NON-STANDARD MODELS OF PEANO ARITHMETIC

Autor(en): Kochen, Simon / Kripke, Saul
Objekttyp: Article
Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 28 (1982)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
21.07.2024

Persistenter Link: https://doi.org/10.5169/seals-52238

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

NON-STANDARD MODELS OF PEANO ARITHMETIC*

by Simon Kochen and Saul Kripke

It is fitting that in a Festschrift honoring Ernst Specker we discuss a construction that combines two branches of logic in which Specker made early and enduring contributions. These are the areas of model theory and algorithmic complexity. It is appropriate in the more immediate sense that the method of model construction presented here had its genesis in two papers of Specker. One of these is the well-known article [1] with McDowell on the existence of end extensions of non-standard models of Peano arithmetic. The other [2] is on the falsity of a recursive form of Ramsey's Theorem. One of the by-products of our construction is a new proof of a strengthened form of the result in [2].

The problem of constructing non-standard models of arithmetic to prove independence results is as old as Gödel's Incompleteness Theorem itself, and has been raised many times in the literature, e.g. in Scott [6]. The possibility immediately arose of proving independence not by the selfreference technique of Gödel but rather by the older model building method used in geometry. In fact the existence of such models is guaranteed by Gödel's Completeness Theorem. In axiomatic set theory these hopes were amply fulfilled through the work of Gödel, Paul Cohen, and others, so that known conjectures in analysis and algebra have by now been shown independent by model building techniques.

In arithmetic the results until recently have been meager and negative in character. For instance S. Tennenbaum proved that non-standard models of Peano arithmetic could not be recursive structures. The best one can attain is a $\Delta_{2}^{0}\left(=\sum_{2}^{0} \cap \prod_{2}^{0}\right)$-model. The recent remarkable results of Paris, Kirby, and Harrington have entirely changed the situation. In Paris and Harrington [3] a modified form of the finite Ramsey Theorem was shown to be independent from Peano arithmetic. The method employed in [3] was to show that this modified Ramsey Theorem implied the consistency of Peano arithmetic and hence was unprovable. Another, earlier

[^0]approach developed by Paris and Kirby ([4] and [5]) used a more modeltheoretic method, employing initial segments of models. In the present paper we shall reprove the independence of the modified Ramsey Theorem by the direct mathematical construction of a non-standard model of Peano arithmetic in which this theorem is false. Although this method does lead to a rather direct proof of the Paris and Harrington result, for us the focus of this paper is on the fact that it is now possible to construct non-standard models without any use of metamathematical concepts.

For the last twenty years or so there has existed an algebraic construction of a non-standard model of Peano arithmetic. This is the wellknown ultraproduct construction. When applied to the standard model \mathbf{N} the ultrapower \mathbf{N}^{i} / D yields such a non-standard model. Unfortunately, the ultrapower does the job of being a model of Peano arithmetic a little too well, since \mathbf{N}^{i} / D is elementarily equivalent to \mathbf{N}. Thus the model \mathbf{N}^{i} / D cannot be used for independence proofs in arithmetic. On the other hand, it does suggest the possibility that a modification of the ultraproduct construction might lead to models which are elementarily inequivalent to \mathbf{N}. Now, the ultrafilter D is exactly tailored to reflect the propositional connectives and can scarcely be modified. The other half of the ultrapower, namely the cartesian product \mathbf{N}^{I}, which contains a sufficiently large set of functions $f: I \rightarrow \mathrm{~N}$ to deal with quantifiers, leaves one with a wider latitude for modification by restricting to a suitable subset \mathscr{F} of \mathbf{N}^{I}. The problem then becomes one of finding a class of functions $f: I \rightarrow \mathbf{N}$ for which \mathscr{F} / D is a model of the Peano axioms. We call such a model \mathscr{F} / D, where $\mathscr{F} \neq \mathbf{N}^{I}$, a restricted ultrapower. The first non-standard model of Peano arithmetic, constructed by Skolem [7], was in fact a restricted ultrapower, in which the set \mathscr{F} consisted of the first order definable arithmetic functions. However, this model, aside from requiring logical formulas in its definitions, was, like the full ultrapower, elementarily equivalent to \mathbf{N}. Other natural candidates for the class \mathscr{F} such as the family of primitive recursive functions or of general recursive functions have been shown to yield restricted ultrapowers which were not models of Peano arithmetic (See Scott [6]). The models we construct are restricted ultrapowers. A surprising aspect of the construction, in view of the aforementioned abortive candidates, is that the family \mathscr{F} of functions we use is closely derived from the class of primitive recursive partitions. However, the functions in \mathscr{F} are defined via sets which are homogeneous for these partitions and these sets are not in general recursive, by Specker's result [2] (or even in \sum_{n}^{0}, for fixed n, by a theorem of Jockusch [10]).

Here is a brief description of the simplest model which we construct later. Let $\left\{P_{i}\right\}$ be an effective enumeration of all primitive recursive partitions $P_{i}:[\mathbf{N}]^{e}{ }^{i} \rightarrow r_{i}$. It is an immediate consequence of Ramsey's Theorem that there exists a finite set X_{k} in \mathbf{N}, with $\# X_{k} \geqslant k$, min X_{k}, which is homogeneous for P_{1}, \ldots, P_{k}. Let $\left\{a_{k 1}, \ldots, a_{k n_{k}}\right\}$ be an enumeration of X_{k} in increasing order. Let the functions $h_{j}: \mathbf{N} \rightarrow \mathbf{N}$ be defined by

$$
h_{j}(k)= \begin{cases}a_{k j} & j \leqslant n_{k} \\ h_{j-1}(k)^{2} & j>n_{k}\end{cases}
$$

Now let

$$
\mathscr{F}=\left\{f \mid \exists j \forall i f(i) \leqslant h_{j}(i)\right\} .
$$

Then, for any non-principal ultrafilter D, the restricted ultrapower \mathscr{F} / D is a non-standard model of Peano arithmetic. If, in addition, we assume that X_{k} has been chosen so that $a_{k n_{k}}$ is a minimum, then the above consequence of Ramsey's Theorem is false in this model.

II. Bounded Ultrapowers

In building the model we have endeavoured to motivate each stage of the construction. Since this is a modification of the ultraproduct construction it is natural to aim at reproducing (to a degree) the main properties of the full ultraproduct. The first property of the ultraproduct we mimic is the Łoš property that a formula is satisfied in the ultraproduct if and only if it is satisfied in a set of factors lying in the ultrafilter. Of course, we wish to have this true for only a limited set of formulas to avoid constructing a model elementarily equivalent to \mathbf{N}.

By a limited formula we mean one in which every quantifier occurs in bound form: $\forall x<z$ or $\exists x<z$.

If $f, g \in \mathbf{N}^{I}$, we write $f \leqslant g$ to mean $f(i) \leqslant g$ (i) for all $i \in I$. A natural constraint on our proposed set \mathscr{F} is that it be closed under \leqslant, i.e. $f \leqslant g \in \mathscr{F}$ implies $f \in \mathscr{F}$. We call the restricted ultrapower \mathscr{F} / D resulting from such an \mathscr{F} a bounded ultrapower. This condition is sufficient to prove the Łoš property for limited formulas.

The formal language we use for Peano arithmetic has the constant 0 and two binary relation symbols $\sigma(x, y, z)$ and $\pi(x, y, z)$ (denoting $x+y=z$ and $x \cdot y=z$ in \mathbf{N}). By not having the functions + and \cdot in the language we avoid having to assume at the outset that \mathscr{F} / D is closed under + and \cdot.

Theorem 1. Assume \mathscr{F} / D is a bounded ultrapower. Let $\phi\left(x_{1}, \ldots, x_{n}\right)$ be a limited formula and $f_{1}, \ldots, f_{n} \in \mathscr{F}$. Then $\mathscr{F} / D \vDash \phi\left(f_{1}^{*}, \ldots, f_{n}^{*}\right)$ if and only if $\left\{i \mid \mathbf{N} \models \phi\left(f_{1}(i), \ldots, f_{n}(i)\right\} \in D\right.$.

