4. Decidability and complétions of Th (K)

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 28 (1982)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
21.07.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.
has the form $\exists x \psi\left(x x_{1} \ldots x_{n}\right)$ and that $\left\|\psi\left[b b_{1} \ldots b_{n}\right]\right\|$ is clopen for fixed $b_{1}, \ldots, b_{n} \in B$ and arbitrary $b \in B$. For the rest of the proof, we omit the parameters $b_{1} \ldots, b_{n}$. Let

$$
u=\cup\{\|\psi[\beta]\| \mid \beta \in B\}
$$

By our inductive assumption, u is an open subset of X. Choose, by Zorn's lemma, a maximal family $F=\left\{\left(b_{i}, c_{i}\right) \mid i \in I\right\}$ such that $b_{i} \in B, c_{i}$ is a clopen subset of $u, c_{i} \subseteq\left\|\psi\left[b_{i}\right]\right\|, i \neq j$ implies $c_{i} \cap c_{j}=\phi$. It follows that c, the closure of $\cup c_{i}$, includes u (by maximality of F). A is a $c B A$, $i \in I$
hence X is extremally disconnected and c is clopen. By completeness of B, there is some $b \in B$ such that $b \cdot e\left(c_{i}\right)=b_{i}$ for $i \in I$. Thus, for $i \in I, c_{i}$ $\subseteq\|\psi[b]\|$. So, for $\beta \in B,\|\psi[\beta]\| \subseteq u \subseteq c \subseteq\|\psi[b]\|=\|\exists x \psi(x)\|$.

Finally we show that B_{p} is separated for each $p \in X$. Let $\alpha(x)$ be the $\mathscr{L}_{B A}$-formula stating that x is an atom and let $\beta(x), \gamma(x)$ be the $\mathscr{L}_{B A^{-}}$ formulas $\alpha(x) \vee x=0$ resp. $\forall y(\alpha(y) \rightarrow y \leqslant x)$. Put $M=\{f \in B \mid$ $\|\beta[f]\|=1 \|$ and let b be the supremum of M in B. We show that $b(p)$ is, for each $p \in X$, the supremum of the atoms of B_{p}.

First suppose $s \in B_{p}$ is an atom of B_{p}. There is some $f \in M$ such that $f(p)=s$ (note that $\|\alpha[f]\|$ is clopen for each $f \in B$). So $f \leqslant b$ and $s=f(p)$ $\leqslant b(p)$. - On the other hand, suppose $t \in B_{p}$ and $s \leqslant t$ for every atom s of B_{p}. Choose $g \in B$ such that $g(p)=t$. Then $p \in c=\|\gamma[g]\|$. For $f \in M, e(c) \cdot f \leqslant g$, since $q \in c$ implies that $f(q)$ is zero or an atom of B_{q} and thus $f(q) \leqslant g(q)$. By the definition of $b, e(c) \cdot b \leqslant g$. This implies (by $p \in c$) $b(p) \leqslant g(p)=t$.

4. Decidability and completions of Th (K)

Call $T_{s B A}=T_{B A} \cup\{\sigma\}$ the theory of separated $B A S$, where $T_{B A}$ is the theory of $B A s$ and σ was defined in section 3. We give a short review of the completions of $T_{s B A}$. Let, for $n \in \omega, \varphi_{n}$ be the $\mathscr{L}_{B A}$-sentence stating that there are exactly n atoms and ψ the $\mathscr{L}_{B A}$-sentence stating that there is a non-zero atomless element. Let $\chi_{n}=\neg\left(\varphi_{0} \vee \ldots \vee \varphi_{n-1}\right)$; so χ_{n} says that there are at least n atoms. Define, for $n \in \omega+1$ and $i \in 2=\{0,1\}$, an $\mathscr{L}_{B A}$-theory $T_{n i}$ by

$$
\begin{aligned}
& T_{n 0}=T_{s B A} \cup\left\{\varphi_{n}, \neg \psi\right\} \\
& T_{n 1}=T_{s B A} \cup\left\{\varphi_{n}, \psi\right\}
\end{aligned}
$$

for $n \in \omega$, and

$$
\begin{aligned}
& T_{\omega 0}=T_{s B A} \cup\left\{\chi_{n} \mid n \in \omega\right\} \cup\{\neg \psi\} \\
& T_{\omega 1}=T_{s B A} \cup\left\{\chi_{n} \mid n \in \omega\right\} \cup\{\psi\} .
\end{aligned}
$$

