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When this estimate is substituted into the Erdös-Turan inequality with m
y

[p4], we get

Sup I (p — 2)~1A(p,J)-I JI I
—1— + -mp'2 « 4

j m + 1 n

This establishes the result. A comparison of the estimate A(p, J) p | J \

3

+ 0(p4) with some of the classical prime number theorems suggests that perhaps
the stronger result

A(p, J) p I J I + 0(pH
should be true.

Part II: Statement of the theorem

§1.1. Introduction. In the statement of Deligne's theorem there appear
certain Euler products which are generalizations of the Artin-Grothendieck L-
functions and which satisfy some rather natural growth conditions; these

conditions are stated below in §2 as Axioms A and B. In order to elucidate the

applicability of the theorem, to introduce some relevant concepts from
representation theory, and to prepare the notation that goes into the statement
of the theorem, we now give two examples one of a geometric nature, the other of
an arithmetic nature. The expert will realize that both examples are intimately
connected, say via the Selberg-trace Formula.

§1.2. Geometric example. As in Part I, let be the finite field of q

elements and let A Fq[T~\ be the coordinate ring of the affine line A1. For
technical reasons and to simplify our presentation, we assume the characteristic
of Fq is not 2 or 3. The closed points on the affine line A1 are in one-to-one

correspondence with the irreducible monic polynomials in A. Now if P Pv is

such an irreducible polynomial in A, then the image of T under the reduction

map

A - A/(P) Fqv

gives an element tv in the finite field Fqv with qv qdcg {P) elements. We can now
consider the elliptic family
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E:y2 x(x-l) (x-T),
i
A1

where Ev : y2 — x(x — 1) (x — tv) is the fiber in E above the point Pv. If we exclude

from A1 the points corresponding to the polynomials Pr T, Pv T — 1,

then each fiber Ev is an elliptic curve defined over the finite field Fqv. A well

known theorem of Hasse established in 1934 states that

# {(*, y) e (F^)21 y2x(x-1(x - (a„ + ß„) + 1,
where

a vqiemv,ßvqte^iB",
where Oy e [0, 2n).

Let SU(2) be the group of special unitary matrices of size 2x2 and consider
the trivial extension

0 -+ SU(2) -> G ^ Z ^ 0

given by the direct product G 5(7(2) x Z. Let E be the set of all irreducible
monic polynomials in A F^[T]. For each veE we have an element in G

eiev 0

0 e - des

denote by xu the conjugacy class of this element in G SU(2) x Z. Let <% be

the quasi-character
CO! : Z -> R +

which sends the integer n to cox(n) qn, and for s a complex number put cos

coS! : Z - C* ; this gives by composition with the projection map G -> Z a

representation
cos : G C*

The finite dimensional representations of 517(2) are well known; they have the

following structure : for each positive integer k, there is a representation

Symfc r : 51/(2) -> GL(/c+l, C).

For k 0, this is the trivial representation of 5(7(2); for k 1 sym1 r r
is just the standard representation which sends an element in 5(7(2) into the



102 C. J. MORENO

same element in GL(2, C). In general, if g ^ e SU{2) then symfc r(g)

is the diagonal matrix in GL(/c + 1, C) given by

Sym* r(g) Diag [a\ c^-1 ß,aß*-1, ß*]

It can easily be shown that the set of all finite dimensional representations of the

locally compact group G are of the form

T (SymV) • cos,

for some positive integer k and a complex number s ; for such a representation, if
5 a + it, we call a the real part of i and write

R(x) a

In particular if x is an arbitrary representation then R(x-cos) R(x) + R{s). With
the above notations we now associate to each representation x of G the L-
function

L(t)ff —r r ;y det(/-x(x„))

an easy comparison of L(x) with the zeta function Z(s, A1) of §1 of Part I shows

that L(x) converges absolutely if R(x) > 1. It is a consequence of Grothendieck's
Trace formula that L(x) has a holomorphic continuation to the region R(x) ^ 1

except for a simple pole at x Deligne's generalization of the method of
Hadamard and de la Vallée-Poussin will imply that

L(x) / 0 for all x with R(x) 1

From here on one takes the familiar road of analytic number theory and applies
criteria of the Weyl-type as well as Tauberian theorems to obtain
equidistribution results. ([9], [12].)

