}(x) \notin \mathrm{G}$.

Example 2. Let ($<, \mathrm{A}, G_{0}, G_{1}$) be a self-reducibility structure for the set $K \subseteq\{0,1\}^{*}$. Then K is determined uniquely by its intersection with A , together with the recurrence

$$
\text { for } \quad x \notin \mathrm{~A}, x \in \mathrm{~K} \Leftrightarrow G_{0}(x) \in \mathrm{K} \cup G_{1}(x) \in \mathrm{K} .
$$

The theme of the present section is that, when C_{K} has a simple enough recursive definition, bounds on the nonuniform complexity of K yield bounds on its uniform complexity. The idea is as follows. Suppose $\mathrm{K}=\mathrm{S}: h$, and C_{K} is determined by its values on A , together with the recurrence formula

$$
C_{K}(x)=F\left(x, C_{K}\left(f_{1}(x)\right), \ldots, C_{K}\left(f_{t}(x)\right)\right), x \in\{0,1\}^{*}-\mathrm{A}
$$

where

$$
\left|f_{1}(x)\right|=\left|f_{t}(x)\right|=|x| .
$$

For any string w, define $\mathrm{K}_{w}=\{x \mid w x \in \mathrm{~S}\}$. Then, for $x \in \mathrm{~A}$, we can make the following assertion:

$$
\begin{aligned}
& x \in \mathrm{~K} \Leftrightarrow \exists w\left[x \in \mathrm{~K}_{w}\right] \wedge \forall y\left[C_{K_{w}}(y)\right. \\
& =F\left(y, C_{K_{w}}\left(f_{1}(y)\right), \ldots, C_{K_{w}}\left(f_{t}(y)\right)\right] .
\end{aligned}
$$

Here, w ranges over all strings of length $|h(|x|)|$, and y ranges over all strings of the same length as x. The above formula suggests a uniform algorithm to test membership in K by searching through all choices of w and y. Further, the quantifier structure of the formula allows us to conclude that K lies in \sum_{2}^{p}, provided that $\left.\mid h(n)\right) \mid$ is bounded by a polynomial in $n, \mathrm{~S}$ is in P, and F is computable in polynomial time.

As an illustration of this approach, we prove that, if $N P$ has small circuits, then $\cup_{i} \sum_{i}^{p}=\sum_{2}^{p}$, i.e., the polynomial-time hierarchy collapses. Originally we proved this with \sum_{2}^{p} replaced by \sum_{3}^{p}. The improvement is due to M. Sipser.

Theorem 6.1. If $N P \subseteq P /$ poly then $\sum_{2}^{p}=\bigcup_{i=1}^{\infty} \sum_{i}^{p}$.
The proof of this theorem requires the following lemma.
Lemma 6.2. If $N P \subseteq P /$ poly then $\bigcup_{i=1}^{\infty} \sum_{i}^{p} \subseteq P / p o l y$.
Proof. Let E_{i} be the set of encodings of true sentences of the form

$$
\text { (*) } Q_{1} \vec{x}_{1} Q_{2} \vec{x}_{2} \ldots Q_{i} \vec{x}_{i} F\left(\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{i}\right)
$$

where $Q_{1}=\exists$, the Q_{j} are alternately \exists and \forall, \vec{x}_{j} is shorthand for the triple $x_{j_{1}}, x_{j_{2}}, \ldots, x_{j, r}$ of Boolean variables, and F is a propositional formula. Let A_{i} be defined in the same way, except that $Q_{1}=\forall$. It is known that E_{i} is logspace complete in \sum_{i}^{p}, and A_{i} is logspace complete in
\prod_{i}^{p}. Also, it is clear that $A_{i} \in P / p o l y \Leftrightarrow E_{i} \in P / p o l y$. It suffices for the lemma to prove that $E_{i} \in P / p o l y$ for all i.

By hypothesis, $E_{1} \in P / p o l y$. We proceed by induction on i. Assume $E_{i-1} \in P / p o l y$; then $A_{i-1} \in P /$ poly. Thus there exists a set $\mathrm{S} \in P$, a constant k and a function $h: N \rightarrow\{0,1\}^{*}$ such that $|h(n)| \leqslant k+n^{k}$ and $x \in A_{i=1} \Leftrightarrow h(|x|) \cdot x \in \mathrm{~S}$.

