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KUMMER'S IDEAS ON FERMAT'S LAST TF1EOREM x)

by P. Ribenboim

My purpose in this lecture is to present the main ideas of Kummer

concerning Fermat's last theorem, to show how his approach to the problem was

natural and how he was led to create the theory of cyclotomic fields. Ell discuss

his main theorem, as well as his further contributions, and indicate some of the

paths they opened in the study of arithmetics.

1. "Fermat's last theorem" is the following statement (not yet proved in all its

generality) :

(FLT) If n ^ 3 there does not exist positive integers x, y9 z, such that

xn + yn zn.

To begin, I note that if n 2 there are such integers, like for example 3, 4, 5 :

32 + 42 52

and 5, 12, 13:
52 + 122 - 132

I shall not consider here these "Pythagorean triples" of integers, despite their

interesting properties.
In order to prove FLT for every value of the exponent n, it suffices to do it for

the exponent n 4 and for every prime exponent p ^ 3.

Indeed, if n is composite, n > 2, it has a factor m which is 4 or an odd prime. If
the theorem fails for n ml (with I > 1) if x, y9 z are positive integers such that
x" + yn zn then (.xl)m + (yl)m (zl)m and the theorem would fail for m—
against the hypothesis.

Fermât discovered a proof of the theorem for the exponent n 4. In this
famous proof, Fermât introduced the "method of infinite descent" : assuming
that the triple of positive numbers (x, y9 z) is a solution of Fermat's equation, he

succeeded to produce another solution (x', y\ z') in positive numbers, with z

> z > 0 ; starting from the new solution and repeating the argument, he would

l) Lecture at the "Séminaire de Philosophie et Mathématique", Dieudonné-Loi-
Thom, Ecole Normale Supérieure, Paris, March 5, 1979.
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obtain again a solution (x", y'\ z") in positive integers, with z > z' > z" > 0.

Since z, z', z", are integers, this process cannot be repeated indefinitely, and this
is a contradiction. Thus Fermat's equation could not have a solution in positive
integers.

Euler proved the theorem for the exponent n 3. Another proof for this

exponent is due to Gauss ; it was found among his papers and it was published

after his death. Actually, Gauss showed even more. If co ^ is a

cubic root of 1 and if Q(co) Q(x/ — 3) denotes the field of all numbers of the

form a 4- hco (with a, b e Q)—this field is sometimes called the Eisenstein

field—then Gauss showed that if n 3 there are no non-zero elements x, y, z

in Q(co) such that x3 + y3 z3.

Legendre wrote papers about Fermat's theorem and reproduced Euler's

proof in his book "Théorie des Nombres", thus attracting the attention of the

French mathematicians to Fermat's theorem.

The proof for n 5 was done independently, and almost simultaneously by
Legendre and Dirichlet (1825/8).

In 1832, Dirichlet proved the theorem for n 14, sensibly easier than the

exponent n 7. For the latter, the proof was found by Lamé (1839), and

immediately thereafter simplified by Lebesgue (1840).

At this time, there was in Paris a considerable interest for FLT. Besides the

mathematicians already mentioned (including Dirichlet, who was spending

some time in Paris), Cauchy published a series of substantial papers in number

theory. He worked with the so-called "radical polynomials", investigating their
decomposition into factors.

In modern language, his research could be translated into a study of the

arithmetic of cyclotomic fields. However, he did not succeed in making any

major breakthrough in Fermat's problem, as Kummer did soon afterwards.

In 1847, Lamé presented at the Académie des Sciences de Paris, a proof of
FLT for an arbitrary exponent. The details were published in Liouville's Journal
de Mathématiques Pures et Appliquées. However, Liouville noted that the proof
was not correct, since Lamé was assuming (without further justification) the

uniqueness of decomposition of certain polynomials in roots of unity into

products of irreducible factors. This was far from obvious, and it turned out to be

false. After some repeated efforts to correct his proof, Lamé realized that there

was an essential difficulty, which he was not able to handle.

2. It is against such a background that Kummer began his remarkable work on

Fermat's last theorem.
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Already in 1837, Kummer published his first paper, written in Latin, about

FLT with an even exponent 2n. He proved:

If n > 1 is odd and if there exist positive integers x, y9 z such that gcd(n, xyz)

1 and x2" + v2" z2n, then necessarily n 1 (mod 8).