§1.3. Arithmetic example. Let us consider our favorite arithmetic
function : the Ramanujan function x(n) which is defined by the formal expansion

oo oo

x n (1-*n)24 i «»)*"•
n 1 n 1

Let E denote the set of rational primes. For each prime pel it follows from

Deligne's proof of the Ramanujan conjecture that

x(p) (eiQp + e-*p)p1112
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with 0P e [0, 2k). In this arithmetic situation we consider the trivial group

extension
0 -> SU(2)->G-»R-»0

given by the direct product G — SU(2) x R. With each prime p we associate the

element

and denote by xp the conjugacy class in G which contains it. Let ©! be the quasi-

character

©i : R R*+

r ccqfr) er ;

for each complex number s, let cos be the 1-dimensional complex representation

cos : G —> C*

obtained by composing co* with the projection map G -* R. Again it is not very
difficult to show that all the finite dimensional representations of G are of the

form
T (symV) • cos

for some positive integer k and a complex number s. For such a representation x

with s a + it, weputR(x) a and call it the real part ; it is clear that we have

R(x*cos) R(t) + R(s). With the above notation, and with x a finite dimensional

representation of G, we define an L-function

L<T' Jsl det(/— x(xp)) '

a comparison of this /.-function with the ordinary Riemann zeta function shows

that it is absolutely convergent for R(x) > 1. It is known that L(x) has a

holomorphic continuation to the region R(x) ^ 1 for x (symfcr) • cos with k

1, 2, 3 and possibly other values not known to the author. Clearly L(cos)

» Ç(s) and so it has a simple pole at s 1. If it could be established that L(x) has

a holomorphic continuation to R(x) ^ 1 for all representations x (symV) • cos,

k^l, then Deligne's generalization of the method of Hadamard and de la
Vallée-Poussin would imply that

L(x) / 0 for all x with R(x) 1

By well known techniques in analytic number theory [9], it would then be

possible to prove
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The Sato-Tate Conjecture : for large x

£ yßP
pix

(sin 0)2d0 •

j log x

where % is the characteristic function of the subinterval J a [0, 2k).

§2. The general setting: Axioms A and B. Deligne's generalization
of the Hadamard and de la Vallée-Poussin method applies to a broad class of L-
functions which are subjected to two basic axioms. Before we give the statement
of the main result we introduce some notation and define the class of L-functions
that will be considered.

Let r be a group which is isomorphic to Z or to R. Let ocq : T -> R* be a non-
trivial quasi-character. Let G be a locally compact group which is an extension of
T by a compact group G :

0^G°-*G->r->0.
£ will denote an infinite countable set, and (x„)yeZ will be a family of conjugacy
classes in G indexed by £. The examples of the previous section motivate the

following restrictions on the above data.

Axiom A (i) If T is isomorphic to R, the extension G is trivial.

(ii) If r is isomorphic to Z, the center of G is mapped onto a subgroup
of finite index in Z.

It should be observed that since H2(R, G {1} for any compact group G,
the condition A(ï) is automatically satisfied, i.e. G G x R a direct product.
One of the many applications that Deligne makes of his main result is to the

proof of the Weil conjecture. In this situation it suffices to consider the case where

G is the direct product of T Z by a compact Lie group G, whose connected

component of the identity G is semisimple.
The condition A{ii) is not really necessary in the proof of the main result ;

what does seem to be needed is some sort of control on the growth of the matrix
coefficients p^{g) of a continuous finite dimensional representation p : G

-> GL(VC), for example the boundedness of the matrix coefficients p^g) will

guarantee that the representation p is unitarizable. Below we shall see that

actually polynomial growth as measured by a power of ceqfer) will suffice. In the

proof of the Weil conjecture the group G admits a linear representation whose

restriction to G° has a finite kernel ; for this type of group G it can be shown that

A(ii) is automatically satisfied.
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With the non-trivial quasi-character cox : T -> R*, we associate a family of

morphisms

cos : G T C*

parametrized by complex numbers seC:

<*>M Mi(pr(g))s.

