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114 C. J. MORENO

Main Lemma (Reformulation). Let G be a compact group ; let G be the

space of irreducible unitary representations of G ; consider a function

v : G -* Z
that satisfies the following conditions

a) for the trivial representation 1, v(l) 1

b) v(x) v(t)

c) V(T) ^ 0 for i ^ 1

d) v(t0 X.) *= v(t) + v(X)

e) v(p®p) ^ 0 for every unitary representation p, i.e. v is positive semi-

definite.

Then v(x) 0 for all x ^ 1 except possiblyfor at most one x0 ofdimension
1 and defined by a character of order two.

Part III: Proof of the Main Lemma

§1. Review of the representation theory of compact groups. We start
by recalling some known facts which are standard results from the

representation theory of compact groups. Some of these results are elementary,
others arise in the proof or are consequences of the Peter-Weyl Theorem.

G will denote a compact topological group ; G is endowed with an invariant
measure dp which we normalize so that JG dp 1. An important set of functions

on G is the space of square integrable functions :

L2(G) {/ : G - C I JG I fI2dp. < co}.

In the following we shall also consider the space of central square integrable
functions on G:

U(<5) {/ 6 13(G) I /(aga'1) f(g) for all a e G}.

Both L2(G) and LC2(G) are Hilbert spaces with the inner product

if h) Jg / '

By G we denote the set of isomorphism classes of irreducible unitary
representations of G. To avoid complicated notation, we shall not distinguish
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between an isomorphism class and its members : each p e G is to be thought of as

a specific continuous homomorphism

P : G U(Vp)

into the unitary subgroup U(Vp) of a specific Hilbert space Vp. The irreducibility
of p implies that Vp has finite dimension which is also called the dimension of p

and denoted by dim(p).

The Peter-Weyl Theorem. There is an isomorphism of Hilbert spaces

(1.1) L2(G) ~ 0 Vp g V* (Hilbert space direct sum) ;

peG

in this decomposition the action of G on L2(G) induced by left translation

corresponds to the action on the left factors Vp ; more precisely, if

< > : Fp g F* ^ C

is the canonical bilinear pairing, we then have a mapping of Hilbert spaces

Tp : Vp g V* - L2(G)

given by Tp(vgX) < X, p(g_1)v >, where the inner product in Vp g F* is

normalized by dividing by dim(p). Similarly the right translation action
corresponds to the dual action on the dual space F*. The isomorphism (1.1) is

obtained by putting together the Tp s :

T 0 Tp : 0> Fp g V* -+ L2(G).
peG peG

To each peG one associates the function

Xp : g Trace p(g),

the so called character of p. Since the eigenvalues of p(g) are complex numbers of
absolute value 1, xp is a bounded continuous central function and satisfies

I Xp(9) I ^ XP(e) dim(p), Xpfe"1) Xp(a) •

If t, p g G, then it is immediate from the definition of the direct sum x 0 p
and the tensor product x (g p that

Xp©T Xp + Xt and Xp®x Xp Xt •

If p and a are unitary representations of G, their tensor product p g a is also
a unitary representation and we have a decomposition®TE a(x)T

xeG
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where the a(x) are positive integers and a(t) 0 for all but a finite number of x.

The integer a(x) is the multiplicity with which the representation x appears in

p ® x. If a is a unitary representation of G and ß is an irreducible unitary
representation of G we denote by [a : ß] the multiplicity with which ß appears in
the decomposition of a into irreducible components. Since the character of a

unitary representation uniquely determines the class of the unitary
representation, we have by the orthogonality relations for the characters that

[p ® a : x] a(x)

Jg (Z a(t)xAg))xAdW

Jg

Jg Xp(g)xMxidW

A simple combinatorial exercise, using the Maclaurin expansion of
log(l — T), gives for p, x e G and H(T, p, g) det(/ — p(g)T) that

H' 00

1) ~(T,p,g)= Z Xp (dn)T"
H n 0

2) *L{T,P®T,g) Z (Xp (9n)+ Xz(d"))
ri n o

H' 00

3) — (Xp® t,a) Z Xp (gn)Xz(gn)Tn.
n n 0

It is a formal consequence of the Peter-Weyl Theorem, that the character xp
determines p up to isomorphism. In particular the map p - xP sets a one-to-one

correspondence between the family of irreducible unitary finite dimensional

representations of G and the set of characters of irreducible representations.

Remark. The Peter-Weyl Theorem together with Weyl's character formula
and Cartan's Theorem about the highest weight constitute the fundamentals of
the representation theory of compact Lie groups.