Proof: We proceed by induction on the length of ϕ. For atomic formulas the equivalence is an immediate consequence of the definition of \mathscr{F} / D. That the equivalence is preserved under the logical connectives follows exactly as in the full ultraproduct case from the properties of the ultrafilter D.

Now assume that $\phi\left(x_{1}, \ldots, x_{n}\right)$ has the form $\left(\exists x_{j}<x_{k}\right) \psi\left(x_{1}, \ldots, x_{n}, x_{j}\right)$. Suppose that

$$
s=\left\{i \mid \mathbf{N} \models\left(\exists x_{j}<f_{k}(i)\right) \psi\left(f_{1}(i), \ldots, f_{n}(i), x_{j}\right)\right\} \in D
$$

Then for each $i \in s$, there exists in \mathbf{N} an element $a_{i}<f_{k}(i)$ such that

$$
\mathbf{N} \models \psi\left(f_{1}(i), \ldots, f_{n}(i), a_{i}\right) .
$$

Define the functions $g: \mathbf{N} \rightarrow \mathbf{N}$ by

$$
g(i)= \begin{cases}a_{i} & \text { for } i \in s \\ 0 & \text { for } i \notin s\end{cases}
$$

Since $g<f_{k} \in \mathscr{F}$, we have $g \in \mathscr{F}$. Now $\left\{i \mid \mathbf{N} \models \psi\left(f_{1}(i), \ldots, f_{n}(i), g(i)\right\}\right.$ $=s \in D$. By the inductive hypothesis

$$
\begin{aligned}
& \mathscr{F} / D \\
\text { or } \quad \mathscr{F} / D & \models\left(f_{1}^{*}, \ldots, f_{n}^{*}, g^{*}\right) \\
\text { i.e. } \quad \mathscr{F} / D & \models \phi\left(f_{1}^{*}, \ldots, f_{n}^{*}\right) \psi\left(f_{1}^{*}, \ldots, f_{n}^{*}, x_{j}\right)
\end{aligned}
$$

The other half of the equivalence is immediate.
We can extend this result a little further in one direction. The proof of the following consequence is obvious.

Corollary. Let $\phi\left(x_{1}, \ldots, x_{n}\right)$ be a \sum_{1}^{0}-formula. Then

$$
\mathscr{F} \mid D \models \phi\left(f_{1}^{*}, \ldots, f_{n}^{*}\right) \text { implies }\left\{i \mid \mathbf{N} \models \phi\left(f_{1}(i), \ldots, f_{n}(i)\right\} \in D .\right.
$$

The second property of ultraproducts we copy is the saturation property. The ω_{1}-saturation property of a structure \mathscr{A} is usually formulated as follows. Let $\left\{\phi_{j}(z)\right\}$ be a countable sequence of formulas with coefficients in \mathscr{A} and the indicated free variable z. Then $\mathscr{A} \vDash \exists z \widehat{\widehat{j}_{\leqslant n}} \phi_{j}(z)$ for every n implies $\mathscr{A} \vDash \exists z \bigwedge_{j=i}^{\infty} \phi_{j}(z)$.

An immediate consequence of the saturation property is the following apparently stronger statement: Let $\left\{\phi_{j}\left(z_{1}, \ldots, z_{n_{j}}\right)\right\}$ be a countable sequence of formulas with coefficients in \mathscr{A} and with the indicated free variables. Then

$$
\mathscr{A} \vDash \exists z_{1} \ldots \exists z_{n_{k}} \widehat{j \leq k}^{\alpha_{j}} \phi_{j}\left(z_{1}, \ldots, z_{n_{j}}\right)
$$

for every k implies that

$$
\mathscr{A} \models \exists z_{1} \ldots \exists z_{n} \ldots \bigwedge_{j=1}^{\infty} \phi_{j}\left(z_{1}, \ldots, z_{n_{j}}\right) .
$$

It is this form of the saturation property which we shall adapt in constructing the model \mathscr{F} / D. We shall require the property only for a fixed sequence $\left\{\phi_{j}\right\}$ of limited formulas which we shall specify later in the construction of the model. We shall in addition find it useful to add a condition relating the free variable z_{1} with k and n_{k} in the form of a limited formula $\phi\left(k, n_{k}, z_{1}\right)$. We could here replace z_{1} by a finite sequence of the free variables but we shall not need this added generality.

Let $\phi\left(x, y, z_{1}\right)$ and $\phi_{j}\left(z_{1}, \ldots, z_{n_{j}}\right), j=1,2,3, \ldots$, be limited formulas with the indicated free variables. We assume that n_{j} increases with j. Suppose that for each k

$$
\mathbf{N} \models \exists z_{1} \ldots \exists z_{n_{k}}\left(\phi\left(k, n_{k}, z_{1}\right) \wedge \widehat{j \leq k} \phi_{j}\left(z_{1}, \ldots, z_{n_{j}}\right)\right)
$$

Given k, let $a_{k 1}, \ldots, a_{k n_{k}} \in \mathbf{N}$ be such that

$$
\mathbf{N} \models \phi\left(k, n_{k}, a_{k 1}\right) \wedge \widehat{j \leqslant k} \phi_{j}\left(a_{k 1}, \ldots, a_{k n_{j}}\right) .
$$

Define the functions h_{j} by

$$
h_{o}(k)=n_{k} \quad \text { for all } k,
$$

and for $j>0$,

$$
h_{j}(k)= \begin{cases}a_{k j} & \text { for } n_{k} \geqslant j \\ \text { arbitrary } & \text { for } n_{k}<j\end{cases}
$$

Theorem 2. Let $\mathscr{F} \subseteq \mathbf{N}^{\mathbf{N}}$ contain the functions $h_{j}, j=0,1,2, \ldots$, and 1 (the identity function) and be closed under $<$. Then

$$
\mathscr{F} \mid D \vDash \exists x \exists y \exists z_{1} \ldots \exists z_{n} \ldots\left(\phi\left(x, y, z_{j}\right) \wedge \bigwedge_{j=1}^{\infty} \phi_{j}\left(z_{1}, \ldots, z_{n_{j}}\right)\right)
$$

Proof: Since the formula ϕ_{m} occurs as a conjunct in $\widehat{j \leqslant n}{ }_{j}$ for $n_{k} \geqslant m$, we have $\mathbf{N} \vDash \phi_{m}\left(a_{k 1}, \ldots, a_{k m}\right)$. i.e. $\mathbf{N} \vDash \phi_{m}\left(h_{1}(k), \ldots, h_{m}(k)\right)$. Thus, by

Theorem 1

$$
\mathscr{F} / D \models \phi_{m}\left(h_{1}^{*}, \ldots, h_{m}^{*}\right) .
$$

Again, for every k

$$
\mathbf{N} \models \phi\left(k, n_{k}, a_{k 1}\right) \text {, so that }
$$

by Theorem 1

$$
\mathscr{F}|D|=\phi\left(\mathbf{1}^{*}, h_{0}^{*}, h_{1}^{*}\right),
$$

proving the theorem.
We shall in the sequel be taking for \mathscr{F} the smallest set of functions closed under $<$ and containing 1 and all the h_{j} 's. In other words we let

$$
\mathscr{F}=\left\{f \mid f \leqslant \mathbf{1} \quad \text { or } \quad \exists j f \leqslant h_{j}\right\} .
$$

As an example of the use of the Saturation Theorem 2 we show how we can ensure that \mathscr{F} is closed under + and \cdot. Since

$$
f, g<h_{j} \text { implies } f+g, f \cdot g<h_{j}^{2}
$$

it clearly suffices to assume that $h_{j-1}^{2}<h_{j}$. Thus, if we assume that the condition $z_{j-1}^{2}<z_{j}$ occurs in the formula ϕ_{j}, then, adding $h_{j}(k)=h_{j-1}^{2}(k)$ for $j>n_{k}$ to our definition of h_{j}, we have that $h_{j-1}^{2}<h_{j}$, so that \mathscr{F} is closed under + and \cdot. We shall call this the Closure Condition on $\left\{h_{j}\right\}$.