This is only a partial result. Its proof was very simple and has been found

again and again.

If the exponent in Fermat's equation is even it is possible to apply the

powerful methods from the theory of quadratic forms. Thus, in December 1977,

Terjanian showed : If p is an odd prime and if there exist positive integers x, y9 z

such that x2p + y2p z2p then 2p divides x or y.

It is quite remarkable that Terjanian's proof is entirely elementary and

classical, appealing only to the Jacobi symbol and to the divisibility properties of
xp ± yp

expressions of the form
x ± y

This suggests the possibility of finding an elementary proof, for the prime

exponent p, of the following assertion which is usually called :

The first case of FLT for the exponent p:

If x, yt z are positive integers such that xp + yp zp then p divides xyz.

For such a proof, it will be at least necessary to work with the reciprocity law
for the power residue symbol belonging to p.

3. The first important paper by Kummer on Fermat's theorem was conceived
since 1844, and appeared in 1847. His method, which we shall soon explain, led

him to work with cyclotomic fields. If the prime p is the exponent of the Fermât
2k 2k

equation, he considered Ç cos ~ + i sin —, a primitive p-th-root of 1, and
P P

the field Q(ÇP), consisting of all complex numbers of the form

a a0 + ai Çp + a2 Ç2 + T tfp_2 ^PP~2

(with a0, al9..., up_2 g Q). Those numbers with a0, al9..., flp_2eZ constitute the

ring Z[fip] of cyclotomic integers (relative to p). Just like for ordinary integers, if
a, ß e Q(ÇP), (a, ß non-zero), then a divides ß if there exists a cyclotomic integer y
such that ay ß. Two cyclotomic integers a, ß are associated when a divides ß

and ß divides a. The cyclotomic integer a is prime if any cyclotomic integer
dividing a is either associated with a or with 1. This theory of divisibility cannot
distinguish between associated cyclotomic integers. In particular the cyclotomic
integers associated with 1 play the same neutral role as 1, and they are called the
units of the cyclotomic field Q(ÇP).
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The fundamental theorem of unique factorization of integers should be

phrased as follows :

a) Every cyclotomic integer of Q(ÇP) is the product of finitely many prime
cyclotomic integers.

b) Any two such decompositions are equal, up to units, that is, if a ßi ß2 ßs

Y1Y2 ••• Yt where ß,-, yj are prime cyclotomic integers, then s t and after

an eventual permutation, af- and ßf are associated (for every i 1,..., s).

The assertion (a) is indeed true and easy to prove. But already in 1844,

Kummer had discovered that the assertion (b) does not hold in general; as a

matter of fact, Kummer showed that it is false for p 23.

In a letter sent to Liouville (1847), together with his paper, Kummer
explained how he was led to consider a new type of complex numbers, which he

called the ideal numbers, in order to recover for these numbers the theorem of
unique factorization. In another paper, Kummer explained the concept of ideal
numbers with an analogy to chemistry. At his time, the existence of certain
chemical substances containing fluor radicals had been already ascertained, yet
the fluor itself had not been isolated. According to Kummer, fluor was like his

ideal numbers, while the radicals containing fluor, which did actually appear in

nature, were like the true "wirklich") complex numbers.

The very definition of an ideal number, as given by Kummer, was phrased in

terms of divisibility properties. This approach has evolved into the concept of

"divisor", which presents itself naturally in the theory of algebraic functions.

On the other hand, while trying to understand Kummer's concept, Dedekind

gave an interpretation of ideals by means of certain subsets of Q(Çp). Thus, an

ideal (in Dedekind's approach) is a subset / of Q(ÇP) such that : it is closed under

addition and 0 el; if a g Z[Çp] and ß g I then aß g / ; there exist a g Z[Çp],

a ^ 0, such that aß g Z[Çp] for every ß g /. If / c= Z[Çp] the ideal is said to be

integral, otherwise it is fractional (but not integral). Every a g Q(Çp) gives rise to
the ideal of its multiples : (a) {ßa|ß e Z[Çp]} called the principal ideal of a. In
order that (a) (ß) it is necessary and sufficient that a ß 0 or, otherwise,

aß"1 be a unit of Z[Çp].
The product of the ideals /, J is by definition the ideal consisting of all finite

sums of elements aß, where a g /, ß g J.

