
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 28 (1982)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: TURING MACHINES THAT TAKE ADVICE

Autor: Karp, Richard M. / Lipton, Richard J.

Kapitel: 6. The Method of Recursive Definition

DOI: https://doi.org/10.5169/seals-52237

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 18.04.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-52237
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en

TURING MACHINES THAT TAKE ADVICE 2Ö3

Since DAG is logspace complete in NSPACE (log n), it suffices to show that

DAG e DSPACE (log n)/log => DAG e DSPACE (log n)

Suppose that DAG S : h, where S e DSPACE (log ri) and

\h(n)\<k log2 n

Then, guided by the self-reducibility of DAG, we can test whether

(W, s, t) e DAG by performing the following computation for each string w

of length < k log2 n :

v : s;

while v has out-degree 2 do

v : if w • (W9 v0, /)eS then v0 else vv

If v is ever set equal to t then accept (W9 s, t); otherwise, reject it. It is clear

that this method recognizes DAG deterministically within space 0 (log ri).

6. The Method of Recursive Definition

Let K be a subset of {0, 1}*, and let CK : {0, 1}* -> {0, 1} be the characteristic

function of K. By a recursive definition of CK we mean a rule that
specifies CK on a "basis set" A ç {0, 1}*, and uniquely determines CK on
the rest of {0, 1}* by a recurrence formula of the form

CK(x) F(x, CK(ft (x)), CK(f2(x% CK(ft(x))),
x e {0,1}* — A

Example 1. Let G be a game, as defined in Section 4, and let G be the
set of positions from which the player to move can force a win. Then G is

uniquely determined by

(i) if x e W then x e G

(ii) if x e {0, 1}* - W then x e G <s> F0 (x) <£ G or Fx (x) £ G.

Example 2. Let (<, A, G0, GJ be a self-reducibility structure for the
set K ç {0, 1}*. Then K is determined uniquely by its intersection with A,
together with the recurrence

for x ^ A, x g K G0(x)eKuGj(x)eK.

L'Enseignement mathém., t. XXVIII, fasc. 3-4. i a

204 RICHARD M. KARP AND RICHARD J. LIPTON

The theme of the present section is that, when CK has a simple enough
recursive definition, bounds on the nonuniform complexity of K yield
bounds on its uniform complexity. The idea is as follows. Suppose K S : A,

and CK is determined by its values on A, together with the recurrence
formula

CK(x) F(x,CK(fl(x)), CK(ft(x))), x e {0, 1}* - A
where

|/iO)| |/t(*)| |*|-
For any string w, define Kw {x | wx e S}. Then, for x e A, we can make
the following assertion:

xeK o3w[xeKj A Vy[CKw(y)
F(y, CKw(f1(y)),...,CKw(ft(ym-

Here, w ranges over all strings of length | h (|x|) |, and y ranges over all
strings of the same length as x. The above formula suggests a uniform
algorithm to test membership in K by searching through all choices of w

and y. Further, the quantifier structure of the formula allows us to
conclude that K lies in f, provided that | h (nj) | is bounded by a polynomial
in n, S is in P, and F is computable in polynomial time.

As an illustration of this approach, we prove that, if NP has small

circuits, then u i-e., the polynomial-time hierarchy collapses.
i

Originally we proved this with YJi replaced by YS- The improvement is due

to M. Sipser.

00

Theorem 6.1. If NP ^ Pjpoly then ££ u £ f.
i 1

The proof of this theorem requires the following lemma.

00

Lemma 6.2. If NP ç PIpoly then vj ^ f s Pfpoly.
i 1

Proof. Let Et be the set of encodings of true sentences of the form

(*) 01^1 02*2- Qi,3cÉ)

where Q1 3,theQj are alternately 3 and V, Xj is shorthand for the

triple x.- x.- xf r of Boolean variables, and F is a propositionalJl J 2 J' j
formula. Let At be defined in the same way, except that Q± V. It is

known that Et is logspace complete in £f, and At is logspace complete in

TURING MACHINES THAT TAKE ADVICE 205

Jjf. Also, it is clear that A t e P/poly o Ete Pjpoly. It suffices for the lemma

to prove that Et e Pjpoly for all /.

By hypothesis, E± e Pjpoly. We proceed by induction on i. Assume

Ei_1 e Pjpoly; then At_ 1 e Pjpoly. Thus there exists a set S eP, a constant
k and a function h : N -» {0, 1}* such that | h (n) | < k + nk and

V e Ai= t <^> h (|x|) - xeS.
If y is the encoding of a sentence of the form (*), and a is a ^-tuple of

boolean variables, let yf denote the encoding of the sentence that results

from y by deleting the quantifier Q1 and substituting a for 5c
t in

F (3c i, 5c 2,xt). We choose our encoding conventions and method of
substitution so that the length of is equal to the length of y.