Put $\tau=\left\{T_{n i} \mid n \in \omega+1, i \in 2\right\}$. It is then clear that each separated $B A$ satisfies exactly one of the theories in τ, and for each $t \in \tau$ there is a $c B A$ satisfying t. Moreover, any two models of any $t \in \tau$ are elementarily equivalent by 5.5 .10 in [1]. Thus the theories $t \in \tau$ are just the completions of $T_{s B A}$ and can be thought of as being the elementary equivalence types of separated BAs or $c B A s$. Moreover, an $\mathscr{L}_{B A}$-sentence holds in every separated $B A$ iff it holds in every $c B A$. The following proposition is essential for the main theorems of this section:
4.1. Proposition. Let $s, t \in \tau$. Then there is a structure (B, A) in \mathbf{K} such that A is a model of s and each stalk B_{p} is a model of t.

Proof. By the above remarks, choose $c B A s A$ and F which are models of s resp. t. Let $A * F$ be the free product of A and F. Thus A is relatively complete in $A * F$ and each stalk $(A * F)_{p}$, where p is an ultrafilter of A, is easily seen to be isomorphic to F, hence a model of t. Unfortunately, $A * F$ is incomplete unless A or F is finite. So let $B=(A * F)^{*}$ be the completion of $A * F$; note that $A * F$ is a dense subalgebra of B. (B, A) $\in \mathbf{K}$, since the inclusion maps from A to $A * F$ and from $A * F$ to B are complete. For $p \in X$ (the Stone space of A), B_{p} is a separated $B A$ by 3.2 but in general a proper extension of $(A * F)_{p}$. We show, with the notations of section 1, that B_{p} is elementarily equivalent to F. For the following proof of this, recall that, for $f \in F \backslash\{0\}$ and $p \in X, \pi_{p}(f)=f(p) \neq 0$ since F is independent from A in $A * F \subseteq B$. Thus, the restriction of $\pi_{p}: B \rightarrow B_{p}$ to F is a monomorphism. The elementary equivalence of B_{p} and F is established by the following four claims.

Claim 1. For each atom f of $F, f(p)$ is an atom of B_{p} (hence, if F has at least n atoms, where $n \in \omega$, then B_{p} has at least n atoms): clearly, $f(p)>0$ for $p \in X$. Assume that

$$
u=\left\{p \in X \mid f(p) \text { is not an atom of } B_{p}\right\}
$$

is non-empty. By 3.2, u is a clopen subset of X. Choose, by the maximum principle stated in section $3, b \in B$ such that $b(p)=0$ for $p \notin u$ and $0<b(p)$ $<f(p)$ for $p \in u$. Since $b>0$, choose $a \in A$ and $g \in F$ such that $0<a \cdot g$ $\leqslant b$; let $p \in X$ such that $a(p) \cdot g(p) \neq 0$. Thus $p \in u, a(p)=1$, and
$0<g(p) \leqslant b(p)<f(p)$. It follows that $0<g<f$, contradicting the fact that f was an atom of F.

Claim 2. If B_{p} has at least n atoms, where $1 \leqslant n<\omega$, then F has at least n atoms: assume that M is a subset of $\operatorname{At}\left(B_{p}\right)$, the set of atoms of B_{p}, such that M has exactly n elements but $\operatorname{At}(F)$ has at most $n-1$ elements. We prove:
(a) Let $x \in M$. Then there is $f_{x} \in A t(F)$ such that $f_{x}(p)=x$.

Claim 2 follows from (a), since the assignment of f_{x} to x is injective. And (a) will follow from
(b) Let $x \in M, u$ a clopen neighbourhood of p such that, w.l.o.g., for $q \in u, B_{q}$ has at least one atom. Let $b \in B$ such that, for $q \notin u, b(q)=0$ and for $q \in u, b(q)$ is an atom of B_{q}, and $b(p)=x$. Then there are $q \in u$ and $f \in A t(F)$ such that $f(q)=b(q)$. (Hence $\operatorname{At}(F)$ is nonempty).

