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BOOLEAN ALGEBRAS WITH DISTINGUISHED SUBALGEBRAS

1. THE SHEAF REPRESENTATION OF BOOLEAN ALGEBRA EXTENSIONS

Let if be any language for first-order predicate logic. Suppose X is

a non-empty set and for every p e X we have an if-structure 3%p (Bp, ...);

put S u Bp. Suppose cp (xx xn) is an if-formula, u £ X and
peX

fu ...,/„ : u -> S are such that ft (p) e Bp for 1 < i < « and p e u. Then let

Il <P [fi-fn]II {peu\äSp\=cpUi(p) Cp)]} •

We may think of | <p [f\ .../„] || £ Xas being a (Boolean) truth value

of cp [/i .../„] in the power set of X.

A sheaf of if-structures is a sequence

y (S, TT, X, II)

such that a) S and X are topological spaces and n : S -> X is a continuous

open local homeomorphism from S onto X, b) p. is a function assigning to
each pe X an if-structure âSp (2?p, such that the Bp are pairwise

disjoint, S u and 7i (j) p iff s e c) for every open subset u
peX

of X and continuous fl9 : u -> S satisfying (^) e Bp for peu and

every atomic if-formula cp (xx xn), || cp [f± .../„] || is an open subset of u.

The if-structure £$p is called the stalk of Sf over p. — Let, if is a

sheaf of ^-structures, T (£?) be the set of all continuous functions/ : X -» S.

satisfying/(p) e Bp for p g X (the set of "global sections" of 9"). So F (S?)

is, if non-empty, (the underlying set of) a substructure of the product
structure @p, hence an if-structure.

peX

For the rest of the paper, let if 0, 1, £/} where U is a

unary predicate. We indicate how, for a given BA extension (.B, A), B may
be represented by T (Sf) where 9* is a sheaf of if-structures over a Boolean

space. We omit most of the proofs which are easy and entirely analoguous
to well-known representation theorems for lattices over Boolean spaces.
Let X be the Stone space of A, i.e. the set of all ultrafilters of A with the
usual topology. For p e X, let < p > be the filter of B generated by p. Let
7ip : B —> B/ < p > Bp be the canonical epimorphism. So Bp is a BA
with at least two elements. For p,qeX and p ^ q,Bp and Bq are disjoint.
Let S u Bp and n : S -» X be defined as stated in b) above. Let,

peX

for pe X9 p (p) be the if-structure (Bp, {0, 1}). For u c X open and
be B, let Mub {tzp (b) | p e u). The set of these Mub constitutes a base
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for a topology of S, and this makes SP (6", 7r, X, ju) a sheaf of S£-structures.

Furthermore, for b e B, ob : X S defined by ob (p) np (b) is a global
section of SP and

(j : B -> r (50 I
b ab j

is an isomorphism from 5 onto F (<9*). We shall now identify B with F (5^);
so every b e B is a function from X to S. This identifies A with those b e B
such that for every peXb{p) 0 or b {p) 1, i.e. with those è e F
satisfying || F (è) || X Let C be the BA of clopen subsets of X and e (c)
the characteristic function of c for c e C. Thus e is an isomorphism from C

onto A ç B.

In the rest of this section, we show that the property of being a Hausdorff
sheaf for SP is equivalent to a property of the extension (F, A) which reflects,
in a way which is first-order expressible in JP, completeness of the embedding
of A into B. Recall that, for a sheaf SP over a Boolean space X, S is a T2-

space iff, for anyf g e F (^), || / # || is a clopen subset of X; SA is then
said to be a Hausdorff sheaf. Call A relatively complete in B if, for every
b e F, there is a largest element aed such that a < b, equivalently : for
b e B, there is a largest ae A such that a • b 0 or: for b eF, there is a

smallest aed such that è < a.

1.1. Proposition. <9" F a Hausdorff sheaf iff A is relatively complete
in B.

Proof. Suppose SP is Hausdorff and b e B. Let de B such that d(p) 0

for every p e X, let c || b d || and a e (c). Then a is the largest
element of A satisfying a-b 0.

Conversely, let A be relatively complete in B and suppose f g e B.

Let a be the largest element of A such that a </• g + ~ f' ~g- Let
ceC such that « (c). Then || / 0 || c is a clopen subset of X

1.2. Remark. Let A be relatively complete in B. Then the inclusion

map from A to B is a complete homomorphism.

Proof Suppose M is a subset of A having a supremum a in A. We
show that a is the supremum of M in B. Clearly, a is an upper bound for M
in B. Suppose that b is another upper bound for M in B. Let a e A be the

largest element of A such that a < b. For every m e M ç A, we have

m < è, hence m < a and a < a < b.

The following facts are trivial:
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1.3. Remark, a) Let A and the inclusion map from A to B be complete.

Then A is relatively complete in B.

b) Suppose A is relatively complete in B and B is complete. Then A

is complete.

2. Relative automorphisms of finite extensions

We first give an internal description of a finite extension (.B, A) where

B A (u1 un) and neco. We shall always assume that ul9 un are the

atoms of the subalgebra of B generated by ul9 un\ i.e. that they are

non-zero, pairwise disjoint and ux + + un 1. Let Ir {ae A\a - ur

0 } for 1 < r < n. Clearly, each Ir is a proper ideal of A and I± n n In

{0}. The family (7r I l<r<w) completely characterizes the extension

2.1. Remark. Suppose C A(v1...vn) is a finite extension of A
where vl9 vn are pairwise disjoint and I v± + + vn. Let
5 A (u1 un) be as above. There is an isomorphism g from B onto C

satisfying g (a) a for a e A and g (ur) vr iff, for each r, { a e A | a • vr

0} Ir.

Proof. By Theorem 12.4 in [7].

2.2. Remark. A is relatively complete in B A (u1 un) iff, for each

r, Ir is a principal ideal.

Proof. The only—if part follows by the definition of relative completeness.
Now suppose are A generates Ir; let b e B and I 0}.
There are al9..., an e ^4 such that b • Wi + + an • It follows that
J is the principal ideal generated by a { — a1 + ax) • • (-a^ + aj.

Conversely, given any family (Ir 11 <r <«) of proper ideals in A satisfying

f n n /„ {0}, there is an extension A(ui... un) of A such that
Ir { a e A I a • ur 0} : let D A (x± xn) be the free product of A
and a finite with atoms xl9..., xn. Let

^ {4 -*1 + - + v*» I ell, •••> 4 e 4 } •

A' is an ideal of D; the canonical epimorphism tt from D onto 5 D\K
is one- one on A,andfor a eA,it (a) ur0 iff where (xr).
Now identify A with the subalgebra n (A) of B.

For the rest of this section we think, as in section 1, of as being the set
of global sections of a sheaf S,n,X, pi) of Boolean algebras over a


	1. The sheaf representation of Boolean algebra extensions