Since SeP, the following set T is in NP:

T {wy J for some a, w • e S}

By hypothesis T e Pjpoly, so there exist S' e P9 k' e N and h' : N -» {0, 1}*
so that I h' (ri) | < k' + nk' and x e T o h' (|x|) • x e S. Then y e At <=> for
some a y~Z eEi_1 o for some a,

h Qyî) -yfeSoh (\y-\) -yeT^h'{\h (|y-|) -y\{-h (\yt\) -yeS'.
But the prefix h' (| A(l7îl) -y\(-h (|y~J|) is a polynomial-bounded function
of I y J ; also S' e P. These two facts together establish that At e Pjpoly.

Proofof Theorem 6.1. It suffices to prove that NP c P/poly=> Yl% — H 21

for this it is sufficient to prove that the set A3 is in f. Our proof is based on
the fact that A3 has an easty-to-evaluate recursive definition of the form
Ç43 (y) P (y, CÄ3 (/), CAs (/'))• Consider a sentence y of the form

ôl *1 Ô2 X2 ••• Qn^nF C*T> Xn)

where the string of quantifiers Q1 Q2 Qn is contained in V* 3* V*.

Let

/ 02 *2 Qn *n F (0, x2i Xn)
and

y" 02 *2 - Qn Xn F (1, x2, ...5 xn)
Then

Ca3(>') (if QiV then CA3(/)A CA3 else (/) u (y"))
CMis uniquely determined by this recursive definition which is of the form
G3 (j) R ((y, CA3(>>'), Cl3 (>'")), coupled with its values on the "basis
set" consisting of sentences without quantifiers.

206 RICHARD M. KARP AND RICHARD J. UPTON

By Lemma 6.2, A3eP/poly. Thus A3 S: h where SeP and
I h {ri) I < k + nk. For each w e {0, 1}* define fw : {0, 1}* -» {0, 1} by
fw(x) 1 <=> wx e S. Then membership of y in A3, in the case where y
contains at least one quantifier, is expressed by the following formula:

(**) 3 vv Vz [/w(y) 1 A /w(z)

Here w ranges over all strings of length < k + \y\k, and z ranges over all
strings of length | y |. Also, with the help of a polynomial-time algorithm
to test membership in S, the property fw (y) 1 and

L 0) R (z, fw {z'\ fw (z"))

can be tested in polynomial time. Thus the 3 V form of (**) establishes

that A3 e YJi-

Theorem 6.1 has a number of corollaries.

Corollary 6.3. If R NP then u J] 2 •

i
This follows immediately from the observation [1] that every set in R has

small circuits.
The next corollary concerns sparse sets. A set S is sparse [6, 7] if

3 c \/n > 2, I S n {0,1}M | < nc.

Corollary 6.4. If there is a sparse set S that is complete in NP with
respect to polynomial time Turing reducibility (cf. Cook [4]), then

uEf B-
i

This corollary follows immediately from Theorem 6.1 once it is noted
that the existence of such an S implies that every set in NP has small
circuits. Corollary 6.4 should be compared with results of Mahaney [11] and
Fortune [6] which show that, if there exists a sparse or co-sparse set which
is complete in NP with respect to many-one polynomial-time reducibility
(Karp [8]) then P — NP. Note that Corollary 6.4 has a weaker conclusion
than the results of Mahaney and Fortune, but also a weaker hypothesis.

Let ZEROS denote the following decision problem: given a prime q
and a set {/?t (x), p2 (v),..., pn (x)} of sparse polynomials with integer
coefficients, to determine whether there exists an integer x such that, for
i 1, 2,..., n,Pi (x) 0 mod q.

TURING MACHINES THAT TAKE ADVICE 207

Corollary 6.5. If ZEROS e P/poly, then u £2 •

This is based on Plaisted's result [15] that every problem in can be

solved in polynomial time with the help of an oracle for ZEROS together
with a polynomial-bounded number of advice bits. Thus NP £ P/poly if
ZEROS e P/poly.