The norm of an element v e Z is defined by Nv co_ 1(xJ. If T is isomorphic to

Z, then {co1(y) : y e T} is a discrete cyclic subgroup of R* and hence of the form
where q is a positive real number > 1. This gives rise to an isomorphism

deg : T - Z

whose sign we select so that coi(y) q~deg{y). We also denote by deg the

morphism
deg : G T Z

Obtained by composing the projection map G T with deg. In the following
we define the degree of an element v e £ by deg(p) deg(xj.

In case T ~ Z, Axiom A implies there is an element g in the center of G whose

image in T is non-trivial. Weyl's unitary trick can be used to show that a complex
linear representation t : G -> GL(V) is equivalent to a unitary representation if
and only if x(g) is. In fact if \|/ is a Hermitian structure on V which is invariant
under g, i.e.

v}/(t(fi() • V, T(g) w) *|/(u,

then integration over the compact group H G!gz gives a G-invariant form

w) JH x|/(t(0f) • t w)dg

which also defines a Hermitian structure on V. Hence x is equivalent to a unitary
representation.

Consider now the general situation. Let x : G -> GL(V) be an irreducible
complex linear representation. Let v|/ define a Hermitian structure on V If g
belongs to the center, then Schur's Lemma implies x(g) is a scalar multiple of the
identity. Hence there is a complex number X such that

v|/(t(0) • v,x{g)w) I I2 v|

Denote by a the real number such that | X | co co and observe that
the Hermitian form

-v,xCO_o(0)• w)
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is now invariant under the action of the center of G. Integration over the quotient,
of G by its center gives a G-invariant Hermitian form. Therefore the

representation xco_CT is equivalent to a unitary representation. The number a will
be called the real part of the representation x and is denoted R(x). If x is unitary,
then jR(x) ~ 0 and also R(xods) R(x) + R(s).

The irreducible representations of G of the form x • cos with x unitary will be

called quàsi-unitary. We denote by G the family of isomorphism classes of
irreducible quasi-unitary representations of G ; we let G be the subfamily of those

which are unitary. On G we consider the equivalence relation : x, x' e G are

equivalent if x is in the class of x' • cos for some s e C. Under this equivalence
relation G is partitioned into a disjoint union

G U {X • (X)s I s e C}.
teG

By introducing the parameter s, we may now view an equivalence class of
quasi-unitary representations as a Riemann surface. In fact the map s - x • cos

identifies the set {x • cos | s e C} with

i) The complex plane C if T ~ R or

2ni
ii) with the strip C / Z, if T ~ Z and q is the real number with co^y)

log q

_ q
— deg y

As is well known, by viewing G as a collection of Riemann surfaces, it makes

sense to talk about the regularity of a function of quasi-unitary representations

at a point or in a region, or about its singularities. The question of analytic
continuation, when considered on each connected surface, also makes sense.

Remark. It is in the above spirit that the zeros of an L-function should be

considered as a discrete set of quasi-unitary representations on the same

connected component, and the explicit formulas of number theory should be

considered as generalized trace formulas.

Axiom B (i) For every v e £, one has Nv > 1.

(ii) The infinite product J|(l —AfiT5)-1 converges absolutely for
veZ

R(s) > 1.

For T isomorphic to Z, the first relation means : deg(t;) > 0 ; B(ii) means that

t -hdNd}q-,
m — 1 m |^d|w J

where

Nm#{y611 deg(t>) },
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which is the logarithm of the infinite product, converges absolutely for R(s) > 1,

that is to say for every s > 0

Nm 0(q{1 +£}m).

The condition B(ii) assures that for every tgG, the infinite product

- n
1

'

U det(I - xlx,))

converges absolutely for R(x) > 1. Also each factor is holomorphic in x for R(x)

> 0, and the function L(x) is holomorphic for R(x) > 1 and does not vanish in
this region. In the following we put L(s, x) L(x • coj.