To measure the extent by which there are non-zero ideals which are not

principal (i.e., in Kummer's language, "ideal numbers" which are not "numbers")
Kummer introduced the following equivalence relation: / ~ J if there exists

a g Q(ÇP), a ^ 0, such that / (a)J. The equivalence classes are called the ideal

classes or classes of ideals.
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To say that there is only one equivalence class in Q(ÇP), means that every ideal

of Q(ÇP) is principal. Kummer showed that this means that the unique
factorization theorem is true for the elements of the corresponding ring of
cyclotomic integers.

Since Kummer showed that this theorem does not hold, for example when p
23, he was led naturally to study the size of the set of classes of ideals.

In this connection he proved the following fundamental result: for each

cyclotomic field Q(Q the number of ideal classes is finite. It is called the class

number of Q(ÇP) and denoted usually by hp.

These ideas were developed in a series of important papers, published
between 1847 and 1851, one of which appeared in French in Liouville's journal
(1851). They contain many of the basic theorems of the future theory ofalgebraic
numbers, for the special class of cyclotomic fields.

4. Now I shall turn to the so-called Kummer's main theorem. Personally, I like
to refer to this as his monumental theorem, since it stands on top of a theory,
built of all pieces by Kummer, which represented a truly remarkable advance

over all the knowledge and techniques at that time.

I'll omit to discuss the purported story of a proof of FLT by Kummer, not
later than 1844, in which Kummer had made the mistake of assuming the

theorem of unique factorization. This anecdote, propagated by Hensel, is

analysed in a paper by Edwards (1975) about the recent discovery of a letter from
Liouville to Dirichlet.

The exact statement of Kummer's main theorem of 1847 is the following.
Fermat's last theorem is true for any odd prime exponent p satisfying the

following two conditions (expressed here in modern terminology) :

1) If an ideal I is such that its p-th power Ip is a principal ideal, then I
itself is a principal ideal.

2) If co is a unit of the cyclotomic field Q(ÇP) and if there exists an ordinary
integer me Z such that co ra(mod p) then co is the p-th power of a unit.

These were working hypotheses. The problem became therefore to find out
for which prime numbers p these hypotheses were satisfied.

First, he proved that condition (1) is equivalent to the following one:

1') p does not divide the class number hp of the cyclotomic field Q(ÇP).

Moreover, using the results of his deep study of arithmetic of cyclotomic
fields, he showed that the condition (1) implies condition (2). This statement is

now known as Kummer's "lemma on units". The proof is very delicate and

required what is now known as X-adic methods (where X is the cyclotomic prime
of Q(ÇP) which divides p).

L'Enseignement mathém., t. XXIX, fasc. 1.-2 12
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Every prime p satisfying condition (1') is called a regular prime. In other
words, Kummer proved :

If p is a regular prime then FLT is true for the exponent p.
As a matter of fact, Kummer showed more : if p is a regular prime, there are no

non-zero numbers oc, ß, y g Q(Çp) such that clp + ßp yp. It should be said that
Kummer's proof for the non-existence of solutions in Q(ÇP) was erroneous. This

was noticed and corrected by Hilbert.
I shall comment on Kummer's proof to show how natural was his reasoning.
Suppose that x, y, z are non-zero integers such that xp zp — yp. It is

possible to assume that x y, z are pairwise relatively prime, after dividing by their
greatest common divisor. The aim is to arrive at a contradiction. Looking at the
above equation, in the lefthand side there is a product, while the righthand side is

a difference. It is quite a natural idea to transform the difference into a product ;

this can be done with the use of Ç Çp, the p-th root of 1 :

xp zp — yp U (z-Vy)
j o

It would be desirable to have the various factors z — (Jy "pairwise relatively
prime" and to conclude that each is the p-th-power of a cyclotomic integer. In
such a crude way, this is not true. At this point it is necessary to introduce the

ideals, for which the unique factorization theorem holds.

Let / be the ideal which is the greatest common divisor of the principal ideals

(z — C/y) (for j 0, 1, 2,..., p — 1). Then

(z-^'y) - J'jl {j 0, l,...,p-l)
where the ideals J) are pairwise relatively prime. It follows from the unique
factorization theorem for ideals, that each one is a p-th-power; so

(z — Qy) WU 0, l,...,p-l)
This is how Kummer's proof begins. Then the discussed two cas.es, whether p

does not divide xyz, or p divides xyz.
The proof, with full details, appears in my book, and I do not wish to enter

into more explanations in this lecture.