As a special case of the Peter-Weyl Theorem, we have that the collection

{xP}PeG forms an orthonormal basis for the space L^(G) of square integrable
central functions on G. For our purposes the following result will suffice ; a proof
of it can easily be obtained from the Stone-Weierstrass approximation theorem.

WeyVs Approximation Theorem. On a compact group every continuous

central complex valued function / can be uniformly approximated by finite
linear combinations with complex coefficients of the characters {xp}peG-

Remark. The above theorem means that for every continuous central

function / : G -> C and for every 8 > 0, there is a finite linear combination
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/' L c(P)Xp >

peG

where c{p) g C and c(p) « 0 for all but a finite number of p, such that | f(x)
— f'(x) I < s for all x e G.

Existence of Invariant Symmetric Neighborhoods : On a compact topological

group there exist arbitrarily small invariant symmetric neighborhoods of the

identity, i.e. a neighborhood N of the identity such that

1) (Symmetric) N"1 N

2) (Invariant) x_1Nx — N for all x g G.

To establish this result recall that the unique topology carried by the

topological group G is defined by a base 08(e) for the filter of neighborhoods of

the identity. 08(e) satisfies the following properties

(i) For every x e G and A e 08(e), there is a B in 08(e) such that x~ lAx.

(ii) For every pair of sets A, B in 08(e), there is a C in 08(e) such that C <= A n B.

(iii) The identity belongs to every set A of 08(e).

(iv) For every A in 08(e) there is a Be 08(e) such that B'1 £ A.

(v) For every A e 08(e) there is a 08 in 08(e) such that B2 Ç A.

Now let Ne be an arbitrary neighborhood of the identity. By (ii), (iv) and (v) there

is a neighborhood Bof e such that B B'1 and B3 ç Ne. The family of
interiors xBl(xeG) cover G so by the compactness of G there is a finite set xl9..., xn

in G such that xxBl,..., xnBl cover G. By (i) and (ii) there is a neighborhood C of e

such that xf 1Cxk £ B for each k. Now given any g e G, we have g g xkB for some
k and so g~lCg ^ Bxk 1 CxkB ^ B3 Ne. Now let W be the union of all
g~lCg, with g g G. This is clearly contained in Ne. By (ii) there is a symmetric
neighborhood U in 08(e) such that U ç W n W~l. Clearly U S Ne. This

proves the result.

§2.1. The beginning of the Proof of the Main Lemma. We fix s

> 0 and a finite subset A c G, which contains the trivial representation. Now
choose a symmetric invariant neighborhood U of the identity which satisfies

I yjg) - dim X K £

for all g e U and all X e A. Let us first prove an
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Auxiliary Lemma. If U is a symmetric, invariant neighborhood of e, then
there is a continuous function

/:G - R +

which satisfies

« /to) /GT1)

(ii) fiaga'1) f(g), for every ae G

(iii)the support of / is contained in U

(iv) /(e) > 0.

Remark. The graph of such a function would have the following shape

To prove the existence of/ we proceed as follows. As in the proof of the existence

of the symmetric invariant neighborhood U, we can find a neighborhood A of e

such that A2 ç U ; we may also suppose that the measure of A satisfies p(A) > 0.

Let %A be the characteristic function of A and let h(x) be the convolution of %A

with itself

h(x)Xa*XA(X)

h(x) is a continuous function of x and satisfies h(e) \i(A) > 0. The support of h

is clearly contained in A2 ç U. Now define a function

f(x)jo h(g-'xg)dii(g)

clearly f(e) h(e) > 0 and f(x) is central. Since U is invariant we see that if
x $ U, then g~lxg $ U for all g e G ; therefore the support of / is contained in U.

If necessary we may replace f(g) by (f(g) + /(öf_1))/2 to obtain a function /
which satisfies f(g) f(g_1). This proves the Auxiliary Lemma.
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Claim 1. The real part of the integral

je f(g)2 (iM- dim X + 2s

is >0 for all X e A.

Proof. Observe that the integral is equal to

je fig)1 (xM -dim
and that on U

I %x(g) - dim X + 2s | > £

for all X e A. The claim is now clear.

