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TURING MACHINES THAT TAKE ADVICE 2Ö3

Since DAG is logspace complete in NSPACE (log n), it suffices to show that

DAG e DSPACE (log n)/log => DAG e DSPACE (log n)

Suppose that DAG S : h, where S e DSPACE (log ri) and

\h(n)\<k log2 n

Then, guided by the self-reducibility of DAG, we can test whether

(W, s, t) e DAG by performing the following computation for each string w

of length < k log2 n :

v : s;

while v has out-degree 2 do

v : if w • (W9 v0, /)eS then v0 else vv

If v is ever set equal to t then accept (W9 s, t); otherwise, reject it. It is clear

that this method recognizes DAG deterministically within space 0 (log ri).

6. The Method of Recursive Definition

Let K be a subset of {0, 1}*, and let CK : {0, 1}* -> {0, 1} be the characteristic

function of K. By a recursive definition of CK we mean a rule that
specifies CK on a "basis set" A ç {0, 1}*, and uniquely determines CK on
the rest of {0, 1}* by a recurrence formula of the form

CK(x) F(x, CK(ft (x)), CK(f2(x% CK(ft(x))),
x e {0,1}* — A

Example 1. Let G be a game, as defined in Section 4, and let G be the
set of positions from which the player to move can force a win. Then G is

uniquely determined by

(i) if x e W then x e G

(ii) if x e {0, 1}* - W then x e G <s> F0 (x) <£ G or Fx (x) £ G.

Example 2. Let (<, A, G0, GJ be a self-reducibility structure for the
set K ç {0, 1}*. Then K is determined uniquely by its intersection with A,
together with the recurrence

for x ^ A, x g K G0(x)eKuGj(x)eK.

L'Enseignement mathém., t. XXVIII, fasc. 3-4. i a



204 RICHARD M. KARP AND RICHARD J. LIPTON

The theme of the present section is that, when CK has a simple enough
recursive definition, bounds on the nonuniform complexity of K yield
bounds on its uniform complexity. The idea is as follows. Suppose K S : A,

and CK is determined by its values on A, together with the recurrence
formula

CK(x) F(x,CK(fl(x)), CK( ft(x))), x e {0, 1}* - A
where

|/iO)| |/t(*)| |*|-
For any string w, define Kw {x | wx e S}. Then, for x e A, we can make
the following assertion:

xeK o3w[xeKj A Vy[CKw(y)
F(y, CKw(f1(y)),...,CKw(ft(ym-

Here, w ranges over all strings of length | h (|x|) |, and y ranges over all
strings of the same length as x. The above formula suggests a uniform
algorithm to test membership in K by searching through all choices of w

and y. Further, the quantifier structure of the formula allows us to
conclude that K lies in f, provided that | h (nj) | is bounded by a polynomial
in n, S is in P, and F is computable in polynomial time.

As an illustration of this approach, we prove that, if NP has small

circuits, then u i-e., the polynomial-time hierarchy collapses.
i

Originally we proved this with YJi replaced by YS- The improvement is due

to M. Sipser.

00

Theorem 6.1. If NP ^ Pjpoly then ££ u £ f.
i 1

The proof of this theorem requires the following lemma.

00

Lemma 6.2. If NP ç PIpoly then vj ^ f s Pfpoly.
i 1

Proof. Let Et be the set of encodings of true sentences of the form

(*) 01^1 02*2- Qi,3cÉ)

where Q1 3,theQj are alternately 3 and V, Xj is shorthand for the

triple x.- x.- xf r of Boolean variables, and F is a propositionalJl J 2 J' j
formula. Let At be defined in the same way, except that Q± V. It is

known that Et is logspace complete in £f, and At is logspace complete in
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Jjf. Also, it is clear that A t e P/poly o Ete Pjpoly. It suffices for the lemma

to prove that Et e Pjpoly for all /.

By hypothesis, E± e Pjpoly. We proceed by induction on i. Assume

Ei_1 e Pjpoly; then At_ 1 e Pjpoly. Thus there exists a set S eP, a constant
k and a function h : N -» {0, 1}* such that | h (n) | < k + nk and

V e Ai= t <^> h (|x|) - xeS.
If y is the encoding of a sentence of the form (*), and a is a ^-tuple of

boolean variables, let yf denote the encoding of the sentence that results

from y by deleting the quantifier Q1 and substituting a for 5c
t in

F (3c i, 5c 2,xt). We choose our encoding conventions and method of
substitution so that the length of is equal to the length of y.

Since SeP, the following set T is in NP:

T {wy J for some a, w • e S}

By hypothesis T e Pjpoly, so there exist S' e P9 k' e N and h' : N -» {0, 1}*
so that I h' (ri) | < k' + nk' and x e T o h' (|x|) • x e S. Then y e At <=> for
some a y~Z eEi_1 o for some a,

h Qyî) -yfeSoh (\y-\) -yeT^h'{\h (|y-|) -y\{-h (\yt\) -yeS'.
But the prefix h' (| A(l7îl) -y\(-h (|y~J|) is a polynomial-bounded function
of I y J ; also S' e P. These two facts together establish that At e Pjpoly.