Proof of (b). By $b>0$, choose $a \in A, f \in F$ such that $0<a \cdot f \leqslant b$. Since $b(q)=0$ for $q \notin u$, there is some $q \in u$ such that $a(q) \cdot f(q) \neq 0$, which implies $0<f(q) \leqslant b(q) \cdot f(q)=b(q)$, since $b(q)$ is an atom of B_{q}. Finally $f \in A t(F)$, since a splitting of f in F into two non-zero disjoint elements would give rise to a splitting of $b(q)$ in B_{q}.

Proof of (a). Let $x \in M$ and choose u and b as in (b). Assume (a) is false. Then, for each $f \in A t(F), f(p) \neq x=b(p)$; by finiteness of At (F), there is a clopen neighbourhood v of p such that, for $q \in v$ and $f \in A t(F), b(q) \neq f(q)$. Let $c \in B$ such that $c(q)=0$ for $q \notin v$ and $c(q)$ $=b(q)$ for $q \in v$. This contradicts (b), applied to v and c instead of u and b.

Claim 3. If F has a non-zero atomless element f (which means that $F \upharpoonleft f$ is atomless), then each B_{p} has a non-zero atomless element x : let $x=\pi_{p}(f) . x>0$, since π_{p} is one-one on $F . F \upharpoonright f$ and hence, by Claim 2, $(B \upharpoonleft f)_{p}$ is atomless. So $B_{p} \upharpoonleft x=\pi_{p}(B \upharpoonleft f)=(B \upharpoonleft f)_{p}$ is atomless.

Claim 4. If B_{p} has a non-zero atomless element x, then F has a non-zero atomless element f : assume that F is atomic. Let

$$
u=\left\{q \in X \mid B_{q} \text { is not atomic }\right\}
$$

u is a clopen neighbourhood of p. By the maximum principle, choose $b \in B$ such that $b(q)=0$ for $q \notin u, b(q)$ is a non-zero atomless element of
B_{q} for $q \in u, b(p)=x$. Choose $a \in A, g \in F$ such that $0<a \cdot g \leqslant b$; w.l.o.g., g is an atom of F. Choose $q \in X$ such that $a(q) \cdot g(q) \neq 0$. Thus $q \in u$ and $g(q) \leqslant b(q)$. By Claim 1, $g(q)$ is an atom of B_{q}, contradicting the choice of $b(q)$.
4.2. Remark. Suppose that, for every i in an index set $I, \mathscr{M}_{i}=\left(B_{i}, A_{i}\right)$ is an element of \mathbf{K}. Then $\mathscr{M}=(B, A)$, where $B=\prod_{i \in I} B_{i}$ and $A=\prod_{i \in I} A_{i}$, is in \mathbf{K}. Let $\varphi\left(x_{1} \ldots x_{k}\right)$ be an \mathscr{L}-formula and $b_{1}, \ldots, b_{k} \in B, b_{j}=\left(b_{i j}\right)_{i \in I}$. Put $a_{i}=e\left(\left\|\varphi\left[\begin{array}{lll}b_{i 1} & \ldots & b_{i k}\end{array}\right]\right\|^{M_{i}}\right)$. Then

$$
e\left(\left\|\varphi\left[b_{1} \ldots b_{k}\right]\right\|^{\mathcal{M}}\right)=\left(a_{i}\right)_{i \in I}
$$

Proof. By induction on the complexity of φ.
We shall need the following Feferman-Vaught theorem about sheaves over Boolean spaces from [2]:
4.3. Theorem (Comer). Let \mathscr{L} be an arbitrary language. There is an effective assignment

$$
\varphi\left(x_{1} \ldots x_{k}\right) \mapsto\left(\Phi ; \vartheta_{1}, \ldots, \vartheta_{m}\right)
$$

for \mathscr{L}-formulas $\varphi\left(x_{1} \ldots x_{k}\right)$ such that
a) $\vartheta_{1}, \ldots, \vartheta_{m}$ are \mathscr{L}-formulas having at most the free variables $x_{1} \ldots x_{k}$, and

$$
\vDash\left(\underset{1 \leq i \leq m}{\vee /} \vartheta_{i}\right) \wedge \widehat{1 \leq i<j \leq m} \neg\left(\vartheta_{i} \wedge \vartheta_{j}\right)
$$