We now want to replace / by a function f0 which approximates it and has the

form

(*) foig)Z "(nW#) :

\\sG

where n([i) rc(jl) e Z and almost all n(p) are 0. We first use Weyl's

Approximation Theorem to obtain an ordinary approximation to / of the form

(*) with the tt(p)'s complex numbers. Secondly since f(g) fig'1) and XpfeO

we observe that f0 is also a good approximation to /; thus if

necessary we may replace f0 by - (/0 + f0) in order to obtain a function f0 of the

form (*) with rc(ji) n(fi). Thirdly, since / is real valued, we may replace the

n(p)'s by their real parts R(n{[ij) ; this gives a function f0 of the form (*) with n(p)'s
real numbers. We then approximate the n(p) by rational numbers so that we may
suppose that our original function / is sufficiently close to a function of the form
p) with the n(p) n(jï) g Q. If this is the case, then the inequality in Claim 1 still
remains true when / is replaced by f0 :

(**) Re jG f0{g)2 (xx{g) -dim X+ 2e)d\i > 0, for all

Since this inequality is "homogeneous" in /0 we may multiply it by the square of
a large positive integer which js a^multiple of all the denominators of the n(p)'s. In
this way we obtain a function f0 in (*) with n(p) - rc(jâ) g Z and which satisfies

Let us put fo fo ~ fowith

fo I and - V - n(p)X(1.
n(H)>0 M(M)<0

/o and /ö are the characters of two unitary representations which we denote by
p+ and p". It should be pointed out that the representations p+ and p" have no
component in common, i.e. jG /o ' /o dp 0.
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Claim 2. The real part of

je Wo +/Ö)2 (iM-dim X + 2e)d\i

is positive for all Xe A.

Proof. The integral is equal to

Ig Wo -fö)2 (xM~dim X+ 2e)d|i + jc 4

+ (-dim X + 2e) jG

The third integral is clearly 0. The second integral is a positive integer, because it
is the multiplicity with which the irreducible unitary representation X appears in
the tensor product p+ ® p~. The first integral has positive real part as follows
from the inequality in Claim 1 (**).

Consider now the representation p p+ + p~; clearly %p fo + /o-In
our context the representation p plays the role of the regular representation. Let
us observe that the inequality in Claim 2 can t>e written in the form

Mo Xp ®(,(g)Xx(dW^{Re Ig Xp®pfeWn} (dim X-2s) ;

both of the integrals appearing here are real numbers and hence the integrals
themselves satisfy the inequality, i.e.

Ig Xp®p(0)X^)dn S* (dim X-2e) JG xp®p(gW

The integral on the left hand side represents the multiplicity with which the

representation X appears in the representation p 0 p :

[p <g> p : X] Ig xp®p ;

similarly, the integral on the right hand side represents the multiplicity with
which the trivial representation x 1 appears in p <g) p :

[p <g> p : 1] Ig Xp®p(gW

With the above notation, the last inequality can be written in the form

(***) [p 0 p : X~] ^ [p ® p : 1] (dim X — 2s), for all X e A

§2.2. Conclusion of the Proof of the Main Lemma. We first decompose

the representation p (8) p

p®p L [p ® P : p]p, [p ® p : p] Ig xp®p ;
(ieG
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we then use the additivity property of the order function v and its positive

definiteness to obtain that

0 s: v(p®p) [p <g> p : 1]V(1) + £ [p <g> p : p]v(p).
neG

Now since the sum is nonpositive the inequality remains true if we restrict the

summation to those p e A, p ^ 1 :

o ^ [p ® p : i]v(i) + Y Cp ® p : KlvM ;

XeA

If 1

from the inequality (***) we then obtain

0 < [p <g> p : l]v(l) + Y [P ® P : (dim '
XeA

If 1

hence

0 ^ [p ® p : 1] {v(l) + E (dim ^-2s)v(X)}
XeA

Xfl

Letting 8^0 and observing that [p (g) p : 1] ^ 1 we obtain finally that

0 ^ Y (dim ^)v(^)
XeA

for any finite set A c= G which contains the trivial representation. The Main
Lemma now follows from the last inequality by observing that besides the term

v(l) 1, there can occur at most one other non-zero term with v(x) — 1 and

dim t 1. Thus x0 x0 must be of order 2. This completes the proof of the

Main Lemma and hence also of Deligne's Theorem.

§3.1. Conditions under which L(x) ^ 0 for all x with R{t) 1.

The question still remains whether the exceptional representation x0 in the main
theorem actually exists. We now want to show that axioms A and B and the

assumptions which appear in the statement of the theorem are not enough to
imply the non-existence of x0. In fact we construct a set of data {G, (x„)„6Z, <%}

and exhibit the particular character x0 for which L(x0) 0. We then propose a

condition, called Axiom C, which is quite natural from the point of view of the

applications to number theory and algebraic geometry and which can be

incorporated into the statement of the theorem so as to guarantee that L(x) ^ 0

for all x with R(x) 1.
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Let us recall that the first instance of a calculation implying the non-
vanishing of an L-function associated with a quadratic character seems to be the