Again, we can guarantee that $1 \in \mathscr{F}$ by assuming that $\phi\left(k, n, z_{1}\right)$ includes the condition $z_{1}>k$.

Up to this point in our construction of \mathscr{F} / D there is no guarantee that the difficulty with the full ultrapower has been obviated. It may happen that $\mathscr{F} / D \equiv N$, so that \mathscr{F} / D cannot be used for independence results. To obtain a true arithmetical statement which is false in \mathscr{F} / D we now add the condition that the sequence $\left\{\phi_{j}\right\}$ of limited formulas is a recursively enumerable set. It follows immediately that the sequence $\left\{\widehat{j \leq n}^{\phi_{j}}\right\}$ is also a recursively enumerable set. Since the satisfaction relation for limited formulas in \mathbf{N} is a primitive recursive relation there is a \sum_{1}^{0}-formula $\gamma(x, y, z)$ such that

$$
\mathbf{N} \models \gamma\left(k, n_{k}, z\right) \leftrightarrow \phi\left(k, n_{k}, z_{1}\right) \wedge \widehat{j \leq k} \phi_{j}\left(z_{1}, \ldots, z_{n_{j}}\right) .
$$

Here $\gamma\left(k, n_{k}, z\right)$ holds if and only if z is a code number of a sequence of length n_{k} such that $\phi\left(k, n_{k}, z_{1}\right) \wedge \widehat{j_{j \leq k}} \phi_{j}\left(z_{1}, \ldots, z_{n_{j}}\right)$ holds, where z_{i} $=\beta(i, z)$ and β is the Gödel β-function (as given e.g. in Shoenfield [8] §6.4.)

Suppose that, as in the hypothesis of Theorem 2, we assume that for every k

$$
\mathbf{N} \models \exists z_{1} \ldots \exists z_{n_{k}}\left[\phi\left(k, n_{k}, z_{1}\right) \wedge \widehat{j \leq k} \phi_{j}\left(z_{1}, \ldots, z_{n_{j}}\right)\right]
$$

We now construct the functions $\left\{h_{j}\right\}$ of Theorem 2 with greater care. For each k, we choose the sequence $a_{k 1}, \ldots, a_{k n_{k}}$ to be the least sequence satisfying

$$
\phi\left(k, n_{k}, z_{1}\right) \wedge \widehat{j \leq k}^{\phi_{j}}\left(z_{1}, \ldots, z_{n_{j}}\right)
$$

in \mathbf{N}. The precise measure of what we mean by least is not critical, but we shall take it to mean that the largest element of $a_{k 1}, \ldots, a_{k n n_{k}}$ is a minimum for all possible choices of $a_{k 1}, \ldots, a_{k n n_{k}}$ satisfying the above formula. We shall henceforth assume by appropriate re-labeling that $a_{k 1}<a_{k 2}<\ldots$ $<a_{k n_{k}}$, so that $a_{k n_{k}}$ is the minimal element. We now claim that

$$
\mathscr{F} \mid D \models \neg \forall k \exists n \exists z_{1} \ldots \exists z_{n_{k}}\left[\phi\left(k, n, z_{1}\right) \wedge \widehat{\sum_{j \leq k}} \phi_{j}\left(z_{1}, \ldots, z_{n_{j}}\right)\right]
$$

or, more precisely,

$$
\mathscr{F} / D \models \neg \forall k \exists n \exists z \gamma(k, n, z) .
$$

Since $\mathbf{N} \models \forall k \exists z \gamma\left(k, n_{k}, z\right)$ we have obtained a true arithmetical statement which is false in \mathscr{F} / D. Note that it follows from Theorem 2 that for all $k \in \mathbf{N}$

$$
\mathscr{F} \mid D \models \exists n \exists z \gamma(k, n, z) .
$$

Theorem 3. $\mathscr{F} / D \vDash \neg \forall k \exists n \exists z \gamma(k, n, z)$.
Proof: Assume that on the contrary

$$
\mathscr{F} \mid D \vDash \forall k \exists n \exists z \gamma(k, n, z) .
$$

Choose $k=\mathbf{1}^{*}$. Then there exist $r, g \in \mathscr{F}$ such that

$$
\mathscr{F} \mid D \models \gamma\left(\mathbf{1}^{*}, r^{*}, g^{*}\right) .
$$

By the Corollary to Theorem 1 we have for an infinite set t of k 's (lying in the ultrafilter D)

$$
\begin{equation*}
\mathbf{N} \models \gamma(k, r(k), g(k)) \tag{1}
\end{equation*}
$$

Now since $\left.\beta(r, g) \leqslant r^{1}\right) \in \mathscr{F}$, there exists an i such that

$$
\beta(r, g)<h_{i} .
$$

$\left.{ }^{1}\right)$ See Shoenfield [8] § 6.4.

Choose $k>i$ lying in t. Then $h_{i}<h_{k}$, so that

$$
g_{r(k)}(k)=\beta(r(k), g(k))<h_{k}(k)=a_{k n_{k}} .
$$

But by (1) the sequence

$$
g_{1}(k), \ldots, g_{r(k)}(k)
$$

satisfies the above formula. This contradicts the minimality of $a_{k n_{k}}$.

III. Peano arithmetic and the Stability Condition

Theorem 1 suffices to construct a non-standard model of a theory of arithmetic in which all the axioms are expressed by limited formulas. The induction axioms of Peano arithmetic however involve arbitrary elementary formulas. To deal with this problem we shall associate with each formula $\phi(y)$ of arithmetic a limited formula $\left.\phi(y ; z)^{1}\right)$ called the limited associate of $\phi(y)$.

We assume that $\phi(y)$ has been reduced to prenex normal form. To obtain the formula $\phi(y ; z)$ we replace each quantifier $Q x_{i}$ in $\phi(y)$ by the bounded quantifier $Q x_{i}<z_{i}$. The bounding variables z_{k} are to be distinct from the variables occurring in $\phi(y)$ and also distinct from each other.

Although Theorem 1 allows us to prove the validity of limited associates of the Peano axioms in the model \mathscr{F} / D, we need a provision for inferring from this the validity of the Peano axioms themselves in \mathscr{F} / D.

To obtain the desired result it would suffice to show that for some suitable vector h in $\mathscr{F}, \mathscr{F} / D \models \hat{\phi}\left(y ; h^{*}\right)$ implies $\mathscr{F} / D \models \phi(y)$. However, if we consider the case where $\phi(y)$ is $(\forall x)(y \neq x)$, we find $\mathscr{F} \mid D \models \widehat{\phi}\left(h^{*}, h^{*}\right)$ but $\mathscr{F} \mid D \vDash \neg \phi\left(h^{*}\right)$. This example shows that we must restrict the range of y, i.e. require that for all $f<h, \mathscr{F} / D \models \hat{\phi}\left(f^{*}, h^{*}\right)$ implies $\mathscr{F} / D \equiv \phi\left(f^{*}\right)$. To prove $\mathscr{F} / D \models \phi\left(f^{*}\right)$ for all f in \mathscr{F} it thus suffices to construct an increasing sequence $\left\{h_{i}\right\}$ in \mathscr{F}, cofinal in \mathscr{F}, such that for all i, j with $i<j^{2}$) and all $f \in \mathscr{F}$ with $f<h_{i}$,

[^1]\[

$$
\begin{equation*}
\mathscr{F} / D \models \hat{\phi}\left(f^{*} ; h_{j}^{*}\right) \text { if and only if } \mathscr{F} / D \models \phi\left(f^{*}\right) . \tag{1}
\end{equation*}
$$