b) Φ is an $\mathscr{L}_{B A}$-formula having at most the free variables $y_{1} \ldots y_{m}$;
c) for each sheaf $\mathscr{S}=(S, \pi, X . \mu)$ of \mathscr{L}-structures such that X is a Boolean space and $\left\|\psi\left[f_{1} \ldots f_{n}\right]\right\|$ is a clopen subset of X for every $\psi\left(x_{1} \ldots x_{n}\right)$ in \mathscr{L} and $f_{1}, \ldots, f_{n} \in \Gamma(\mathscr{P}):$ if $b_{1}, \ldots, b_{k} \in \Gamma(\mathscr{P})$, then

$$
\Gamma(\mathscr{S})=\varphi\left[b_{1} \ldots b_{k}\right] \quad \text { iff } \quad C \models \Phi\left[c_{1} \ldots c_{m}\right]
$$

where C is the $B A$ of clopen subsets of X and $c_{i}=\left\|\vartheta_{i}\left[b_{1} \ldots b_{k}\right]\right\|$.
For two separated BAs A and A^{\prime}, let I be the set of partial functions f from A to A^{\prime} such that $\operatorname{dom}(f)=\left\{a_{1}, \ldots, a_{n}\right\}$ is a finite partition of A (where some of the a_{i} may be zero), $\operatorname{rge}(f)=\left\{a_{1}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}\right\}$ where $a_{i}{ }^{\prime}$ $=f\left(a_{i}\right)$ is a partition of A^{\prime}, and every $A \upharpoonright a_{i}$ is elementarily equivalent
to $A^{\prime} \upharpoonright a_{i}{ }^{\prime}$. If A, A^{\prime} are \aleph_{1}-saturated or σ-complete, the following conditions are equivalent:
a) $A \equiv A^{\prime}$;
b) I is non-empty;
c) I has the back-and-forth property.

Moreover, if $f \in I$ is as above and A, A^{\prime} are arbitrary separated $B A s$, then $\left(A, a_{1}, \ldots, a_{n}\right) \equiv\left(A^{\prime}, a_{1}{ }^{\prime}, \ldots, a_{n}{ }^{\prime}\right)$.

Let $T_{s B A 2}$ be the \mathscr{L}-theory

$$
T_{s B A 2}=T_{s B A} \cup\{\forall x(U(x) \leftrightarrow x=0 \vee x=1)\} .
$$

Since $T_{B A}$ is decidable, $T_{s B A}$ and $T_{s B A 2}$ are decidable.
4.4. Theorem. There is an effective procedure deciding for every \mathscr{L} sentence φ whether $T \vdash \varphi$. Moreover, $T \vdash \varphi$ if and only if φ holds in every model \mathscr{M} in \mathbf{K}.

Proof. Let φ be given. Construct $\left(\Phi\left(y_{1} \ldots y_{m}\right) ; \vartheta_{1}, \ldots, \vartheta_{m}\right)$ by 4.3. For every i such that $1 \leqslant i \leqslant m$, decide whether $T_{s B A 2} \vdash \neg \vartheta_{i}$. W.l.o.g., assume that $T_{s B A 2} \cup\left\{\vartheta_{i}\right\}$ is consistent for $1 \leqslant i \leqslant r$ and inconsistent for $r+1 \leqslant i \leqslant m$. By $\vdash \vartheta_{1} \vee \ldots \vee \vartheta_{m}$, we have $1 \leqslant r$ (it is possible that $r=m$). Next, construct the formula

$$
\Phi^{\prime}\left(y_{1} \ldots y_{m}\right)=\left(\widehat{r+1 \leqslant i \leq m}\left(y_{i}=0\right) \rightarrow \Phi\left(y_{1} \ldots y_{m}\right)\right) .
$$

We show the equivalence of
a) $T \vdash \varphi$;
b) $\mathscr{M} \vDash \varphi$ for every $\mathscr{M} \in \mathbf{K}$;
c) $T_{s B A} \vdash \forall y_{1} \ldots \forall y_{m} \Phi^{\prime}\left(y_{1} \ldots y_{m}\right)$.