Proofof Theorem 6.1. It suffices to prove that NP c P/poly=> Yl% — H 21

for this it is sufficient to prove that the set A3 is in f. Our proof is based on
the fact that A3 has an easty-to-evaluate recursive definition of the form
Ç43 (y) P (y, CÄ3 (/), CAs (/'))• Consider a sentence y of the form

ôl *1 Ô2 X2 ••• Qn^nF C*T> Xn)

where the string of quantifiers Q1 Q2 Qn is contained in V* 3* V*.

Let

/ 02 *2 Qn *n F (0, x2i Xn)
and

y" 02 *2 - Qn Xn F (1, x2, ...5 xn)
Then

Ca3(>') (if QiV then CA3(/)A CA3 else (/) u (y"))
CMis uniquely determined by this recursive definition which is of the form
G3 (j) R ((y, CA3(>>'), Cl3 (>'")), coupled with its values on the "basis
set" consisting of sentences without quantifiers.
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By Lemma 6.2, A3eP/poly. Thus A3 S: h where SeP and
I h {ri) I < k + nk. For each w e {0, 1}* define fw : {0, 1}* -» {0, 1} by
fw(x) 1 <=> wx e S. Then membership of y in A3, in the case where y
contains at least one quantifier, is expressed by the following formula:

(**) 3 vv Vz [/w(y) 1 A /w(z)

Here w ranges over all strings of length < k + \y\k, and z ranges over all
strings of length | y |. Also, with the help of a polynomial-time algorithm
to test membership in S, the property fw (y) 1 and

L 0) R (z, fw {z'\ fw (z"))

can be tested in polynomial time. Thus the 3 V form of (**) establishes

that A3 e YJi-

Theorem 6.1 has a number of corollaries.

Corollary 6.3. If R NP then u J] 2 •

i
This follows immediately from the observation [1] that every set in R has

small circuits.
The next corollary concerns sparse sets. A set S is sparse [6, 7] if

3 c \/n > 2, I S n {0,1}M | < nc.

Corollary 6.4. If there is a sparse set S that is complete in NP with
respect to polynomial time Turing reducibility (cf. Cook [4]), then

uEf B-
i

This corollary follows immediately from Theorem 6.1 once it is noted
that the existence of such an S implies that every set in NP has small
circuits. Corollary 6.4 should be compared with results of Mahaney [11] and
Fortune [6] which show that, if there exists a sparse or co-sparse set which
is complete in NP with respect to many-one polynomial-time reducibility
(Karp [8]) then P — NP. Note that Corollary 6.4 has a weaker conclusion
than the results of Mahaney and Fortune, but also a weaker hypothesis.

Let ZEROS denote the following decision problem: given a prime q
and a set {/?t (x), p2 (v),..., pn (x)} of sparse polynomials with integer
coefficients, to determine whether there exists an integer x such that, for
i 1, 2,..., n,Pi (x) 0 mod q.
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Corollary 6.5. If ZEROS e P/poly, then u £2 •

This is based on Plaisted's result [15] that every problem in can be

solved in polynomial time with the help of an oracle for ZEROS together
with a polynomial-bounded number of advice bits. Thus NP £ P/poly if
ZEROS e P/poly.

Theorem 6.6. (Meyer) EXPT1ME £ P/poly o EXPTIME

Proof. Let G be the set of strings representing positions from which
the first player can win in the EXPTIMcompletegame mentioned in
FACT 1. It suffices to prove that

G eP Ipoly => G e 2 •

Suppose G S : hwhere S e Pandh is polynomial-bounded. Then

xeG<=>3wVz[xefFuzeITu (wz e S wF0 (z)

£S u wF1(z)£S)]
Here w ranges over all strings of length | h (|x|) and z ranges over all strings
of the same length as x. Since membership in S or membership in W can
be tested in polynomial time, it tollows that Ge^f.

Corollary 6.7. EXPTIME £ P/poly => ^ NP.

Proof. Assume for contradiction that EXPTIME £ P/poly and P NP.
The first hypothesis implies that EXPTIME £2» and the second implies
that P — Yj2- Hence P EXPTIME. But this contradicts the result that
P f EXPTIME, which is easily proved by diagonalization.

Figure 1. Main Results

PSPACE £ P/poly => PSPACE £2 n
PSPACE £ P/log o PSPACEP

EXPTIME £ PSPACEjpolyoEXPTIME PSPACE
P £ DSPACE ((log n)1) / log o P £ DSPACE ((log n)!)
NSPACE (log n) £ DSPACE (log n) / log

o N SPACE(log n) DSPACE (log n)
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NP s PI log oP NPC)
NP <= PI poly => Zf (2)

EXPTIME <= PI poly => EXPTIME %* => P ¥> NP (3)
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