4. Closure properties

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 28 (1982)

Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

21.07.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Suppose now that a family P is p-definable in the sense of Definition 4. Then the argument in Proposition 1 showing that Definition 3 implies Definition 2 establishes that P is p-definable in the sense of Definition 1*. But Theorem 3 in [13] shows that any P so definable is the p-projection of $H C$ and our Appendix 2 shows that $H C$ is p-definable in the sense of Definition 1. The result follows.

In Appendix 1 it will be shown that Definition 3 implies Definition 4. Together with Propositions 1 and 2 this will establish:

Theorem 1. Definitions 1, 2, 3 and 4 are all equivalent.

4. Closure properties

A p-definable family P is complete over F if every family that is p definable over F is the p-projection of P. It is known that several famous polynomials such as the permanent, hamiltonian circuits, the monomerdimer polynomial and certain reliability problems are all complete for appropriate fields [6, 13]. In fact the projections required to establish these facts are all strict projections (i.e. no two indeterminates map to the same indeterminate). Hence these superficially dissimilar polynomials are related in the closest possible way: each one can be obtained from any other by fixing some indeterminates and renaming the others.

In the light of the simplicity of its completeness class the robustness of the notion of p-definability is perhaps remarkable. It can be explored conveniently by listing the operations under which it is closed.

First we consider the operation of substitution. The polynomials to be substituted can be viewed conveniently as an array.

Definitions. R is a family array over F if it is a set $\left\{R^{m, n} \mid n \leqslant m\right\}$ of polynomials over F where $R^{m, n}$ has m indeterminates. It has p-bounded degree if for some p-bounded $t \operatorname{deg}\left(R^{m, n}\right) \leqslant t(m)$.

The various definitions of p-definability have analogues that are equivalent to each other for family arrays. For the current purpose it is best to adapt the fourth one:

Definition. Family array R is p-definable iff there is a p-bounded t such that for all m, n there is a T with formula size less than $t(m)$ such that

$$
R^{m, n}=\sum_{\mathbf{b}} T(\mathbf{x}, \mathbf{b})
$$

Theorem 2. If family P and array R are p-definable over F then so is the family $P(R)=\left\{P_{m}\left(R^{m, 1}, R^{m, 2}, \ldots, R^{m, m}\right)\right\}$

Proof. Consider the two polynomials:

$$
S_{i}^{1}(\mathbf{x})=\sum_{\mathbf{b}} Q^{1}\left(\mathbf{x}, b_{1}, \ldots, b_{k}\right) \quad \text { and } \quad S_{j}^{2}(\mathbf{y})=\sum_{\mathrm{c}} Q^{2}\left(\mathbf{y}, c_{1}, \ldots, c_{r}\right)
$$

If $k \geqslant r$ then their product is

$$
\sum_{\mathbf{b}} \sum_{\mathbf{c}} Q^{1}\left(\mathbf{x}, b_{1}, \ldots, b_{k}\right) \cdot Q^{2}\left(\mathbf{y}, c_{1}, \ldots, c_{r}\right)
$$

and their sum

$$
\sum_{\mathbf{b}} Q^{1}\left(\mathbf{x}, b_{1}, \ldots, b_{k}\right)+Q^{2}\left(\mathbf{y}, b_{1}, \ldots, b_{r}\right) b_{\mathbf{r}+1} \ldots b_{k}
$$

It follows by induction on the construction of formulae that if S is any family with p-bounded formula size then $S(R)$ is p-definable. Now choose S to be the family defining P. A typical member of $P(R)$ is

$$
P_{m}(R)=\sum_{\mathrm{d}} S\left(R^{m, 1}, \ldots, R^{m, m}, \mathbf{d}\right)
$$

It follows by Theorem 5 that $P(R)$ is also p-definable.
Remark 2. Closure of p-definability under addition ensures that Perm +1 is p-definable. Since Perm is complete it follows that Perm +1 is the p-projection of Perm. No direct proof of this is known and it is noteworthy that the corresponding question as to whether Det +1 is the p-projection of Det appears to be open.

Remark 3. Reliability polynomials such as those considered in [6] can be recognised as p-definable by first considering distinct indeterminates p, q for each edge, and then substituting $q=1-p$.

The coefficient in $P_{n} \in F\left[x_{1}, \ldots, x_{n}\right]$ of the monomial $m=x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}$ is the unique polynomial Q_{n} such that (i) $P_{n}=m Q_{n}+R_{n}$, (ii) Q_{n} and m have no indeterminate in common, and (iii) each monomial in R_{n} differs from m in the exponent of at least one indeterminate occurring in m.

The following closure property strengthens Proposition 9 in [13].
Theorem 3. If P is p-definable and R is a family such that for some p-bounded t, for each i, R_{i} is a coefficient in $P_{t(i)}$ then R is p-definable also.