Then, by decidability of $T_{s B A}, T$ is decidable and 4.4 is proved. a) implies b) by 3.2. To prove that c) implies a), assume there is $\mathscr{M} \models T$ such that $\mathscr{M} \mid \neq \varphi$, e.g. $\mathscr{M}=(B, A)$. Put $a_{i}=e\left(\left\|\vartheta_{i}\right\|^{\mathscr{M}}\right)$. By 4.3 and $\mathscr{M} \neq \varphi$, we see $A \neq \Phi\left[a_{1} \ldots a_{m}\right]$. By our choice of $r \leqslant m$, we get $a_{r+1}=\ldots=a_{m}=0$. Thus $A \not \neq \Phi^{\prime}\left[a_{1} \ldots a_{m}\right]$ and c) is false. Now assume c) does not hold; we show that b) is false. Let A^{\prime} be a separated $B A$ and $a_{1}{ }^{\prime}, \ldots, a_{m}{ }^{\prime} \in A^{\prime}$ such that $a_{r+1}{ }^{\prime}=\ldots=a_{m}{ }^{\prime}=0$ and $A^{\prime} \neq \Phi\left[a_{1}{ }^{\prime} \ldots a_{m}{ }^{\prime}\right]$. W.l.o.g., $a_{i}{ }^{\prime} \neq 0$ for $1 \leqslant i$ $\leqslant r$. By choice of r, there are $t_{1}, \ldots, t_{r} \in \tau$ such that $t_{i}=\vartheta_{i}$ for $1 \leqslant i \leqslant r$.

Let, for these i, s_{i} be the element of τ such that $A^{\prime} \wedge a_{i}{ }^{\prime} \models s_{i}$. By 4.1, there are $\mathscr{M}=(B, A) \in \mathbf{K}$ and $a_{1}, \ldots, a_{r} \in A$ such that $1=a_{1}+\ldots+a_{r}, a_{i} \cdot a_{j}$ $=0$ for $1 \leqslant i<j \leqslant r, A \uparrow a_{i}=s_{i}$ and $\left(B \uparrow a_{i}\right)_{p} \models t_{i}$ for those $p \in X$ satisfying $a_{i}(p)=1$. So $e\left(\left\|\vartheta_{i}\right\|^{M}\right)=a_{i}$ by 4.2. Put $a_{r+1}=\ldots=a_{m}=0$. It follows that $\left(A, a_{1}, \ldots, a_{m}\right) \equiv\left(A^{\prime}, a_{1}{ }^{\prime}, \ldots, a_{m}{ }^{\prime}\right), A \not \equiv \Phi\left[a_{1} \ldots a_{m}\right]$ and $\mathscr{M} \neq \varphi$ by 4.3.

In the next theorem, we characterize elementary equivalence of models of T. Call the following sentences in $\mathscr{L}_{B A}$ basic sentences: $\varphi_{n} \wedge \psi, \varphi_{n} \wedge \neg \psi$, $\chi_{n} \wedge \psi, \chi_{n} \wedge \neg \psi($ where $n \in \omega)$. It follows by the analysis of the completions of $T_{s B A}$ given in the beginning of this section that for each $\mathscr{L}_{B A}{ }^{-}$ sentence ϑ there are basic sentences $\beta_{1}, \ldots, \beta_{n}$ such that

$$
T_{s B A} \vdash\left(\vartheta \leftrightarrow \bigvee_{i=1}^{n} \beta_{i}\right) \wedge \widehat{1 \leq i<j \leq n}^{\sim}\left(\beta_{i} \wedge \beta_{j}\right)
$$

This fact is easily extended to $T_{s B A 2}$: by replacing each atomic formula $U(t)$ where t is a term in $\mathscr{L}_{B A}$ by " $t=0 \vee t=1$ ", we see that for each \mathscr{L} sentence ϑ there are basic sentences $\beta_{1}, \ldots, \beta_{n}$ satisfying

$$
T_{s B A 2} \vdash\left(\vartheta \leftrightarrow \bigvee_{i=1}^{n}\right) \wedge \widehat{1 \leq i<j \leq n}^{\overbrace{i}} \neg\left(\beta_{i} \wedge \beta_{j}\right)
$$