5. After proving his main theorem, Kummer's task was clear.

1°) To characterize or at least to study the regular primes.

2°) To find out whether there are infinitely many regular primes.

3°) To extend his main theorem to irregular prime exponents—at least those

satisfying appropriate additional conditions.
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Thus, Kummer had to compute the value of the class number hp. For small

values of p, he had computations already before 1850.

Using results communicated to him by Dirichlet, Kummer was able to find

an explicit formula for the class number hp. Namely, he wrote hp as the product of

two positive integers,

h h~ •h+np llp Hp

called respectively the first and second factors of the class number and later

interpreted arithmetically.
hp is equal to the class number of the real cyclotomic field Q(Çp + Çp *)

consisting of all real numbers in Q(ÇP). Thus hp is more often called the real class

number of Q(ÇP), and hence hp is the relative class number. Kummer's formulas

were

K —W I - G(rjp_2) I

(2p)—
P ~ 3 p- 3

K 2~i~n
K k i

P~T3

X n2* log 11 - ^ I

j 0

It is not easy to explain some of the quantities appearing in the above
formulas to anyone who is not already acquainted with the basic theory of
algebraic numbers.

— g denotes a primitive root modulo p\

— for each j & 0, 1 ^ g} ^ p - 1 and gj gj(mod p) ;

— G(X) "f gjXj\
j o

— q is a primitive (p — l)-th root of 1 ;

p — 3

— Risthe regulator of the cyclotomic field, namely R2~ det(L), where Lis
the following matrix :

(log
Is«1» I log I £<[» I

log I s«1» I log I s«'» I

— r, is the number of conjugates to the field Q(Ç„) which are contained in the
field of real numbers ;
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— 2r2 is the number of such conjugates, which are nor contained in the field of
real numbers;

— r rx + r2 - 1;

— {s1?..., 8r} is a fundamental system of units of Q(ÇP), that is:

a) if zerr 1 (with el9..., er integers) then e1 er 0

b) if 8 is a unit of Q(ÇP) there exists an integer j, 0 ^ j ^ p — 1 and integers

eu er such that 8 eerr;

— if a g Q(ÇP) then a(1), a(2),..., a(ri) denote the conjugates of 7 which are real,

and a(ri + 1), a(ri + 2),..., a(ri + 2r2) those which are not real, in such a way that
0t(rl+r2+J) js foe complex conjugate to a(ri+r2) (for j 1,..., r2).

Altogether, these formulas are difficult to explain, were hard to discover and

visibly are quite unsuitable for explicit computations. Moreover, they are sort
of miraculous, if one takes into account that hp, which is an integer, being a

class number, is a product of sums of products of logarithms and trigonometric
expressions

4kjn 4kjn
V[2kj cos —-— + i sm

_
1 p- 1

Thus, the computations were already elaborate even for relatively small
values of p.

However—and this is an easy remark—what counted for Kummer was not
to determine the exact value of hp, but just to know whether p divides hp. In this

respect, Kummer proved the rather unexpected and deep result :

If p divides hp then it divides hp

As a consequence p divides hp if and only if p divides hp This represents a

considerable advance, if one takes into account that the factor hp cannot be dealt

up to now except with quite powerful and sophisticated methods.

6. Concerning the divisibility of hp by p, Kummer was able to transform the

problem into another of a more elementary nature. He proved the following
regularity criterion :

p — 3

p divides hp if and only if there exists an integer k, 1 ^ k ^ —-— such that

p-l
p2 divides the sum £ j2k.

j=i
Euler had studied these sums and expressed them in terms of the Bernoulli

numbers, first considered in the theory of probability.
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I recall their definition. By dividing x by - 1 X we may w"te
„=i

B
coefficients successively as — where Bn is the n-th Bernoulli number :

n\

eJ
^ f Ëax"

- 1
nn!

Thus B01, B, -1
B2i B3 0,... •

2 o

These numbers may be obtained recursively from the above definition ; thus if
B0,..., Bn_ are known then Bn satisfies

n + l\ (n + l\ (n + l\
i jB" +

2 J5»-' + ••• +
n J*i + i - o.

From this it follows that B2« +1 0 for n ^ 1 and that each Bn is a rational

number.