\]

Now the equivalence (1) refers to a formula $\phi(y)$ with unbounded quantifiers and so is not a tractable condition to handle via Theorems 1 and 2 . We shall accordingly replace (1) by an equivalent condition which refers only to limited formulas. To see what this condition is consider the case where $\phi(y)$ is a formula of the form $(\forall x) \psi(x, y)$, where ψ is quantifier free. Suppose that for some i, j with $i<j$ and all $f \in \mathscr{F}$ with $f<h_{i}$ we have

$$
\begin{gathered}
\mathscr{\mathscr { F }} / D \models \hat{\phi}\left(f^{*} ; h_{j}^{*}\right) \\
\text { i.e. } \quad \mathscr{F} / D \models\left(\forall x<h_{j}^{*}\right) \psi\left(f^{*}, x\right)
\end{gathered}
$$

If condition (1) holds then

$$
\mathscr{F} \mid D \vDash(\forall x) \psi\left(f^{*}, x\right)
$$

and hence

$$
\mathscr{F} / D \vDash\left(\forall x<h_{j^{\prime}}^{*}\right) \psi\left(f^{*}, x\right)
$$

for all $j^{\prime}>i$.
Thus, for condition (1) to hold it is necessary for the truth value of the limited formula $\hat{\phi}(y ; z)$ to eventually stabilize. We formulate this condition as follows.

We shall assume for the rest of the paper that the sequence $h_{j}=\left\langle h_{j_{1}}, \ldots, h_{j_{n}}\right\rangle$ substituted for the bounding variables $z=\left\langle z_{i_{1}}, \ldots, z_{i_{n}}\right\rangle$ in the limited formula $\psi(y ; z)$ is an increasing sequence (i.e. $r<s$ implies $j_{r}<j_{s}$ and hence $h_{j_{r}}<h_{j_{s}}$). Thus, the smaller the scope of the bounded quantifier $\left(Q x_{i_{r}}<z_{i_{r}}\right)$ in $\psi(y ; z)$ the larger the substituted element $h_{j_{r}}^{*}$ in the sequence $h_{j}^{*}=\left\langle h_{j_{1}}^{*}, \ldots, h_{j_{n}}^{*}\right\rangle$.

Stability Condition. For every limited formula $\psi(y ; z)$ and for all i, j, j^{\prime} with $i<j, i<j^{\prime}$

$$
\mathscr{F} / D \models\left(\forall y<h_{i}\right)\left(\psi\left(y ; h_{j}^{*}\right) \leftrightarrow \psi\left(y ; h_{j^{\prime}}^{*}\right)\right) .
$$

We shall now prove that this condition suffices to establish (1) (c.f. [3] Proposition 2.2).

Lemma 1. Assume that $\left\{h_{i}\right\}$ is an increasing cofinal sequence in \mathscr{F} which satisfies the Stability Condition. Then for all $i<j$

$$
\mathscr{F} / D \models\left(\forall y<h_{i}^{*}\right)\left(\phi\left(y ; h_{j}^{*}\right) \Leftrightarrow \hat{\phi}\left(y ; h_{j}^{*}\right)\right) .
$$

Proof: We shall assume that $\phi(y)$ is already in prenex normal form. We proceed by induction on the number of quantifiers occurring in $\phi(y)$. For quantifier-free formulas the equivalence is clearly true.

Now assume that $\phi(y)$ has the form $\left(\exists x_{1}\right) \psi\left(x_{1}, y\right)$. Then $\hat{\phi}(y ; z)$ has the form $\left(\exists x_{1}<z_{1}\right) \hat{\psi}\left(x_{1}, y ; z_{2}, \ldots, z_{e}\right) . \mathscr{F} / D \vDash \phi\left(f^{*}\right)$ if and only if $\mathscr{F} \mid D \vDash \widehat{\psi}\left(b^{*}, f^{*}\right)$ for some $b \in \mathscr{F}$.

By induction it follows that $\mathscr{F} / D \models \phi\left(f^{*}\right)$ if and only if \mathscr{F} / D $\vDash \hat{\psi}\left(b^{*}, f^{*}, h_{j_{2}}^{*}, \ldots, h_{j_{e}}^{*}\right)$ for all j_{2}, \ldots, j_{e}, with $i<j_{2}<\ldots<j_{e}$. By cofinality $b<h_{j_{1}}$, for some $j_{1}>i$. Hence
$\mathscr{F} / D \models \phi\left(f^{*}\right)$ if and only if $\mathscr{F} / D \models\left(\exists x_{1}<h_{j_{1}}^{*}\right) \hat{\psi}\left(x_{1}, f^{*} ; h_{j_{2}}^{*} \ldots h_{j_{e}}^{*}\right)$ i.e. $\mathscr{F} \mid D \models \hat{\phi}\left(f^{*} ; h_{j_{0}}^{*}\right)$, where $j_{o}=\left\langle j_{1}, j_{2}, \ldots, j_{e}\right\rangle$.

By the Stability Condition, $\mathscr{F} / D \models \phi\left(f^{*} ; h_{j_{0}}^{*}\right)$ for this $j_{o}>i$ is equivalent to $\mathscr{F} / D \models \hat{\phi}\left(f^{*} ; h_{j}^{*}\right)$ for all $j>i$, completing the induction step.

Theorem 4. Assume that $\left\{h_{i}\right\}$ is a cofinal sequence in \mathscr{F} with h_{i}^{2} $<h_{i+1}$ which obeys the Stability Condition. Then \mathscr{F} / D is a model of the Peano axioms.

Proof. The axioms $\forall x \forall y \exists z \sigma(x, y, z)$ and $\forall x \forall y \exists z \pi(x, y, z)$ are valid because \mathscr{F} is closed under + and . .

Every other non-induction Peano axiom ϕ is a \prod_{1}^{0}-statement. Thus $\mathbf{N} \models \hat{\phi}(z)$. By Theorem $1, \mathscr{F} / D \models \hat{\phi}(z)$. Hence $\mathscr{F} / D \models \phi$.

Now let $\phi(y)$ be the induction formula

$$
[\psi(0, y) \wedge(\forall x)(\psi(x, y) \rightarrow \psi(x+1, y))] \rightarrow(\forall x) \psi(x, y)
$$

We may assume that $\psi(x, y)$ is in prenex normal form.
Note that for any formula $\eta(x)$

$$
\mathbf{N} \models[\eta(0) \wedge(\forall x<w)(\eta(x) \rightarrow \eta(x+1))] \rightarrow(\forall x<w) \eta(x) .
$$

Hence, if $\eta(x)$ is a limited formula then Theorem 1 implies that

$$
\mathscr{F} \mid D \models[\eta(0) \wedge(x<w)(\eta(x) \rightarrow \eta(x+1))] \rightarrow(\forall x<w) \eta(x) .
$$

In particular, taking for η the limited associate $\hat{\psi}(x, y ; z)$ of $\psi(x, y)$, we have that

$$
\begin{align*}
F / D \models[\hat{\psi}(0, y ; z) & \wedge(\forall x<w)(\hat{\psi}(x, y ; z) \rightarrow \hat{\psi}(x+1, y ; z)] \\
& \rightarrow(\forall x<w) \hat{\psi}(x, y ; z) \tag{1}
\end{align*}
$$

We now assume that $\mathscr{F} / D \models \psi\left(0, g^{*}\right)$ and $\mathscr{F} / D \models(\forall x)\left(\psi\left(x, g^{*}\right)\right)$ $\left.\rightarrow \psi\left(x+1, g^{*}\right)\right)$ for some vector g of functions in \mathscr{F}.