Now, if β, γ are basic sentences, let $\sigma_{\beta \gamma}$ be the following \mathscr{L}-sentence :

$$
\sigma_{\beta \gamma}=\exists y\left(\gamma^{y} \wedge s_{\beta}(y)\right),
$$

where $s_{\beta}(y)$ is the \mathscr{L}-formula assigned to β in 3.1 and γ^{y} is the result of relativizing the quantifiers $\exists x \varphi \ldots$ in γ to $\exists x\left(U(x) \wedge x \leqslant y \wedge \varphi^{y} \ldots\right)$. A model (B, A) of T satisfies $\sigma_{\beta \gamma}$ iff $A \upharpoonright a \mid=\gamma$, where $a=e(c)$ and c $=\|\beta\|$.
4.5. Theorem. Let $\mathscr{M}=(B, A), \mathscr{M}^{\prime}=\left(B^{\prime}, A^{\prime}\right)$ be models of T. Then \mathscr{M} is elementarily equivalent to \mathscr{M}^{\prime} if and only if,for any basic sentences β, γ,

$$
\mathscr{M} \models \sigma_{\beta \gamma} \quad \text { iff } \quad \mathscr{M}^{\prime}=\sigma_{\beta \gamma} .
$$

Proof. The only-if-part is clear. Suppose that \mathscr{M} and \mathscr{M}^{\prime} satisfy the same sentences of the form $\sigma_{\beta \gamma}$. Let φ be an \mathscr{L}-sentence and $\mathscr{M} \models \varphi$; we want to show that $\mathscr{M}^{\prime} \equiv \varphi . \operatorname{Let}\left(\Phi\left(y_{1} \ldots y_{m}\right) ; \vartheta_{1}, \ldots, \vartheta_{m}\right)$ be the sequence assigned to φ by 4.3; every ϑ_{i} is an \mathscr{L}-sentence. Put $a_{i}=e\left(\left\|\vartheta_{i}\right\|^{\mathcal{M}}\right)$; by 4.3 and $e: C \rightarrow A$ being an isomorphism, we have that $\left\{a_{1}, \ldots, a_{m}\right\}$
is a partition of A and $A \models \Phi\left[a_{1} \ldots a_{m}\right]$. In the same way, put $a_{i}{ }^{\prime}=e^{\prime}\left(\left\|\vartheta_{i}\right\|^{M \prime}\right) ;\left\{a_{1}{ }^{\prime}, \ldots, a_{m}{ }^{\prime}\right\}$ is a partition of A^{\prime}. It is sufficient to show that $\left(A, a_{1}, \ldots, a_{m}\right) \equiv\left(A^{\prime}, a_{1}{ }^{\prime}, \ldots, a_{m}{ }^{\prime}\right)$, for this implies $A^{\prime} \models \Phi\left[a_{1}{ }^{\prime} \ldots a_{m}{ }^{\prime}\right]$ and finally $\mathscr{M}^{\prime}=\varphi$ by 4.3.

For every ϑ_{i}, choose basic sentences $\beta_{i 1}, \ldots, \beta_{\text {in }_{i}}$ such that

$$
T_{s B A 2}-\left(\vartheta_{i} \leftrightarrow \bigvee_{j} \beta_{i j}\right) \wedge \widehat{j<l} \neg\left(\beta_{i j} \wedge \beta_{i l}\right)
$$

Put $\alpha_{i j}=e\left(\left\|\beta_{i j}\right\|^{M}\right), \alpha_{i j}{ }^{\prime}=e^{\prime}\left(\left\|\beta_{i j}\right\|^{M^{\prime}}\right)$ for $1 \leqslant i \leqslant m, \quad 1 \leqslant j \leqslant n_{i}$. Then a_{i} is the disjoint sum of the $\alpha_{i j}\left(1 \leqslant j \leqslant n_{i}\right), a_{i}$ ' is the disjoint sum of the $\alpha^{\prime}{ }_{i j}\left(1 \leqslant j \leqslant n_{i}\right)$. For every i, j,

$$
A!\alpha_{i j} \equiv A^{\prime} \upharpoonleft \alpha_{i j}^{\prime}:
$$

let γ be any basic sentence of $\mathscr{L}_{B A}$ and assume $A \upharpoonright \alpha_{i j}=\gamma$; we want to show that $A^{\prime} \upharpoonright \alpha_{i j}{ }^{\prime}=\gamma$. But $A \upharpoonright \alpha_{i j}=\gamma$ means that $\mathscr{M} \models \sigma_{\beta_{i j \gamma}}$. By our main assumption, $\mathscr{M}^{\prime}=\sigma_{\beta_{i j} \gamma}$ and $A^{\prime} \upharpoonright \alpha_{i j}^{\prime}=\gamma$.