To say that the prime p divides Blk means then p divides its numerator, when

B2k is written as an irreducible fraction.

Kummer transformed his first regularity criterion into the following one :

p divides h~ if and only if p divides one of the numbers B2, B4, B6,Bp_3.
This appears to be a much more practical criterion, since the Bernoulli

numbers may be obtained, at least in theory, recursively. It is true that the
recursion formula has an increasing length, however there are other recursion
formulas of more technical nature, but smaller length, which allow a

considerable simplification in the calculations. Despite everything, a true
difficulty lies in the fact that the numerators of the Bernoulli numbers increase at
a fantastic speed and the very question of writing these numbers becomes a real

problem. Just think, for example, that the numerator of B210 has about 250

digits

7. All the above results, whatever their depth and value, do not allow to
forecast whether a given prime number is or is not regular—unless the specific
computations are performed. A fortiori, they do not give any indication about
the distribution of regular primes.

Concerning this question, without entering into long considerations, I want
to recall that Kummer computed with bare hands (that is, without any
mechanical or electronic devices) the class numbers of Q(Çp) for p ^ 163. Thus,
he has found the first irregular primes: 37, 59, 67, 101, 103, 131, 149, 157.



174 P. RIBENBOIM

He conjectured, without any strong base, that there should exist about as

many regular as irregular primes (in a sense which I will explain).
Let us note, in this respect, that Jensen has shown in 1915 that there exist

infinitely many irregular primes (even congruent to 3 modulo 4). On the other
hand, it has never been shown that there exist infinitely many regular primes.

Using heuristic arguments, Siegel has indicated in 1964 that

number of irregular primes p ^ N 1

lim ;
1 — 0.39

n ^ x number of primes p ^ N e

This agrees with the recent explicit computations of Wagstaff up to N
125000.

Kummer has also proved FLT for certain classes of irregular exponents,
satisfying additional conditions, rather difficult to be verified. These are very
technical results, where Kummer could not avoid commiting mistakes, as it was

noted, and partly corrected, by Vandiver in 1922 and 1926.

On the other hand, Kummer's efforts about the first case of FLT were more
successful.

He discovered certain congruences involving Bernoulli numbers, which must
be satisfied by hypothetical solutions of Fermat's equation. This paper is a

typical Kummerian jewel, mixing arithmetical and transcendental methods in an

astonishing way. Based on these congruences, he proved that if the first case of
FLT fails for the exponent p then p divides 3 and 5. Incidentally, the fact

that p divides Bp_3 had been discovered, earlier by Cauchy and Genocchi.

Mirimanoff extended Kummer's result and proved that p divides £p_7 and

Bp_9. More recently, Morishima proved that p must also divide Bp^11 and

Bp- 13-

An examination of the most complete tables by Wagstaff, indicate that this

phenomenon is extremely rare. In fact, it is very seldom that p divides a large
number of Bernoulli numbers (with index at most p — 3), and never it divides

successive Bernoulli numbers. All this is in relation with the profound structure
of the group of classes of ideals and maybe a little understood through the works

of Hecke, Scholz, Eichler and Ribet.

What should I say then of Krasner's striking result of 1934? He has shown :

Let n0 (45!)88. If p is a prime number, p > n0, if k(p) [^log p] and if
the first case of FLT is false for the exponent p then p divides the k(p) successive

Bernoulli numbers #p_3, #p_5, -, Bp-k(p)_ 1 (the number n0 has no special

significance and may be reduced with a little care in the proof, yet it remains too

large for the theorem to have any practical application).
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This theorem, which puts Krasner among the main contributors to the study
of FLT, indicates that the first case is plausible.

To conclude, it would be unjust to Kummer not to mention that, even in
number theory, he had other contributions and ideas of first magnitude—albeit
even more important. They concern the theory of the reciprocity law for the

power residue symbol, a forerunner of class field theory. As it turned out, and was
shown by Furtwängler already in 1912, and by Hasse in 1926, this theory could
also be applied to the study of FLT.

Kummer's work was taken up and amplified by a number of mathematicians
who dealt (and will deal) with FLT. There is still much to learn and to understand

and the publication of Kummer's Collected Papers in 1975, annotated by
Weil, will make it possible for the mathematicians to intently examine his rich
ideas.

In my book, I analyse Kummer's work and the more important methods
used in the study of Fermat's last theorem; this book contains a long
bibliography.
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