§3. Theorem (Deligne). With the assumptions and notations as above,

suppose that L(x) as a function of x has a meromorphic continuation to

R(t) ^ 1, and that in this region R(x) ^ 1 it is holomorphic exceptfor a simple

pole at ©i. Then the function L(x) does not vanish for R(t) 1, except
possibly for at most one representation x0, of dimension 1 and defined by a

character oe^s with s of order 2.

§4. The Main Lemma. For a complex linear representation x:G
- GL(F), of dimension d, not necessarily irreducible, we have associated the zeta
function

L(x) n Lv(x),
V

where
1 d 1

1det(I-t(x„)) M 1 - ßi(D) '

and ß^f),ßd(t') are the eigenvalues of a matrix in the conjugacy class of r(xj.
Now for s a complex number we put

L(x, s) L(vœs)
and define

m f L(tü)s) Uo.

In particular, in the domain of absolute convergence for the product

1

iAcoj nn ï—,rveli=l I — p,lß,(ü)Afü""S '
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that is to say for R(xcoj > 1, we can take the logarithmic derivative with respect
to the complex variable s and obtain

- y (TCûJ X (log Nv) » XrW)
Is véL

If we let s 0 in the above formula, we obtain for jR(t) > 1

- 7 W E (log •

is veL
n> 0

In order to deal with L-functions of arbitrary representations we now observe

that the above definitions can be extended by linearity to all virtual
representations. Let

* Z "(P)P
peG

be an element of the Grothendieck group of the category of representations of G ;

the n(p) are integers and all but a finite number are zero. We put

L(x) n L(p)m
p6 G

and similarly

y (x) £ n(p) y (p).
L peG ^

Let p be a measure on the group G, which we can also consider as a measure

on the space of conjugacy classes of G. For every virtual unitary representation

1 X rc(p)P 5 h(p) 0 f°r almost all p
peG

we put
AM Ig yJg)dp,

where %x is the trace of the representation x. Since is bounded, the integral

converges if the total mass of | p | is finite. The function x ->• p(x) will be called the

Fourier transform of the measure p. In analogy with the Harmonic analysis on
the group R^, it is useful to consider the integrals p(x) for x not necessarily

unitary; we then refer to x -> p(x) as the Fourier-Laplace transform of p.

Definition. A not necessarily continuous function / : G C is called

positive definite if for every choice of cu cneC and gu gne G we have

E cicjf(gigj > 0
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A measure p on the group G is positive, denoted p ^ 0, if for every non-

negative function / : G -> R+ we have jG f{g)d\x ^ 0.

If p is a positive measure of finite total mass, then we have for every virtual

unitary representation p

p(p®p) ^ 0 (for p ^ 0).

In fact, since xP®P I XP I2 (see Part §!) we have

p(p®p) jG xP®-p{gW Ig I xP(g) I2 d\i > o •

More generally, if cl5..., c„ e C and pl5p„ are virtual unitary

representations, then we have for any positive measure p on G with finite total

mass

n

Z ccc~£(p,®Pj) I Z
i, j i= 1

For a real number 5 a > 1 and a virtual unitary representation x, we have

L
— I

L
L

that the expression Aa(x) (xcoCT) is the Fourier Transform of the positive

measure of finite total mass

pa Z (log 8[x"]
vel.

n> 0

defined on G, where 8 [a] denotes the Dirac measure concentrated at a. Therefore

we have, for every virtual unitary representation p of G and a > 1

A„(P®P) p0(p<g>p) > 0.

Let x g G and let v(x) denote the order of the pole of L at xco^ that is to say we
write

£(tcos)
^ s) - snp-

where L(xcoj remains bounded and non-zero as 5 - 1. Since

L v(x)- y (toO r + /(tcos)
L s — 1

L
i.e. v(x) is the residue of - — at xcol5 we can extend the definition of v(x) by

additivity to the Grothendieck group of the category of unitary representations
of G. For these we have
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v(i) lim (ct- 1) ^ (tcoc) + /(TC0o)

lim (ct-1)A0(t).
<j-> 1 +

Hence from the inequality A0(p®p) ^ 0 which holds true for a > 1, we obtain,
since a — 1 > 0, that

v(p®p) ^ 0

for every virtual unitary representation p of G. More generally if cu cne C and

pl5pn are virtual unitary representations, then we have

X c*c,v(Pi®Pj) ^ 0
if j

i.e. the symmetric matrix {v(pl®pJ)} is positive semi-definite.