We have shown that the partial function f mapping $\alpha_{i j}$ to $\alpha_{i j}{ }^{\prime}$ is an element of the set of back-and-forth-isomorphisms defined after 4.3. Hence,

$$
\left(A, \alpha_{11}, \ldots, \alpha_{m n_{m}}\right) \equiv\left(A^{\prime}, \alpha_{11}{ }^{\prime}, \ldots, \alpha_{m n_{m}}{ }^{\prime}\right)
$$

and

$$
\left(A, a_{1}, \ldots, a_{m}\right) \equiv\left(A^{\prime}, a_{1}^{\prime}, \ldots, a_{m}^{\prime}\right)
$$

We shall finally describe the completions of T by giving a one-one correspondance between a set P (consisting of pairs of mappings from $\omega \times 2$ to $(\omega+1) \times 2$) and these completions. For $m, m^{\prime} \in \omega+1$ and $j, j^{\prime} \in 2$, define

$$
(m, j)+\left(m^{\prime}, j^{\prime}\right)=\left(m^{\prime \prime}, j^{\prime \prime}\right)
$$

where $m^{\prime \prime}$ is the cardinal sum of m and m^{\prime} and $j^{\prime \prime}$ is the maximum of j and j^{\prime}. Let

$$
\begin{aligned}
& P=\{(\alpha, \rho) \mid \alpha, \rho: \omega \times 2 \rightarrow(\omega+1) \times 2 \text { and, for } \\
& \\
& \quad(n, i) \in \omega \times 2, \rho(n, i)=\rho(n+1, i)+\alpha(n, i)\} .
\end{aligned}
$$

In the following definition, we refer to the $\mathscr{L}_{B A}$-theories $T_{n i}$ defined in the beginning of this section. For $(\alpha, \rho) \in P$, let $T_{\alpha \rho}$ the \mathscr{L}-theory

$$
\begin{aligned}
T_{\alpha \rho}=T & \cup\left\{\exists x\left(\sigma_{\left(\varphi_{n} \wedge \neg \psi\right)}(x) \wedge \gamma^{x}\right) \mid n \in \omega, \gamma \in T_{\alpha(n, 0)}\right\} \\
& \cup\left\{\exists x\left(\sigma_{\left(x_{n} \wedge \neg \psi\right)}(x) \wedge \gamma^{x}\right) \mid n \in \omega, \gamma \in T_{\rho(n, 0)}\right\} \\
& \cup\left\{\exists x\left(\sigma_{\left(\varphi_{n} \wedge \psi\right)}(x) \wedge \gamma^{x}\right) \mid n \in \omega, \gamma \in T_{\alpha(n, 1)}\right\} \\
& \cup\left\{\exists x\left(\sigma_{\left(x_{n} \wedge \psi\right)}(x) \wedge \gamma^{x}\right) \mid n \in \omega, \gamma \in T_{\rho(n, 1)}\right\} .
\end{aligned}
$$

If $\mathscr{M}=(B, A)$ is a model of T, then $\mathscr{M} \models T_{\alpha \rho}$ iff, for $a_{1}=e\left(\left\|\varphi_{n} \wedge \neg \psi\right\|^{M}\right)$ $A \wedge a_{1} \mid=T_{\alpha(n, 0)}, \ldots$, for $a_{4}=e\left(\left\|\chi_{n} \wedge \psi\right\|^{M}\right), A \upharpoonleft a_{4} \mid=T_{\rho(n, 1)}$.
4.6. Theorem. $\left\{T_{\alpha \rho} \mid(\alpha, \rho) \in P\right\}$ is the set of completions of T. Moreover, each $T_{\alpha \rho}$ has a model in \mathbf{K}.