Proof. Suppose that $P_{t(i)}$ is the projection of

$$
U=\sum_{\mathbf{b}} Q_{j}(\mathbf{b}) \prod_{b_{k}=1} x_{k}
$$

under σ. If R_{i} is the coefficient of $m=\prod y_{s}^{i_{s}}$ in $P_{t(i)}$ then it is the projection under σ of the sum of the coefficients in U of all products $\prod_{b_{k}=1} x_{k}$ such that for each s with $i_{s} \geqslant 1$.

$$
\mid\left\{k \mid b_{k}=1 \quad \text { and } \quad \sigma\left(x_{k}\right)=y_{s}\right\} \mid=i_{s} .
$$

It therefore follows that R_{i} is a projection under σ^{\prime} of

$$
\sum_{\mathbf{b}} Q_{j}(\mathbf{b}) \prod_{s=1} \operatorname{Sym}^{i_{s}}\left(b_{r} \mid \sigma\left(x_{r}\right)=y_{s}\right) \prod_{b_{k}=1} x_{k},
$$

where Sym is the polynomial defined in $\S 2$, and σ^{\prime} modifies σ by mapping each element of

$$
\left\{x_{k} \mid \sigma\left(x_{k}\right)=y_{s} \quad \text { and } \quad i_{s} \geqslant 1\right\}
$$

to unity.
Theorem 4. If P is p-definable then so are
(i) $\left\{\partial P_{i}\left|\partial x_{j}\right| P_{i} \in P\right.$, any $\left.j\right\}$,
(ii) $\left\{\int P_{i} d x_{j} \mid P_{i} \in P\right.$, any $\left.j\right\}$, and
(iii) the result of any p-bounded number of applications to P of differentiation or integration.

Proof (i). Suppose that P_{i} is the projection of

$$
\sum_{\mathbf{b}} Q_{n}(\mathbf{b}) \prod_{b_{k}=1} y_{k}
$$

under $\sigma:\left\{y_{k}\right\} \rightarrow\left\{x_{m}\right\} \cup F$. For each power x_{j}^{q} of x_{j} we will take its coefficient, multiply it by $q z_{1} \ldots z_{q-1}$ where z_{1}, \ldots, z_{q-1} are new indeterminates, and finally project the original x_{j} to one and the new z 's to x_{j}. Let $S=S_{1}+S_{2}+\ldots+S_{d}$ where $d=\operatorname{deg}\left(P_{i}\right)$ and $S_{q}(\mathbf{b}, \mathbf{c})$ equals:

$$
q \cdot \operatorname{Sym}^{q}\left(b_{r} \mid \sigma\left(y_{r}\right)=x_{j}\right) \cdot \operatorname{Sym}_{q-1}^{q-1}\left(c_{1}, \ldots, c_{q-1}\right) \cdot \operatorname{Sym}_{d-q+1}^{0}\left(c_{q}, \ldots, c_{d}\right)
$$

Then $\partial P_{i} / \partial x_{j}$ is the projection of

$$
\sum Q_{n}(\mathbf{b}) S(\mathbf{b}, \mathbf{c}) \prod_{b_{k}=1} y_{k} \prod_{c_{s}=1} z_{s}
$$

Parts (ii) and (iii) follow by similar arguments.
Finally we note that while p-definable families are rich in closure properties the p-computable ones are apparently not. Numerous natural mathematical operations seem not to preserve tractability. We can explore this phenomenon formally by showing that some easy polynomials become
complete when so operated on. A most convenient starting point is the following family T which is of p-bounded formula size:

$$
T_{n^{2}+n}=\prod_{k=1}^{n} \sum_{i=1}^{n} x_{k, i} \quad y_{i} .
$$

Clearly (i) the coefficient of $y_{1} \ldots y_{n}$ in $T_{n^{2}+n}$,

$$
\begin{gather*}
\frac{\partial}{\partial y_{1}} \frac{\partial}{\partial y_{2}} \ldots \frac{\partial}{\partial y_{n}} T_{n^{2}+n} \text {, and } \tag{ii}\\
\left(\frac{3}{2}\right)^{n} \int_{-1}^{1} \ldots \int_{-1}^{1}\left[y_{1} \ldots y_{n} T_{n^{2}+n}\right] d y_{1} \ldots d y_{n}
\end{gather*}
$$

all equal Perm $\left\{x_{k, i}\right\}$.
In contrast, it is easy to see that all the other operations that we have considered preserve p-computability. This is immediate in the case of substitution. It can be shown to be true for $\partial P / \partial x_{i}$ and $\int P d x_{i}$ by considering a program for P, and decomposing it according to the powers of x_{i} at each instruction in the manner of [12].

5. A Non-existent Hierarchy

By analogies with recursion theory we can attempt to define the following hierarchy:

Definition. $P D^{0}=$ class of p-computable polynomial families. For $i>0 P \in P D^{i}$ iff P is defined by some $Q \in P D^{i-1}$ in the sense of Definition 3.

That this hierarchy collapses in this algebraic case is easy to see:
Theorem 5. For any F and any $i>0 \quad P D^{i}=P D^{i+1}$.
Proof. It is clearly sufficient to prove $P D^{1}=P D^{2}$. If $P \in P D^{2}$ then for each m

$$
P_{m}(\mathbf{x})=\sum_{\mathbf{b}} Q_{i}(\mathbf{x}, \mathbf{b})
$$

where for some $R \in P D^{0}$ for each i

$$
Q_{i}(\mathbf{x}, \mathbf{b})=\sum_{\mathrm{c}} R_{j}(\mathbf{x}, \mathbf{b}, \mathbf{c})
$$

Hence

$$
P_{m}(x)=\sum_{\mathrm{b}, \mathrm{c}} R_{j}(\mathbf{x}, \mathbf{b}, \mathbf{c})
$$

which shows that $P \in P D^{1}$.