If y is the encoding of a sentence of the form (${ }^{*}$), and \vec{a} is a t_{1}-tuple of boolean variables, let y_{a} denote the encoding of the sentence that results from y by deleting the quantifier Q_{1} and substituting \vec{a} for \vec{x}_{i} in $F\left(\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{i}\right)$. We choose our encoding conventions and method of substitution so that the length of y_{a} is equal to the length of y.

Since $\mathrm{S} \in P$, the following set T is in $N P$:

$$
\mathrm{T}=\left\{w y \mid \text { for some } \vec{a}, w \cdot y_{\vec{a}} \in \mathrm{~S}\right\} .
$$

By hypothesis $\mathrm{T} \in P / p o l y$, so there exist $S^{\prime} \in P, k^{\prime} \in N$ and $h^{\prime}: N \rightarrow\{0,1\}^{*}$ so that $\left|h^{\prime}(n)\right| \leqslant k^{\prime}+n^{k^{\prime}}$ and $x \in \mathrm{~T} \Leftrightarrow h^{\prime}(|x|) \cdot x \in \mathrm{~S}$. Then $y \in A_{i} \Leftrightarrow$ for some $\vec{a}, y_{a} \in E_{i-1} \Leftrightarrow$ for some a,

$$
h\left(\mid y_{\vec{a}}\right) \cdot y_{\vec{a}} \in \mathrm{~S} \Leftrightarrow h\left(\left|y_{\vec{a}}\right|\right) \cdot y \in T \Leftrightarrow h^{\prime}\left(| h (| y _ { a } |) \cdot y | \left(\cdot h\left(\left|y_{a}\right|\right) \cdot y \in \mathrm{~S}^{\prime} .\right.\right.
$$

But the prefix $h^{\prime}\left(\left|h\left(\left|y_{\vec{a}}\right|\right) \cdot y\right|\left(\cdot h\left(\left|y_{a}\right|\right)\right.\right.$ is a polynomial-bounded function of $|y|$; also $\mathrm{S}^{\prime} \in P$. These two facts together establish that $A_{i} \in P /$ poly.

Proof of Theorem 6.1. It suffices to prove that $N P \subseteq P / p o l y \Rightarrow \prod_{3}^{p} \subseteq \sum_{2}^{p}$; for this it is sufficient to prove that the set A_{3} is in \sum_{2}^{p}. Our proof is based on the fact that A_{3} has an easty-to-evaluate recursive definition of the form $C_{A_{3}}(y)=R\left(y, C_{A_{3}}\left(y^{\prime}\right), C_{A_{3}}\left(y^{\prime \prime}\right)\right)$. Consider a sentence y of the form

$$
Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} F\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

where the string of quantifiers $Q_{1} Q_{2} \ldots Q_{n}$ is contained in $\forall^{*} \exists * \forall^{*}$.
Let

$$
y^{\prime}=Q_{2} x_{2} \ldots Q_{n} x_{n} F\left(0, x_{2}, \ldots, x_{n}\right)
$$

and

$$
y^{\prime \prime}=Q_{2} x_{2} \ldots Q_{n} x_{n} F\left(1, x_{2}, \ldots, x_{n}\right)
$$

Then
$C_{A 3}(y)=\left(\right.$ if $Q_{1}=\forall$ then $C_{A 3}\left(y^{\prime}\right) \wedge C_{A 3}\left(y^{\prime \prime}\right)$ else $\left.C_{A 3}\left(y^{\prime}\right) \cup C_{A 3}\left(y^{\prime \prime}\right)\right)$. $C_{A_{3}}$ is uniquely determined by this recursive definition which is of the form $C_{A_{3}}(y)=R\left(\left(y, C_{A_{3}}\left(y^{\prime}\right), C_{A_{3}}\left(y^{\prime \prime}\right)\right)\right.$, coupled with its values on the "basis set" consisting of sentences without quantifiers.