We have $g<h_{i}$ (i.e. $\max g<h_{i}$) for some i. Choose any j, t with $j>t>i$. By Lemma $1, \mathscr{F} / D \models \psi\left(0, g^{*} ; h_{j}^{*}\right)$. Assume for $x<h_{t}^{*}$ that

$$
\mathscr{F} \mid D \models \hat{\psi}\left(x, g^{*} ; h_{j}^{*}\right) .
$$

By Lemma 1,

$$
\mathscr{F} / D \models \psi\left(x, g^{*}\right) .
$$

Hence,

$$
\mathscr{F} \mid D \vDash \psi\left(x+1, g^{*}\right)
$$

so that, again by Lemma 1 ,

$$
\mathscr{F} \mid D \models \hat{\psi}\left(x+1, g^{*} ; h_{j}^{*}\right) .
$$

Thus, by (1),

$$
\mathscr{F} \mid D \models\left(\forall x<h_{t}^{*}\right) \hat{\psi}\left(x, y^{*} ; h_{j}^{*}\right) .
$$

It follows from Lemma 1 that

$$
\mathscr{F} \mid D \vDash \forall x \psi\left(x, g^{*}\right) .
$$

We have thus proved that the induction formula $\phi(y)$ is valid in \mathscr{F} / D.

It remains for us to construct a suitable sequence $\left\{h_{i}\right\}$ of functions satisfying the Stability Condition. Let $\left\{\psi_{j}\right\}$ be an effective enumeration of all the limited formulas. The Stability and Closure Conditions have the form

$$
\begin{gathered}
\mathscr{F} \mid D \vDash \exists z_{1} \ldots \exists z_{n} \cdots \underbrace{}_{\substack{1 \leq i<j, j^{\prime}<\infty \\
1 \leqq s<\infty}}\left[(\forall z < z _ { i }) \left(\psi_{s}\left(y ; z_{j}\right)\right.\right. \\
\left.\left.\leftrightarrow \psi_{s}\left(y ; z_{j^{\prime}}\right)\right) \wedge z_{j-1}^{2}<z_{j}\right]
\end{gathered}
$$

Now this condition has precisely the form needed for the conclusion of the Saturation Theorem 2. Thus, if we can show that for each k

$$
\begin{gather*}
\mathbf{N} \vDash \exists z_{1} \ldots \exists z_{n_{k}} \underset{\substack{1 \leq i<j, j^{\prime}<n_{k} \\
1 \leq s<k}}{ }\left[(\forall y < z _ { i }) \left(\psi_{s}\left(y ; z_{j}\right)\right.\right. \\
\left.\left.\leftrightarrow \psi_{s}\left(y ; z_{j^{\prime}}\right)\right) \wedge z_{j-1}^{2}<z_{j}\right] \tag{}
\end{gather*}
$$

then we can construct the sequence $\left\{h_{i}\right\}$ and the set \mathscr{F} to satisfy the Stability and Closure Conditions via Theorem 2.

We could now proceed to show that the above condition is indeed satisfied in \mathbf{N} and thus construct a non-standard model of Peano arithmetic. However, our goal is the construction of a mathematically perspicuous model which is independent of the logical formulas. The functions $\left\{h_{i}\right\}$ given by the above condition require the logical calculus in their definition. Accordingly, we shall consider a larger class \mathscr{F} of functions than those defined above, which we shall construct independently of logical formulas. This class will be constructed from combinatorial principles derived from Ramsey's Partition Theorem.

IV. Ramsey-type Theorems

The infinite Ramsey Theorem states that for every partition $P:[\mathrm{N}]^{e}$ $\rightarrow r^{1}$) there exists an infinite subset X of \mathbf{N} such that $P \mid[X]^{e}$ is constant. In these circumstances one says that X is homogeneous for the partition P. This set-theoretic theorem has various combinatorial consequences which are formalizable in elementary arithmetic. One such immediate consequence which we shall prove independent of the Peano axioms is the following.

Proposition 1. Let $P:[N]^{e} \rightarrow r$ be a primitive recursive partition. For every natural number k there exists a finite subset X of \mathbf{N}, with $\# X \geqslant k$ and $\# X \geqslant 2^{2^{\min X}}$, which is homogeneous for the partition P.

In order to apply Theorem 2 we require the construction of a set which is simultaneously homogeneous for several partitions. This is easily done by the infinite Ramsey Theorem. Suppose $P_{1}:[\mathrm{N}]^{e_{1}} \rightarrow r_{1}$ and $P_{2}:[\mathrm{N}]^{e_{2}}$ $\rightarrow r_{2}$ are two partitions. Let X_{1} be an infinite subset of \mathbf{N} homogeneous for P_{1}. Then $P_{2} \mid[X]^{e_{2}}$ is a partition of $\left[X_{1}\right]^{e_{2}}$, and hence there is is an infinite subset X_{2} of X_{1} which is homogeneous for P_{2} (as well as P_{1}). This proof extends immediately to finitely many partitions. A direct consequence is the following generalization of Proposition 1.

Proposition 2. Let $P_{i}:[\mathrm{N}]^{e_{i}} \rightarrow r_{i}, i \leqslant i \leqslant n$ be a set of primitive recursive partitions. For every natural number k there exists a finite subset X of \mathbf{N} with $\# X \geqslant k$ and $\# X \geqslant 2^{2^{\min X}}$, which is simultaneously homogeneous for all the partitions P_{1}, \ldots, P_{n}.

[^2]Proposition 2 may be expressed by a \prod_{2}^{0} formula. First it is clear that we can construct a \sum_{1}^{0}-formula ϕ_{i} that expresses the properties that

1. $\quad P_{i}:[\mathbf{N}]^{e}{ }^{i} \rightarrow r_{i}$ is a primitive recursive partition
2. $z_{1}<z_{2}<\ldots<z_{n_{k}}$
3. $\left\{z_{1}, \ldots, z_{n_{k}}\right\}$ is homogeneous for P_{i}
4. $k \leqslant n_{k}$
5. $2^{2^{z_{1}}} \leqslant n_{k}$

Proposition 2 asserts that for every k

$$
\mathbf{N} \models \exists z_{1} \ldots \exists z_{n_{k}} \widehat{i \leq k} \phi_{i} .
$$

V. Construction of the Model

We now have all the ingredients at hand to construct a non-standard model of Peano arithmetic, and we have only to assemble them according to the specifications of Section II.

Let P_{i} be an effective enumeration of all primitive recursive partitions $P_{i}:[\mathrm{N}]^{e_{i}} \rightarrow r_{i}$. By Proposition 2 we have that for every k

$$
\mathbf{N} \models \exists z_{1} \ldots \exists z_{n_{k}} \widehat{i \leq k} \phi_{i}
$$

where ϕ_{i} is the \sum_{1}^{0}-formula of Section IV expressing the conditions (1)-(5) satisfied by the partition P_{i}.