Theorem 6.6. (Meyer) EXPT1ME £ P/poly o EXPTIME

Proof. Let G be the set of strings representing positions from which
the first player can win in the EXPTIMcompletegame mentioned in
FACT 1. It suffices to prove that

G eP Ipoly => G e 2 •

Suppose G S : hwhere S e Pandh is polynomial-bounded. Then

xeG<=>3wVz[xefFuzeITu (wz e S wF0 (z)

£S u wF1(z)£S)]
Here w ranges over all strings of length | h (|x|) and z ranges over all strings
of the same length as x. Since membership in S or membership in W can
be tested in polynomial time, it tollows that Ge^f.

Corollary 6.7. EXPTIME £ P/poly => ^ NP.

Proof. Assume for contradiction that EXPTIME £ P/poly and P NP.
The first hypothesis implies that EXPTIME £2» and the second implies
that P — Yj2- Hence P EXPTIME. But this contradicts the result that
P f EXPTIME, which is easily proved by diagonalization.

Figure 1. Main Results

PSPACE £ P/poly => PSPACE £2 n
PSPACE £ P/log o PSPACEP

EXPTIME £ PSPACEjpolyoEXPTIME PSPACE
P £ DSPACE ((log n)1) / log o P £ DSPACE ((log n)!)
NSPACE (log n) £ DSPACE (log n) / log

o N SPACE(log n) DSPACE (log n)

208 RICHARD M. KARP AND RICHARD J. UPTON

NP s PI log oP NPC)
NP <= PI poly => Zf (2)

EXPTIME <= PI poly => EXPTIME %* => P ¥> NP (3)

REFERENCES

[1] Adleman, L. Two Theorems on Random Polynomial Time. Proc. 19th IEEE Symp.
on Foundations of Computer Science, pp. 75-83 (1978).

[2] Aleliunas, R., R. M. Karp, R. J. Lipton, L. Lovâsz and C. Rackoff. Random
Walks, Universal Sequences, and the Complexity of Maze Problems. Proc.
20th IEEE Symp. on Foundations of Computer Science, pp. 218-223 (1979).

[3] Chandra, A. K. and L. J. Stockmeyer. Alternation. Proc. 17th IEEE Symp. on
Foundations of Computer Science, pp. 98-108 (1976).

[4] Cook, S. A. The Complexity of Theorem-Proving Procedures. Proc. 3rd ACM Symp.
on Theory of Computing, pp. 151-158 (1971).

[5] Towards a Complexity Theory of Synchronous Parallel Computation. Technical
Report 141 j80, Computer Science Department, University of Toronto (1980).

[6] Fortune, S. A Note on Sparse Complete Sets. SIAM J. Computing 8, pp. 431-433

(1979).
[7] Hartmanis, J. and L. Berman. On Isomorphisms and Density of NP and Other

Complete Sets. Proc. 8th ACM Symp. on Theory of Computing, pp. 30-40 (1976).
[8] Karp, R. M. Reducibility Among Combinatorial Problems. I: Complexity of

Computer Computations (R. E. Miller and J. W. Thatcher, eds.), Plenum,
New York (1972).

[9] Karp, R. M. and R. J. Lipton. Some Connections Between Nonuniform and Uni¬
form Complexity Classes. Proc. 12th Annual ACM Symposium on Theory of
Computing, pp. 302-309 (1980).

[10] Kozen, D. On Parallelism in Turing Machines. Proc. IEEE Symp. on Foundations

of Computer Science, pp. 89-97 (1976).
[11] Mahaney, S. R. Sparse Complete Sets for NP: Solution of a Conjecture of Berman

and Hartmanis. Proc. 21st IEEE Symp. on Foundations of Computer Science,

pp. 54-60 (1980).
[12] Meyer, A. R. and M. S. Paterson. With What Frequency are Apparently Intractable

Problems Difficult, M.I.T. Tech. Report, Feb. 1979.

[13] Meyer, A. R. and L. J. Stockmeyer. The Equivalence Problem for Regular
Expressions with Squaring Requires Exponential Space. Proc. 13th IEEE Symp.
on Switching and Automata Theory, pp. 125-129 (1972).

[14] Pippenger, N. On Simultaneous Resource Bounds. Proc. 20th IEEE Symp. on
Foundations of Computer Science, pp. 307-311 (1979).

[15] Plaisted, D. A. New NP-hard and NP-complete Polynomial and Integer Divisibility
Problems. Proc. 18th IEEE Symp. on Foundations of Computer Science, pp. 241-
253 (1977).

(x) Obtained jointly with Ravindran Kannan.
(2) An improvement by Michael Sipser of an early result of ours.
(3) Due to Albert Meyer.

	6. The Method of Recursive Definition