71

representation obtained by Leibniz of — as an infinite series

TC 1 1 1

4 ~ ~
3

+
5

~
7

+

In fact the series above is simply the value at s: 1 of the L-function

1

Us, x) n
V t x(p)p~

where xip) 1 if p 1 mod 4 and x(p) — 1 if p 3 mod 4, i.e. x *s the

character which corresponds by class field theory to the Gaussian field Q(i).
These ideas were fully developed by Dirichlet who proved that an ordinary L-
function L(s, x) associated with a character x of the second order never vanishes

at s 1 ; this he did by explicitly evaluating L(l, x) as a non-zero number. It is

unfortunate that in the generality in which we want to work, the ideas of
Dirichlet do not seem to apply directly to the L-functions L(x). In searching for an

appropriate variant of Dirichlet's argument which could be applied to L(x) we

are lead to the method introduced by Merten in 1897 to show that L(l, x) ^ 0

for any real character x without explicitly evaluating the L-function. Merten's
idea consists in 1.) exploiting boundedness of the partial sums of the values of x '

if X is a character of conductor /, then

X X(") 0(f)
N

and 2.) observing that for x a character of order 2, the function

a(n) X xU)
d\n

satisfies a(n) ^ 0 for all n and a(n2) ^ 1 (see [8], p. 133).

A careful analysis of Merten's proof and a translation of Dirichlet's theorem

on primes in arithmetic progressions into a statement about the distribution of

conjugacy classes of the Galois groups of cyclotomic extensions already reveals

what could go wrong in the more general situation dealt with in the Main
Theorem ; it also shows what makes possible the existence of a character x0 with
L(x0) 0. In this respect, Weber's proof of the Prime Ideal Theorem and

Beurling's analysis of the distribution of generalized prime numbers [2] are also

of some relevance.
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§3.2. An example of a representation t0 with L(t0) 0. Consider

the extension

0->G->G-»R->0
with G G x R the direct product of the reals R with G Gal(Q/Q) the

Galois group of the separable closure of the rationals Q. For each rational prime

p we let Fp denote the Frobenius conjugacy class in G. For E we take the set of all

rational primes p 3 mod 4. For each p g E we consider the conjugacy class of
G

P

2xp <Fp., -log-

The set (xp)pei will play the role of the countably infinite family of conjugacy
classes in G. The quasi-character ccq : R R% is co^r) er. Similarly cos : G

-> C* is given by composing the projection map G -> R with co*. In particular we
?2V

have cos(xp) 1-1. Axiom A is clearly satisfied. As for Axiom B we certainly

P
have co_x(xp) — — > 1 and if s g C satisfies R(s) > 1, then the Euler product

l(®s) n i— 1-1—,n —V-
pel. 1

P 3 mod 4
^

[2

converges absolutely. In fact if a > 1, then L(coCT) can be compared with Ç(a)2°.
Now let x0 be the character of G corresponding to the quadratic extension
Q(0/Q- From elementary number theory we know that

To(Fp)
1 if p 1 mod 4

— 1 if p 3 mod 4

Thus we have x0(Fp) - 1 for all p g E. We want to show that the L-function

£Aoo n. _

1

(f..pel. 1 X0C0S(Fp)

has a zero at 5 1. In fact we observe that

^o©,) - n
1

v _a - n
P6^ i ^ / c \ ^ 1 pE3mod4 / 2
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if we multiply L(x0cos) by

n 7 ~~7ÏF~T
pel1 ®s(^p)

we obtain

L(cûs)L(ToCOs) n T^YIJ >

p= 3 mod 4
^ I

KP/

which is a function holomorphic and free of zeros in the region R(s) > j.
Therefore to show that L(x0cos) has a zero at s 1, it suffices to show that L(coj
has a simple pole at s 1 and otherwise is holomorphic and free of zeros in the

region R(s) ^ 1. This information is a simple consequence of Beurling's theory of
generalized prime systems [2] ; it can also be obtained more directly by using the

prime number theorem for arithmetic progressions to obtain the asymptotic law

#{^x|p 3mod4J |ogx

A still simpler approach consists in using the identity

?(s)
£-(0 /!(S)/2(S)/3(S)

L{s, x0)
'

where Ç(s) is the Riemann zeta function, L(s, x0) is the ordinary Dirichlet series

associated with the character x0, and whose value at s 1 is given by the Leibniz
series, and