Following the prescription given in Section III we let $a_{k n_{k}}$ be the smallest number such that $a_{k_{1}}, \ldots, a_{k n_{k}}$ is an increasing sequence satisfying the formula $\widehat{j \leq k} \phi_{j}$. Now we define the functions h_{j} by

$$
h_{0}(k)=n_{k} \quad \text { for every } k
$$

and for $j>0$

$$
h_{j}(k)= \begin{cases}a_{k j} & \text { for } j \leqslant n_{k} \\ h_{j-1}(k)^{2} & \text { for } j>n_{k}\end{cases}
$$

Let $\mathscr{F}=\left\{f \mid f \leqslant h_{j}\right\}$.
Since $\mathbf{1} \leqslant h_{o}$ the function $\mathbf{1}$ is automatically in \mathscr{F}.
By Theorem 2 the sequence $\left\{h_{j}\right\}$ satisfies $\widehat{\wedge_{j}} \phi_{j}$ in \mathscr{F} / D. We now prove that this implies that the sequence $\left\{h_{j}\right\}$ satisfies the Stability and

Closure Conditions in \mathscr{F} / D. As we saw in Section III it suffices for this purpose to show that for each k

$$
\begin{gather*}
\mathbf{N} \vdash \exists z_{1} \ldots \exists z_{n_{k}}{\widehat{\substack{1 \leq j, j^{\prime}<n_{k} \\
1 \leq s<k}}\left[(\forall y < z _ { i }) \left(\psi_{s}\left(y ; z_{j}\right)\right.\right.}_{\left.\leftrightarrow \psi_{s}\left(y ; z_{j^{\prime}}\right) \wedge z_{j-1}^{2}<z_{j}\right]}
\end{gather*}
$$

Let t_{i} be the length of the sequence y in $\psi_{i}(y ; z)$. Define the partitions $T:[\mathbf{N}]^{2} \rightarrow 2, Q_{i}: \mathbf{N} \rightarrow t_{i}^{2}+1$, and $S_{i}:[\mathbf{N}]^{2 e+1} \rightarrow 2$ by :

$$
\begin{aligned}
& T(a, b)= \begin{cases}1 & \text { if } a^{2}<b \\
0 & \text { if not }\end{cases} \\
& Q_{i}(a)=\min \left(a,\left[t_{i} \log _{2} a\right]+1\right)
\end{aligned}
$$

and for $a \in \mathbf{N}, c, c^{\prime} \in[\mathbf{N}]^{e}$

$$
S_{i}\left(a, c, c^{\prime}\right)= \begin{cases}1 & \text { if }(\forall y<a)\left(\psi_{i}(y ; c) \leftrightarrow \psi_{i}\left(y ; c^{\prime}\right)\right) \\ 0 & \text { if not. }\end{cases}
$$

The partitions T, Q_{i}, and S_{i} are clearly primitive recursive since $\psi_{i}(y ; z)$ is a limited formula. Hence $T, Q_{1}, \ldots, Q_{k}, S_{1}, \ldots, S_{k}$ occur in the sequence $\left\{P_{i}\right\}$. Thus by looking sufficiently far in the sequence we can find a set $X_{k}=\left\{a_{k_{1}}, \ldots, a_{k n_{k}}\right\}$ which is homogeneous for $T, Q_{1}, \ldots, Q_{k}, S_{1}, \ldots, S_{k}$ with $n_{k} \geqslant k, 2^{2^{a_{k 1}}}$.

Since $a_{k n_{k}}>a_{k_{1}}^{2}, T\left(a_{k 1}, a_{k n_{k}}\right)=1$. Hence, by homogeneity,

$$
T(a, b)=1, \quad \text { i.e. } \quad a^{2}<b
$$

for all $a<b$ in X_{k}.
Since $\# X>1$, and X_{k} is homogeneous for $Q_{i}, a_{k 1} \geqslant t_{i} \log _{2} a_{k 1}$.
The number of sequences of numbers $<a_{k 1}$ of length t_{i} is $<a_{k 1}^{t_{i}}$. The number of distinct sequences of truth values of length $a_{k 1}^{t_{i}}$ is $<2^{a_{k 1}^{t_{i}}}$. Now $n_{k}>2^{2^{a_{k 1}}}>2^{{ }^{t_{k}}{ }_{k 1}}$ since $a_{k 1} \geqslant t_{i} \log _{2} a_{k 1}$. Thus there are distinct $c, c^{\prime}>a$ in. X_{k} such that

$$
\left(\forall y<a_{k 1}\right) \quad\left(\psi_{i}(y ; c) \leftrightarrow \psi_{i}\left(y ; c^{\prime}\right)\right),
$$

i.e. $S_{i}\left(a_{k 1}, c, c^{\prime}\right)=1$.

By homogeneity

$$
S_{i}\left(a, b, b^{\prime}\right)=1 \quad \text { for all } \quad a<b, b^{\prime} \text { in } X_{k}
$$

proving (*).

We have thereby shown that \mathscr{F} / D is a model of the Peano axioms. Since $a_{k n_{k}}$ was chosen minimal, Proposition 2 is false in \mathscr{F} / D, and hence independent of the Peano axioms.

Proposition 1 is also false in \mathscr{F} / D. In fact it is provable in Peano arithmetic that Proposition 1 implies Proposition 2. This is a consequence of the following lemma, provable in Peano arithmetic (c.f. Lemma 2.9 in [3]).

Lemma 2. Let $P_{i}:[\mathbf{N}]^{e}{ }^{i} \rightarrow r_{i}, 1 \leqslant i \leqslant n$, be n partitions. There is a partition $P:[\mathbf{N}]^{e} \rightarrow r$ such that for all subsets H of \mathbf{N} of cardinality $>e$, H is homogeneous for P if and only if H is homogeneous for all the P_{i}.

We may also obtain a purely finitary combinatorial principle which is false in our model.

Proposition 3. For all natural numbers e, r, and k there exists an N, such that for all partitions $P:[N]^{e} \rightarrow r$ there exists a subset X of N, with $\# X \geqslant k$ and $\# X \geqslant 2^{2^{\min X}}$, which is homogeneous for P.

This result follows immediately from the infinite Ramsey Theorem by an application of König's Lemma. If we drop the condition that $\# X \geqslant 2^{2^{\min x}}$, then we obtain the usual finite Ramsey Theorem. Ramsey [11] gave a proof of the latter theorem which is formalizable in Peano arithmetic. Proposition 3 directly yields Proposition 1, for if $P:[\mathbf{N}]^{e} \rightarrow r$ is a partition and k is a number then by considering the partition $P \mid[N]^{e}$, where N is the number provided by Proposition 3 we obtain the required homogeneous set X for $P \mid[N]^{e}$ and hence for P. This proof may be carried out in Peano arithmetic. Thus, Proposition 3 is false in our model and independent of the Peano axioms.

VI. A Simpler Model

The condition in Proposition 1 that $\# X \geqslant 2^{2^{\min X}}$ can be simplified and so yield a simpler sequence $\left\{h_{i}\right\}$ of functions which define the model \mathscr{F} / D. In this section we describe such a model by using a combinatorial consequence of Ramsey's Theorem wich is closer to the proposition proved independent in [3].

Proposition 4. Let $P:[\mathbf{N}]^{e} \rightarrow r$ be a primitive recursive partition. For every k there exists a finite subset X of \mathbf{N}, with $\# X \geqslant k$ and $\# X$ $\geqslant \min X$, which is homogeneous for the partition P.

Proposition 4 implies Proposition 1 via the following result, the proof of which is the same as the proof of Lemma 2.14 of [3].

Lemma 3. Let $P:[\mathbf{N}]^{e} \rightarrow r(e \geqslant 2)$ be a partition. There is a partition $P^{*}:[\mathrm{N}]^{e} \rightarrow r^{*}$ (where r^{*} depends only on m, e, and r) such that if X^{*} is a finite subset of \mathbf{N}, homogeneous for P^{*} with $\# X^{*} \geqslant e+1$ and $\# X$ $\geqslant \min X$, then the set $X=\left[\log _{2} \log _{2}\right]\left(X^{*}\right)$ is homogeneous for P, and

$$
\# X \geqslant e+1 \quad \text { and } \quad \# X \geqslant 2^{2 \min X}
$$

Moreover, if P is a primitive recursive partition, then P^{*} can be chosen to be primitive recursive. ${ }^{1}$)

Since this proof that Proposition 4 implies Proposition 1 may be carried out in Peano arithmetic, it follows that Proposition 4 is also false in our model \mathscr{F} / D. However, our aim here is not merely to give a simple independent statement but to construct a simpler model for Peano arithmetic. Once again we actually use a version of the combinatorial principle which applies to several partitions. The following result is implied by Proposition 4 in Peano arithmetic.