The assumptions in the Main Theorem can now be translated into properties
about the integer valued function v(x). First of all the fact that L(x) has an analytic
continuation to the region R(x) ^ 1 and that L(x) is holomorphic in this region

except for L(cos) which has a simple pole at 5 1 implies that v(x) ^ 0 for all

x 7* 1 and v(l) 1. If L(xcos) has a zero at 5 1, then by conjugating the Euler

product that defines L(xco0) for a a real number, we see that L(xcos) also has a zero

at 5 1 of the same order as L(xcos) ; hence v(x) — v(x). This then reduces the

proof of Deligne's Theorem to the following :

Main Lemma. Let G be a locally compact group ; let G be the space of
irreducible unitary representations of G ; consider a function

v: G -+ Z

that satisfies the following conditions :

a) for the trivial representation 1, v(l) 1

b) v(x) v(x)

c) v(x) < 0 for x ^ 1

d) v(x©^) v(x) + v(^)

e) v(p(g)p) ^ 0 for every unitary representation p, i.e. v is positive semi-

definite.

Then v(x) 0 for all x ^ 1 except possiblyfor at most orne x ofdimension
1 and defined by a character of order two.
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§5. Reduction to the compact case: reformulation of the Main

Lemma. In outline the proof of the Main Lemma is an adaptation to locally

compact groups of the following argument which works for any finite group. The

Plancherel theorem for a finite group G gives the decomposition of the regular

representation rG into its irreducible constituents ; if %r is the character of rG and

Xt runs over the characters of the irreducible representation x of G, then we have

lr X^(dim x)xt •

zeG

Now we recall that the support of %r is concentrated at the identity e of G, in fact

I G I 5[e]. If we now use that 0 ^ %r and evaluate the function v which

appears in the Lemma at %r and use the property e) we obtain

(dim t)v(t)
xeG

Properties a) and c) imply that all the terms in the above sum except v(l) 1 are

non-positive and therefore at most one other term can have v(x) — 1 and for
this representation dim x 1 and x x. Hence such a x is defined by a

character of order 2. In particular, if G admits no subgroup of index two, then

there is no exceptional representation.
The adaptation of the above idea consists in obtaining uniform

approximations to the character of the regular representation of G by a finite
linear combination with positive integer coefficients of the characters of finite
dimensional irreducible unitary representations. The approximation should be

fairly good so that the character of the corresponding representation is still a

non-negative function. As is well known, the proper framework for the study of
this type of approximation is the theory of almost periodic functions on the

group G. Rather than using the full theory we shall work with an intermediary
object, the Bohr Compactification Gb of G, which is a compact group. This will
simplify the analysis, since on Gb we can use the full strength of the Peter-Weyl
Theorem. In fact, for our purposes, even the Stone-Weierstrass approximation
Theorem would suffice.

In the following we recall the basic facts about the Bohr Compactification.
The reader can find an exposition of the theory in Weil [11], Chap. VII.

If x : G -> GL(HX) is an irreducible unitary linear representation, then the
image of G under x is contained in a unitary subgroup U(HX) of GL(HX) ; since
each U(HX) is a compact group, their product U(HX) is also a compact group.
We thus obtain a map

i! : G - n Um
teG

9(t(£/)Lg •
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The Bohr compactification of the group G, which we denote by Gb is the closure
in Yl U(HX) of the image of G under the map p. The main reason for introducing

TeG

the group Gb is that it is compact and that any irreducible unitary finite
dimensional representation x : G - U(HX) factors through a finite dimensional

unitary representation of Gb :

G - G*^ n W) - U{HX).
teG

Now since G has a dense image in Gb, any representation of Gb is irreducible if
and only if its restriction to G is irreducible. The group Gb is uniquely defined up
to isomorphism by G. By projection, any unitary representation of G can be

extended to Gb :

x : G U(HX).