/,W n(i-^)(.-0rx"'
M - n (i - ^)2 (i - \
Ms) n (i +

1

where each product is taken over all the prime p 3 mod 4. All the functions
71

/j(s) are well defined and distinct from 0 at s 1 ; L(l, x0) —. Therefore Z(cos)

has a simple pole at s 1 and L(x0cos) has a simple zero at s L Let us also

observe that the other hypothesis in the Main Theorem are satisfied. All the L-
functions L(xoos) associated with finite dimensional representations xcos of G,
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where x are representations of the Galois group G distinct from x0 and the trivial

representation are holomorphic in the region R(s) ^ L This can be shown by an

argument similar to that given above for L(x0cos). We prefer to use estimates like

those which enter into the proof of the Chebotarev density theorem. For these

purposes it is enough to verify that

V y(Fn) 0 {— I, some m > 0
p4Xt1 voog^ry

(^t Trace x). But this is clear because

I xAFp)X p))x,(Fp)
pel, p^x X

1 X X,(fp) - 1 X x0Xx(fp)
X p^-x X p^.x

0 (dog '

where the last estimate results because the ordinary Artin L-functions L(s, x) and

L(s, x0x) are holomorphic and free of zeros in the region R(s) ^ 1.

Remark. It should now be possible for the reader to construct infinitely

many other examples like the one given above by considering polynomials other
than x2 + 1. Similar examples in the geometric case T ~ Z are also possible.

§3.3. Axiom C and an addendum to Deligne's Theorem. In order to

remove the possibility of the existence of a representation like x0 we now
formulate a condition that guarantees a certain amount of equi-distribution of
the conjugacy classes (xj^ when restricted to subgroups of finite index in G. The

guiding requirements are i) to postulate that the given family of conjugacy classes

(xv)vez is not completely outside a certain subgroup of index 2 and ii) to postulate
that the data {G, (xu)t.6l, coj behaves properly under base change. More
precisely, we suppose that we are given data {G, (xj^, ccq} as in Part II, §2. Now
consider a subgroup G' of G of finite index in G. A conjugacy class xv in G can be

thought of as an orbit

xt{gag-1 \ g e G}.

If we let G u G'o, be a left coset decomposition of G modulo G'. Then we can
j

split xy into the disjoint union of orbits under G' :

xvu {g(Gjaa/x)gi~1 | G'} ;
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some of these orbits will belong to G' others will lie outside. We denote by
S{v) (*vX|„

the collection of conjugacy classes in G' contained in x„ and say that the index w

divides v ; the set s(v) may possibly be empty. Given a subgroup G' of finite index
in G it is often convenient to think of the countable family {s(u)}ûeï of conjugacy
classes in G' as a covering of the family (xj^. For a given v, we attach an integer
d(w) to each divisor w of v. This should be done coherently so that £ d(w)

w\v

[G : G']. At any rate, the choice d(w) [G : G'~]/#s(v) will suffice when G' is

normal in G. In order to obtain a coherent system of norms which fits well with
the commutative diagram

0 -+ G'° G' -» r -> 0

0 ^ G° G^r-^o
we now extend the quasi character ccq : T -> to a quasi-character

co; : r -> R*
so that

co'^xJ ©1(xl,)',(M'),

whenever the conjugacy class xw is contained in xv. With the above notations we

can now make the following definition.

Definition. For a subgroup G' of finite index in G, the data {G7, (xw)W6Ï', coj}
is called the base-change of {G, (x„)reï, coj to G'.

If G' is a normal subgroup of G, then a combinatorial argument of a rather

simple nature ([7], page 248) shows that if the L-function of a representation x' of
G' is defined by ^'GXIdet (/ - x'(xj) '

then we have

L(xG') J]
a

where

r Yj w(a)a
a

is the decomposition of the regular representation of the finite group G/G' and

L(xf<g)o, G) is a twisted L-function defined on {G, {xv)vei:, cdJ as in [7], page 248.

We now state the third requirement that the L-functions L(x) must satisfy.
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Axiom C. Let G' be a subgroup of G of index 2. For the principal L-
function L{(d's) associated to the quadratic base-change {G\ (xw)wer, co'i} we have

a decomposition

L(co;) L(cos)L(x0cos),

where x0 : G -» C* is the real character of order 2 with Ker(x0) G'.

We can now add to the main result of Deligne the following statement.

Theorem. With the hypothesis and notation as in the Main Theorem

Part II, §3 supposefurthermore that the principal L-function L(co^) associated

to any quadratic base change {G', (xw)wer, co^} satisfies Axiom C and has a

simple pole at co'l5 then the exceptional character x0 does not exist and

^(T) 0 for all x with R(x) 1.

The proof is clear, since if L(x0cos) has a zero at s 1, then the pole of L(cos)

would be cancelled and L(<x>'s) would be regular at s 1.


	Part III: Proof of the Main Lemma