Proposiion 5. Let $P_{i}:[\mathrm{N}]^{e} \rightarrow r_{i}, 1 \leqslant i \leqslant n$, be a set of primitive recursive partitions. For every k there exists a finite subset of \mathbf{N}, with $\# X \geqslant k$ and $\# X \geqslant \min X$, which is simultaneously homogeneous for all the partitions P_{1}, \ldots, P_{n}.

We now construct a non-standard model via Proposition 5. Let $\left\{P_{i}\right\}$ again be an effective enumeration of all the primitive recursive partitions $P_{i}:[\mathrm{N}]^{e}{ }^{i} \rightarrow r_{i}$. Let $c_{k 1}, \ldots, c_{k n_{k}}$ be an increasing sequence with $c_{k n_{k}}$ the least number such that $c_{k 1}, \ldots, c_{k n_{k}}$ is homogeneous for all P_{1}, \ldots, P_{k}, with $c_{k 1} \leqslant n_{k}$ and $k \leqslant n_{k}$. Define the functions g_{j} by

$$
g_{0}(k)=n_{k} \quad \text { for every } k
$$

and for $j>0$

$$
g_{j}(k)= \begin{cases}c_{k j} & \text { for } j \leqslant n_{k} \\ g_{j-1}(k)^{2} & \text { for } j>n_{k}\end{cases}
$$

Let $\mathscr{F}=\left\{f \mid \exists j f \leqslant g_{j}\right\}$.
We shall show that \mathscr{F} / D is a model of Peano arithmetic by proving that there is an increasing sequence $\left\{h_{j}\right\}$ which lies in and is cofinal with \mathscr{F} and which satisfies the Stability and Closure Conditions. We set

$$
h_{j}=\left[\log _{2} \log _{2} g_{j}\right] .
$$

[^3]Since $h_{j}<g_{j}, h_{j} \in \mathscr{F}$. It follows from Lemma 2.13 of [3] that there is a primitive recursive partition R such that if X is homogeneous for R, with $\# X \geqslant \min X$ and $\# X \geqslant 3$, then for every $x, y, \in X, x<y$ implies $2^{2^{x}}<y$. Since this partition appears in the enumeration $\left\{P_{i}\right\}$ at some point k, it follows that, for all $i \geqslant k$ and $j<n_{i}, 2^{2^{g_{j}(i)}}<g_{j+1}(i)$. Thus, if for a given j we choose an $m \geqslant k$ such that $n_{m} \geqslant j$, then, for all $i \geqslant m, 2^{2^{g_{j}(i)}}<$ $g_{j+1}(i)$. For every $i<m$ choose an s_{i} with $2^{2^{g_{j}(i)}}<g_{s_{i}}(i)$. Let

$$
s=\max \left(s_{1}, \ldots, s_{m-1}, j+1\right)
$$

Then

$$
2^{2^{g_{i}}}<g_{s} .
$$

Thus $h_{s}=\left[\log _{2} \log _{2} g_{s}\right]>g_{j}$, proving that $\left\{h_{i}\right\}$ is cofinal in \mathscr{F}.
For each partition P_{k} in the sequence $\left\{P_{i}\right\}$ there exists another partition $P_{t}\left(=P_{k}^{*}\right)$ satisfying the conditions of Lemma 3. By the definition of the functions g_{j}, the set $\left\{g_{1}(t), \ldots, g_{n_{t}}(t)\right\}$ is homogeneous for P_{t} and $n_{t} \geqslant t$, $n_{t} \geqslant g_{1}(t)$. Hence, by Lemma 3, the set

$$
\left\{h_{1}(t), \ldots, h_{n_{t}}(t)\right\}=\left\{\left[\log _{2} \log _{2} g_{1}(t)\right], \ldots,\left[\log _{2} \log _{2} g_{n_{t}}(t)\right]\right\}
$$

is homogeneous for P_{k} and $n_{t} \geqslant 2^{2^{h_{1}(t)}}$. Thus, as in the previous section, the sequence $\left\{h_{j}\right\}$ fulfills the conditions which ensure the satisfaction of the Stability and Closure Conditions. This proves that \mathscr{F} / D is a model of the Peano axioms. Once again, since $c_{k n_{k}}$ was chosen as minimal, it follows that Proposition 5, and hence Proposition 4, is false in \mathscr{F} / D, and therefore independent of Peano arithmetic.

As before we may formulate a finite version of this combinatorial principle.

Proposition 6. For every e, r, and k there exists an N such that for every partition $P:[N]^{e} \rightarrow r$ there exists a subset X of N, with \# $X \geqslant k$ and $\# X \geqslant \min X$, which is homogeneous for P.

Again it is provable in Peano arithmetic that Proposition 6 implies Proposition 4, so that Proposition 6 is false in our model. Proposition 6 was first proved independent of Peano arithmetic in [3] by showing that it implies the consistency of Peano arithmetic and then applying Gödel's Theorem.

Let $C_{k}=\left\{i \mid i \leqslant c_{k n_{k}}\right\}$. The model \mathscr{F} / D is an initial segment not only of the ultrapower \mathbf{N}^{I} / D but also of the smaller ultraproduct $\prod_{k \in \mathbf{N}} C_{k} / D$.

This indicates that the function C given by $C(k)=c_{k n_{k}}$ is a very rapidly growing function. In fact the function C majorizes every recursive function which is a provably total function in Peano arithmetic.

Theorem 5. Let f be a recursive function. Let ψ be an elementary statement expressing the condition that f is a total function. If ψ is provable in Peano arithmetic, $f(k)<C(k)$ for all sufficiently large k.

Proof. Suppose $t=\{k \mid f(k) \geqslant C(k)\}$ is infinite. Let D be a nonprincipal ultrafilter such that $t \in D$. Then $f^{*} \geqslant C^{*}$. On the other hand, $f^{*}=f\left(\mathbf{1}^{*}\right) \in \mathscr{F} / D$, so that $f^{*}<C^{*}$, a contradiction.

It follows a fortiori that if N is the smallest integer to satisfy Theorem 5 then this function N also majorizes every provably total recursive function (c.f. Theorem 3.2 in [3]).

We mentioned in the introduction that a by-product of our construction is a new proof of Specker's theorem that there exists a recursive partition with no recursively enumerable infinite homogeneous set. In fact we may obtain the stronger theorem that for each $e \geqslant 2$, there exists a primitive recursive partition: $P:[\mathrm{N}]^{e} \rightarrow 2$ such that P has no infinite homogeneous set in \sum_{e}^{0} (c.f. Jockusch [10], Theorem 5.1). We outline the proof of this result. Let $\phi(y)$ be any formula. As in Section III, the limited associate $\hat{\phi}(y ; z)$ of $\phi(y)$ defines a partition $P:[\mathbf{N}]^{e} \rightarrow 2$ such that every sequence $\left\{b_{i}\right\}$ of natural numbers homogeneous for P satisfies the Stability Condition for $\hat{\phi}(y ; z)$ in \mathbf{N}. Hence, for any vector a in $\mathbf{N} \phi(a)$ holds in \mathbf{N} if and only if $\hat{\phi}(a ; b)$ does. It follows that the set $\{a|\mathbf{N}|=\phi(a)\}$ is recursive in the set $\left\{b_{i}\right\}$. Thus the set $\left\{b_{i}\right\}$ is not in \sum_{e}^{0}.