1

G*

This then establishes an equivalence between the category of finite dimensional

unitary representations of Gb and the category of finite dimensional unitary
representations of G under which irreducible representations correspond.

More to the point at hand, which is that of obtaining good uniform
approximations to the character of the regular representation of G, is the fact

that the continuous functions on Gb are in one-to-one correspondence with the

almost periodic functions on the locally compact group G in the sense of von
Neumann.

For a locally compact abelian group G, Pontrjagin's duality theory gives very
precise information about the group Gb. In fact in this case all irreducible

representations of G are of dimension 1. The Pontrjagin dual of G is the group of
all continuous homomorphisms

G Homc(G, T),

where T {z e C : | z | 1} is the circle group; furthermore ô G and the

dual of a compact group is a discrete group and vice versa. Now Gb is a compact
abelian group and its character group is

Gb Hornc(Gb, T)

Homc(G, T)



THE METHOD OF HADAMARD AND DE LA VALLEE-POUSSIN 113

Hence Gb is the Pontrjagin dual of G viewed as a discrete group, i.e. the group of
not necessarily continuous homomorphisms

G" HornT).
Example 1. If G R, then Gb — Hom^p(R, T), i.e. Gb is the group of all

exponential functions f(x) eixy. The Weierstrass Approximation Theorem
describes the relation between the almost periodic functions on R and the
continuous functions on Gb.

Example 2. If G Z, then Gb Homgp(T, T). The almost periodic
functions on G are closely related with the trigonometric sums

X cQ-)Xx XII < 00 '

where x(n) elXn, with real frequencies X.

Example 3. An example relevant to the theorem at hand is G K x R,

the direct product of a compact group K and the group of real numbers. The
Bohr compactification of G is

Gb Kb x Rb.

In this situation the general theory shows that the class of central functions / on
G with the property that if 8 > 0, there exist a finite set of characters of unitary
representations •••> Xn °fK and almost periodic functions at,..., aN on R such

that for all g (k, x) in G

I /(g) - X t&Mx) I < e
i — 1

coincides with the class of central continuous functions on Gb.

Remark. After this brief interlude into the realm of almost periodic
functions on the group G, the reader should keep in mind that it is quite
immaterial whether we work with G or with its Bohr compactification. What is

really at the heart of the argument is the family of functions F on the group G

which can be uniformly approximated by finite linear combinations of the

characters of irreducible unitary representations of G with complex coefficients ;

the structure of F can in turn be described by the Stone-Weierstrass

approximation theorem.

In order to establish the Main Lemma we may then assume that G is

compact. Most of Part III is devoted to the proof of the following lemma.

L'Enseignement mathém., t. XXIX, fasc. 1-2.
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Main Lemma (Reformulation). Let G be a compact group ; let G be the

space of irreducible unitary representations of G ; consider a function

v : G -* Z
that satisfies the following conditions

a) for the trivial representation 1, v(l) 1

b) v(x) v(t)

c) V(T) ^ 0 for i ^ 1

d) v(t0 X.) *= v(t) + v(X)

e) v(p®p) ^ 0 for every unitary representation p, i.e. v is positive semi-

definite.

Then v(x) 0 for all x ^ 1 except possiblyfor at most one x0 ofdimension
1 and defined by a character of order two.

Part III: Proof of the Main Lemma

§1. Review of the representation theory of compact groups. We start
by recalling some known facts which are standard results from the

representation theory of compact groups. Some of these results are elementary,
others arise in the proof or are consequences of the Peter-Weyl Theorem.

G will denote a compact topological group ; G is endowed with an invariant
measure dp which we normalize so that JG dp 1. An important set of functions

on G is the space of square integrable functions :

L2(G) {/ : G - C I JG I fI2dp. < co}.

In the following we shall also consider the space of central square integrable
functions on G:

U(<5) {/ 6 13(G) I /(aga'1) f(g) for all a e G}.

Both L2(G) and LC2(G) are Hilbert spaces with the inner product

if h) Jg / '

By G we denote the set of isomorphism classes of irreducible unitary
representations of G. To avoid complicated notation, we shall not distinguish
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