By Lemma 6.2, $A_{3} \in P / p o l y$. Thus $A_{3}=S: h$ where $S \in P$ and $|h(n)| \leqslant k+n^{k}$. For each $w \in\{0,1\}^{*}$ define $f_{w}:\{0,1\}^{*} \rightarrow\{0,1\}$ by $f_{w}(x)=1 \Leftrightarrow w x \in \mathrm{~S}$. Then membership of y in A_{3}, in the case where y contains at least one quantifier, is expressed by the following formula:
(**)

$$
\exists w \forall z\left[f_{w}(y)=1 \wedge f_{w}(z)=R\left(z, f_{w}\left(z^{\prime}\right), f_{w}\left(z^{\prime \prime}\right)\right)\right] .
$$

Here w ranges over all strings of length $\leqslant k+|y|^{k}$, and z ranges over all strings of length $|y|$. Also, with the help of a polynomial-time algorithm to test membership in S , the property $f_{w}(y)=1$ and

$$
f_{w}(z)=R\left(z, f_{w}\left(z^{\prime}\right), f_{w}\left(z^{\prime \prime}\right)\right)
$$

can be tested in polynomial time. Thus the $\exists \forall$ form of (**) establishes that $A_{3} \in \sum_{2}^{p}$.

Theorem 6.1 has a number of corollaries.

Corollary 6.3. If $R=N P$ then $\cup_{i} \sum_{i}^{p}=\sum_{2}^{p}$.
This follows immediately from the observation [1] that every set in R has small circuits.

The next corollary concerns sparse sets. A set S is sparse [6, 7] if

$$
\exists c \forall n \geqslant 2,\left|\mathrm{~S} \cap\{0,1\}^{n}\right| \leqslant n^{c}
$$

Corollary 6.4. If there is a sparse set S that is complete in $N P$ with respect to polynomial time Turing reducibility (cf. Cook [4]), then

$$
\cup_{i} \sum_{i}^{p}=\sum_{2}^{p}
$$

This corollary follows immediately from Theorem 6.1 once it is noted that the existence of such an S implies that every set in $N P$ has small circuits. Corollary 6.4 should be compared with results of Mahaney [11] and Fortune [6] which show that, if there exists a sparse or co-sparse set which is complete in $N P$ with respect to many-one polynomial-time reducibility (Karp [8]) then $P=N P$. Note that Corollary 6.4 has a weaker conclusion than the results of Mahaney and Fortune, but also a weaker hypothesis.

Let $Z E R O S$ denote the following decision problem: given a prime q and a set $\left\{p_{1}(x), p_{2}(x), \ldots, p_{n}(x)\right\}$ of sparse polynomials with integer coefficients, to determine whether there exists an integer x such that, for $i=1,2, \ldots, n, p_{i}(x) \equiv 0 \bmod q$.

Corollary 6.5. If $Z E R O S \in P / p o l y$, then $\cup \sum_{i}^{p}=\sum_{2}^{p}$.
This is based on Plaisted's result [15] that every problem in $N P$ can be solved in polynomial time with the help of an oracle for $Z E R O S$ together with a polynomial-bounded number of advice bits. Thus $N P \subseteq P / p o l y$ if $Z E R O S \in P / p o l y$.

Theorem 6.6. (Meyer) EXPTIME \subseteq P/poly \Leftrightarrow EXPTIME $=\sum_{2}^{p}$.
Proof. Let G be the set of strings representing positions from which the first player can win in the EXPTIME-complete game mentioned in FACT 1. It suffices to prove that

$$
G \in P / p o l y \Rightarrow G \in \sum_{2}^{p} .
$$

Suppose $\mathrm{G}=\mathrm{S}: h$ where $\mathrm{S} \in P$ and h is polynomial-bounded. Then

$$
\begin{gathered}
x \in \mathrm{G} \Leftrightarrow \exists w \forall z\left[x \in W \cup z \in W \cup \left(w z \in \mathrm{~S} \Leftrightarrow w F_{0}(z)\right.\right. \\
\left.\left.\notin \mathrm{S} \cup w F_{1}(z) \notin \mathrm{S}\right)\right]
\end{gathered}
$$

Here w ranges over all strings of length $\mid h(|x|)$ and z ranges over all strings of the same length as x. Since membership in S or membership in W can be tested in polynomial time, it tollows that $G \in \sum_{2}^{p}$.

Corollary 6.7. \quad EXPTIME $\subseteq P /$ poly $\Rightarrow P \neq N P$.

Proof. Assume for contradiction that EXPTIME $\subseteq P /$ poly and $P=N P$. The first hypothesis implies that EXPTIME $=\sum_{2}^{p}$, and the second implies that $P=\sum_{2}^{p}$. Hence $P=E X P T I M E$. But this contradicts the result that $P \nsubseteq E X P T I M E$, which is easily proved by diagonalization.