VII. Variations

We conclude with a series of remarks on various modifications of our construction.
(a) It is easily proved that if \mathscr{F} is closed under $<$ and contains $\mathbf{1}$, then \mathscr{F} / D is non-denumerable, for every non-principal ultrafilter D. Thus, this construction leads only to non-denumerable models. However, a slight variation of the basic construction yields denumerable models. Note that in the proof of Theorem 1 the function g is primitive recursive in f. It follows that we may define $\mathscr{F}=\left\{f \mid \exists j f \leqslant h_{j}\right.$ and f is primitive recursive
in $\left.h_{j}\right\}$. The equivalence $f \equiv g$ in \mathscr{F} defined by a non-principal ultrafilter D, $\operatorname{viz}\{i \mid f(i)=g(i)\} \in D$, may now be directly defined by a \prod_{2}^{0}-formula. This shows how to construct \prod_{2}^{0}-models of Peano arithmetic in the form of restricted ultrapowers.
(b) We may reduce the size of our models even further. Since in the proof of Theorem 1 the function g is defined from f by means of a limited formula g is even elementary recursive in f in the sense of Kalmar (see Kleene [11] §57 for a definition of elementary recursive functions). Thus, we may take \mathscr{F} to consist of all functions which are elementary recursive in and majorized by a function h_{j}, for some j. Moreover, since the functions P_{i} from which the functions h_{j} are derived (Section IV) are defined by means of limited formulas, we may also take our sequence of partitions $\left\{P_{i}\right\}$ to consist of elementary recursive partitions rather than primitive recursive partitions.
(c) It is possible to give the ultrapower a more algebraic appearance by switching from models of \mathbf{N} to models of the ring \mathbf{Z} of all integers. Let T be an axiom system for an ordered ring in which the non-negative elements obey the Peano axioms. Define the functions h_{j} as in Section V (or the g_{j} of Section VI). Let \mathscr{F} be the ring of all functions $f: \mathbf{N} \rightarrow \mathbf{Z}$ such that, for some $j,|f| \leqslant h_{j}$. It is easily seen, as in Scott [6], that the ultrafilters are in one-one correspondence $D \leftrightarrow P_{D}$, with the minimal prime ideals P_{D} in \mathscr{F}, such that $\mathscr{F} / D=\mathscr{F} / P_{D}$. Principal ultrafilters correspond to principal prime ideals. Thus, we may construct non-standard models of \mathbf{Z} by dividing the ring \mathscr{F} by a non-principal minimal prime ideal P in \mathscr{F}. A non-standard model of \mathbf{N} may then be selected as the set of those elements in \mathscr{F} / P which are representable as the sum of four squares.
(d) It is possible to by-pass the Stability Condition in defining a nonstandard model \mathscr{F} / D. It was condition (1) of Section III that assured us that \mathscr{F} / D was a model of the axioms. We may define the family \mathscr{F} to guarantee that condition (1) holds in a direct manner. We outline this approach now. Reduce the conjunction of the first k axioms to prenex normal form ϕ_{k}. We may associate with ϕ_{k} a sequence $f_{k 1}, \ldots, f_{k n_{k}}$ of Skolem functions in the usual manner. For each k define the sequence of natural numbers $a_{k 1}, \ldots, a_{k k}$ by induction. Let

$$
a_{k 1}=k+1
$$

and, for $1<j<k$, let
$a_{k, i+1}=$ any number greater than $a_{k j}^{2}$ and the values of $f_{k 1}, \ldots, f_{k n_{k}}$ as the arguments range over values $<a_{k j}$.

We now define the functions h_{j} as before by

$$
h_{j}(k)= \begin{cases}a_{k j} & \text { for } j \leqslant k \\ h_{j-1}^{2}(k) & \text { for } j>k\end{cases}
$$

A simple induction argument now shows that (1) holds for the axioms and hence that \mathscr{F} / D is a model of Peano arithmetic. If as in Theorem 3 the $a_{k k}$ is chosen as the least number so that the sequence $a_{k 1}, \ldots, a_{k k}$ satisfies the above conditions then a true statement which is false in \mathscr{F} / D may be constructed via the method of Theorem 3.

The disadvantage of this direct approach is that the model \mathscr{F} / D constructed in this manner is dependent in its definition upon logical formulas and so is not as purely an algebraic construction. Moreover the independent statement which results has no simple combinatorial expression as have those given in Sections IV, V, and VI. Note that in this approach we have not used the property peculiar to Peano's axioms concerning the limited associates of the axioms which is expressed in the proof of Theorem 4. This shows that the method outlined here applies to any recursively enumerable set of axioms for arithmetic which is sufficient to allow the coding required for Theorem 3. Thus, we may prove a general form of Gödel's Incompleteness Theorem without the use of self-reference techniques. At the same time the very generality of the approach outlined here indicates that there is no hope by this method to avoid the use of metamathematics. It is only the above-mentioned property of the Peano axioms vis-à-vis limited formulas that allowed us the latitude to define suitable functions h_{j}, and hence the model \mathscr{F} / D, by means of a combinatorial principal without reference to logical formulas.

Note (Added in proof)

The first sentence of the section entitled "Added in proof" of Kochen and Kripke [12] p. 294, which was inserted by the second author, is not correct and should be deleted in favor of the following corrected version. The first author proposed that the Paris-Harrington statement is false in an initial segment of any non-standard model, and this was verified jointly by the two authors. Adapting this idea, the second author defined the set \mathscr{F} of functions which result in the model of Section V. The first author subsequently found the new set \mathscr{F} of functions which define the simpler model of Section VI.

The devices used in Section III are an adaptation of the ideas in ParisHarrington [3].

The approach outlined in (d) of Section VII is due to the second author and leads to a concept of 'satisfying' formulas by finite sequences called fulfillability wich leads to model-theoretic proofs of many theorems (such as Gödel's and Rosser's theorems) usually proved proof-theoretically and to other applications to the model theory and proof theory of arithmetic. It will be developed in a subsequent paper of the second author.

BIBLIOGRAPHY

[1] McDowell, R. und E. P. Specker. Modelle der Arithmetik. Infinistic Methods. Proc. Symp. on Foundations of Math. Warsaw (1959) Perg. Press, 257-263.
[2] Specker, E. P. Ramsey's theorem does not hold in recursive set theory. Logic Colloquium (1969), 439-442.
[3] Paris, J. and L. Harrington. A mathematical incompleteness in Peano arithmetic. Handbook of Mathematical Logic, North-Holland (1977), 1133-1142.
[4] Kirby, L. Initial Segments of Models of Arithmetic. Ph.D. Thesis (1977), Manchester University.
[5] Paris, J. Some independence results for Peano arithmetic. JSL (1979).
[6] Scott, D. On constructing models of arithmetic. Infinistic Methods, Proc. Symp. in Foundations of Math., Warsaw (1959), Perg. Press, 235-255.
[7] Sкolem, Th. Über die Nicht-Characterisiebarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen. Fund. Math. 23 (1934).
[8] Shoenfield, J. Mathematical Logic. Addison-Wesley, 1967.
[9] Kleene, S. Introduction to Metamathematics. Van Nostrand, 1962.
[10] Jockusch, C., Jr. Ramsey's Theorem and recursion theory. JSL (1972), 269-280.
[11] Ramsey, F. P. On a problem in formal logic. Proc. London Math. Soc. 30 (1930), 264-286.
[12] Kochen, S. and S. Kripke. Non-standard models of Peano arithmetic. Logic and algorithmic, Monographie de l'Enseignement Mathématique No 30 , Université de Genève, 1982, 275-295.
(Reçu le 9 avril 1981)

Simon Kochen
Saul Kripke
Princeton University
Department of Mathematics
Princeton, N.J. 08540
USA

[^0]: * This article has already been published in Logic and Algorithmic, an international Symposium in honour of Ernst Specker, Zürich, February 1980. Monographie de L'Enseignement Mathématique No 30 , Genève 1982.

[^1]: ${ }^{1}$) Here and later y and z denote vectors of variables.
 ${ }^{2}$) Here and later j denotes a vector $\left\langle j_{1}, \ldots, j_{n}\right\rangle, i<j$ means $i<\min j$, and h_{j} denotes the vector $\left\langle h_{j_{1}}, \ldots, h_{j_{n}}\right\rangle$.

[^2]: ${ }^{1}$) We identify the number r with the set of all natural numbers $<r$.

[^3]: ${ }^{1}$) Here, as is customary, $[x]$ is the greatest integer $\leqslant x$.