Proof. If (α, ρ) and ($\alpha^{\prime}, \rho^{\prime}$) are different elements of P, then $T_{\alpha \rho} \cup T_{\alpha^{\prime} \rho^{\prime}}$ is inconsistent (recall that every $T_{m j}$, where $m \in \omega+1, j \in 2$, is complete in $\left.\mathscr{L}_{B A}\right)$. If \mathscr{M} is a model of T, there is some $(\alpha, \rho) \in P$ such that $\mathscr{M} \mid=T_{\alpha \rho}$ (e.g., put $a_{1}=e\left(\left\|\varphi_{n} \wedge \neg \psi\right\|^{\mathcal{M}}\right.$) and let $\alpha(n, 0)$ be the pair $(k, j) \in(\omega+1)$ $\times 2$ such that $A \upharpoonright a_{1} \vDash T_{k j}$, etc.). If $(\alpha, \rho) \in P$ and $\mathscr{M}, \mathscr{M}^{\prime}$ are models of $T_{\alpha \rho}$, then \mathscr{M} and \mathscr{M}^{\prime} are elementarily equivalent by 4.5 , since $T_{\alpha \rho}$ says which sentences of the form $\sigma_{\beta \gamma}$ are satisfied in \mathscr{M} and \mathscr{M}^{\prime}. So it is sufficient to prove that each $T_{\alpha \rho}$ has a model which lies even in \mathbf{K}.

For simplicity, we construct $\mathscr{M} \in \mathbf{K}$ satisfying the part of $T_{\alpha \rho}$ which refers to $T_{\alpha(n, 0)}$ and $T_{\rho(n, 0)}$ - for, if $\mathscr{N} \in \mathbf{K}$ satisfies the part of $T_{\alpha \rho}$ which refers to $T_{\alpha(n, 1)}$ and $T_{\rho(n, 1)}$, then $\mathscr{M} \times \mathscr{N} \in \mathbf{K}$ is a model of $T_{\alpha \rho}$. Abbreviate $\alpha(n, 0)$ by $t_{n}, \rho(n, 0)$ by s_{n}. We first construct a complete $B A A$ and a sequence $\left(a_{n}\right)_{n \in \omega}$ in A such that the a_{n} are pairwise disjoint and

$$
\text { (*) } A \upharpoonright a_{n} \vDash t_{n}, \quad A \upharpoonright r_{n} \mid=s_{n}
$$

where $r_{n}=-\left(a_{0}+\ldots+a_{n-1}\right)$. Let A be a complete $B A$ which is a model of s_{0}. Suppose $a_{0}, \ldots, a_{n-1} \in A$ are pairwise disjoint and $a_{0}, \ldots, a_{n-1}, r_{n}$ satisfy (*). Since $s_{n}=s_{n+1}+t_{n}, A \upharpoonright r_{n} \vDash s_{n}$ and A is complete, there are a_{n} and $r_{n+1} \in A$ such that $r_{n}=a_{n}+r_{n+1}, a_{n} \cdot r_{n+1}=0, A \upharpoonleft a_{n}=t_{n}$ and $A \upharpoonright r_{n+1} \vDash s_{n+1}$. - Finally, let $a_{\omega}=-\sum_{n \in \omega} a_{n}$. By the proof of 4.1, there is, for $n \in \omega, \mathscr{M}_{n}=\left(B_{n}, A_{n}\right) \in \mathbf{K}$ such that $A_{n}=A \upharpoonleft a_{n}$ and each stalk $\left(B_{n}\right)_{p}$ of the sheaf representation of \mathscr{M}_{n} is a model of $\varphi_{n} \wedge \neg \psi$. Moreover there is $\mathscr{M}_{\omega}=\left(B_{\omega}, A_{\omega}\right) \in \mathbf{K}$ such that $A_{\omega}=A \upharpoonright a_{\omega}$ and each stalk $\left(B_{\omega}\right)_{p}$ of the sheaf representation of \mathscr{M}_{ω} is a model of $T_{\omega 0}$. Put \mathscr{M} $=(B, A)$ where B is a complete $B A$ which lies over A as $\prod_{n \in \omega} B_{n}$ lies over $\prod_{n \in \omega} A_{n}$. By 4.2, $e\left(\left\|\varphi_{n} \wedge \neg \psi\right\|^{\mathcal{M}}\right)=a_{n}$ and $e\left(\left\|\chi_{n} \wedge \neg \psi\right\|^{\mu}\right)=r_{n}$;so \mathscr{M} is a model of the part of $T_{\alpha \rho}$ referring to $T_{\alpha(n, 0)}$ and $T_{\rho(n, 0)}$.