Figure 1. Main Results

$$
\begin{aligned}
& P S P A C E \subseteq P / p o l y \Rightarrow P S P A C E=\sum_{2}^{p} \cap \sum_{2}^{p} \\
& P S P A C E \subseteq P / \log \Leftrightarrow P S P A C E=P \\
& E X P T I M E \subseteq P S P A C E / \text { poly } \Leftrightarrow E X P T I M E=P S P A C E \\
& P \subseteq D S P A C E\left((\log n)^{l}\right) / \log \Leftrightarrow P \subseteq D S P A C E\left((\log n)^{l}\right) \\
& N S P A C E(\log n) \subseteq D S P A C E(\log n) / \log \\
& \quad \Leftrightarrow N S P A C E(\log n)=D S P A C E(\log n)
\end{aligned}
$$

$$
\begin{align*}
& \left.N P \subseteq P / \log \Leftrightarrow P=N P \quad{ }^{1}\right) \\
& N P \subseteq P / \text { poly } \Rightarrow \cup \sum_{i}^{p}=\sum_{2}^{p} \tag{2}
\end{align*}
$$

EXPTIME $\subseteq P /$ poly $\Rightarrow E X P T I M E=\sum_{2}^{p} \Rightarrow P \neq N P \quad\left({ }^{3}\right)$

REFERENCES

[1] Adleman, L. Two Theorems on Random Polynomial Time. Proc. 19th IEEE Symp. on Foundations of Computer Science, pp. 75-83 (1978).
[2] Aleliunas, R., R. M. Karp, R. J. Lipton, L. Lovász and C. Rackoff. Random Walks, Universal Sequences, and the Complexity of Maze Problems. Proc. 20th IEEE Symp. on Foundations of Computer Science, pp. 218-223 (1979).
[3] Chandra, A. K. and L. J. Stockmeyer. Alternation. Proc. 17th IEEE Symp. on Foundations of Computer Science, pp. 98-108 (1976).
[4] Соок, S. A. The Complexity of Theorem-Proving Procedures. Proc. 3rd ACM Symp. on Theory of Computing, pp. 151-158 (1971).
[5] —— Towards a Complexity Theory of Synchronous Parallel Computation. Technical Report 141/80, Computer Science Department, University of Toronto (1980).
[6] Fortune, S. A Note on Sparse Complete Sets. SIAM J. Computing 8, pp. 431-433 (1979).
[7] Hartmanis, J. and L. Berman. On Isomorphisms and Density of NP and Other Complete Sets. Proc. 8th ACM Symp. on Theory of Computing. pp. 30-40 (1976).
[8] Karp, R. M. Reducibility Among Combinatorial Problems. I: Complexity of Computer Computations (R. E. Miller and J. W. Thatcher, eds.), Plenum, New York (1972).
[9] Karp, R. M. and R. J. Lipton. Some Connections Between Nonuniform and Uniform Complexity Classes. Proc. 12th Annual ACM Symposium on Theory of Computing, pp. 302-309 (1980).
[10] Kozen, D. On Parallelism in Turing Machines. Proc. IEEE Symp. on Foundations of Computer Science, pp. 89-97 (1976).
[11] Mahaney, S. R. Sparse Complete Sets for NP: Solution of a Conjecture of Berman and Hartmanis. Proc. 21st IEEE Symp. on Foundations of Computer Science, pp. 54-60 (1980).
[12] Meyer, A. R. and M. S. Paterson. With What Frequency are Apparently Intractable Problems Difficult, M.I.T. Tech. Report, Feb. 1979.
[13] Meyer, A. R. and L. J. Stockmeyer. The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space. Proc. 13th IEEE Symp. on Switching and Automata Theory, pp. 125-129 (1972).
[14] Pippenger, N. On Simultaneous Resource Bounds. Proc. 20th IEEE Symp. on Foundations of Computer Science, pp. 307-311 (1979).
[15] Plaisted, D. A. New NP-hard and NP-complete Polynomial and Integer Divisibility Problems. Proc. 18th IEEE Symp. on Foundations of Computer Science, pp. 241253 (1977).
${ }^{(1)}$ Obtained jointly with Ravindran Kannan.
${ }^{(2)}$ An improvement by Michael Sipser of an early result of ours.
$\left({ }^{3}\right)$ Due to Albert Meyer.

