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THE TOPOLOGY OF REAL ALGEBRAIC SETS x)

by Selman Akbulut and Henry King 2)

1.3t

Real algebraic sets have been long studied. However after the emergence of

modern algebraic geometry they have been ignored ; because some fundamental

tools such as the Nullstellensatz don't apply to real algebraic sets. Fortunately in

recent years this pessimism has been dispersed with the realization that real

algebraic sets enjoy some topological advantages over complex algrebraic ones.

The fundamental problem in real algebraic sets is the topological classification

problem. The goal is to give a class of topologically defined spaces 01 such that

the underlying topological space | V | of any algebraic set V lies in 01 and the

forgetful map x is onto

{algebraic sets} A 01

Namely, every element of 01 is realized by some algebraic set. Then the

combinatorial characterization of real algebraic sets will reduce to the

combinatorial characterization of 01. x_1(20 will be the moduli space of
algebraic structures on X. We feel that the solution of this problem is now within
reach. In section §6 we give a candidate for 01 (a class of topologically resolvable

spaces) such that x is defined, and x is onto under certain restrictions. It is hoped
that these restrictions do not exist. A nice aspect of this is that one can use [Su2]
to give cohomological obstructions for deciding whether a Thorn stratified space
lies in 01.

The algebraic structures on manifolds are better understood. In 1936 Seifert
showed that any closed smooth stably parallelizable manifold is diffeomorphic
to a component of a nonsingular real algebraic set [S]. Then in a beautiful paper
in 1952 Nash extended this result to all closed smooth manifolds [N]. In 1973

Tognoli sharpened Nash's result by showing that all closed smooth manifolds
are diffeomorphic to nonsingular real algebraic sets [To]. Later in [KJ a

projective version of this result was proven. Recently nonsingular algebraic sets

were completely classified ; it was shown in [AK2] that up to diffeomorphism
nonsingular algebraic sets are exactly the interiors of compact smooth manifolds

') This article has already been published in Nœuds, tresses et singularités,
Monographie de l'Enseignement Mathématique N° 31, Genève 1983, p. 7-47.

2) Both authors were supported in part by N.S.F. grants.
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with boundary (possibly empty). Since all closed P.L. manifolds of dimension
less than 8 have smooth structures they are homeomorphic to algebraic sets. In
1968 Kuiper [Ku] extended Nash's result to all 8 dimensional closed P.L.
manifolds. Later in [A] it was shown that all 8-dimensional closed P.L.
manifolds as well as a larger class of nonsmoothable polyhedra are
homeomorphic to real algebraic sets. All these results use transversality and local
piecing techniques which in general does not work when dealing with singular
spaces. In [AKJ, [AK2], [AK5] a resolution technique was introduced.
Namely, by constructing a "topological" resolution of a singular space one gets a

smooth manifold, then by isotoping this to a nonsingular algebraic set and

algebraically blowing it down, one puts an algebraic structure on the original
singular space. Using this in [AK2] a complete topological characterization for
algebraic sets with isolated singularities was given. Later it was established that
the interior of all compact P.L. manifolds are P.L. homeomorphic to real
algebraic sets ; in fact these algebraic structures are classified up to topological
concordances [AK6], [AT2].

In this paper we give an overview of these results. For the sake of harmony we

sketch proofs when possible. We have reproduced some of [AK7] since it has not
appeared in print. The last section (§6) is a summary of our ongoing work ; so it is

somewhat tentative. We hope to give a more complete and final account in

[AK9]. The first named author would like to thank C. Weber and M. Kervaire
for their hospitality during this conference in Switzerland.

§0. Introduction

A real algebraic set F is a set of the form

V{I) x g Rn I p{x) 0, p g /}

where / is a set of polynomial functions from R" to R. We can write any algebraic
set V p~ 1(0) where p(x) is a single polynomial (p is the sum of the square of the

generators of I). V(J) is called an algebraic subset of V{I) if I c= J. An algebraic set

V is called irreducible if it can not be written as a union of two algebraic sets

VI u V2 with each Vt ^ V If V is an algebraic set then I(V) denotes the ideal of

polynomials vanishing on V A point x e V is called nonsingular ofdimension d

if there is a polynomial function p: R" -> Rn~d vanishing on V and an open
neighborhood U of x with the property that rank(dp) n — d on U and

p~1(0) n U V n U. dim(F) is defined to be the largest d such that there is a

x e V of nonsingular of dimension d. Nonsing(F) is the set of all x e Fwhich are
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nonsingular of dimension dim(F). Then we define Sing(F) V — Nonsing(F).

An interesting fact is that if W and V are nonsingular algebraic sets of the same

dimensions with W c: V then V — W is a nonsingular algebraic set (Lemma 1.6

of [AKJ).
For any set A a Rn the Zariski closure A of A is defined to be the smallest

algebraic set containing A. Given algebraic sets V c= R" and W c= Rm a function

f : V -+ W is called an entire rational function if f(x) «=* p(x)/q(x) where p : R"

-> Rm, q : Rn - R are polynomials such that q does not vanish on V A

diffeomorphism / : V - W is called a birational diffeomorphism if/ and / -1 are

entire rational functions.
Consider E(n, k) G(n, k) where G(n, k) is the Grassmann manifold of k-

planes in R" E(n, k) is the universal bundle over G(n, k). These universal

manifolds are nonsingular algebraic sets in a natural way

G(n, k) {A e Jin I A A\ A2 A, tracq(A) k}

E(n, k) {(A, x) e G(n, k) x R" | Ax x}

where Jln is the space of (n x n) matrices Rn and p(A, x) A. For a given

pair of nonsingular algebraic sets M a V a Rn of dimensions m and v, the usual

functions

/: M - G(w, v — m), g: M -> G(n, m),

/(x) the (v — m)-plane tangent to V and normal to M at x, g(x) the m-

plane tangent to M at x are entire rational functions (see [AK2], [AK3]). There is

a birational diffeomorphism 0 : RP"_1 - G(n, 1) given by d^x1 ;... ; xj (a

x X •

where atj Then V c= RP""1 is a projective algebraic set if and only if
2

0(F) is an algebraic subset of G(n, 1) c= R" Hence every projective algebraic set
is an afine algebraic set and vice versa.

In real algebraic geometry locally defined entire rational functions are
globally defined. This property does not hold in the complex case.

Lemma 0.1. Let {Fjf=1 be disjoint algebraic subsets ofan algebraic set V,

and f: Vt -+ Rn be entire rationalfunctions. Then there exists an entire rational
function f : V - Rn with f |K. f.

Proof : It suffices to prove this for k 2. Write f pjqt where ph q{ are
polynomials with qt ^ 0 on Vb let Vi h[~ ^0) for some polynomials hb Then

f
1 P_2<h}}\\

hï + h\\qj+ hj
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An important property of real algebraic sets is the complexification. For any
real algebraic set F c R" one can associate a complex algebraic set Fc a C" by
taking the smallest complex algebraic set containing F (recall R" c: C"). dim( Fc)

2 dim(F) as real algebraic sets. The complex conjugation on Fc induced from
C" defines an involution j : Fc — Fc with fixed point set F This property imposes
some topological restrictions on F Any x g F has a well defined link L(x)

St n V, where St is a sphere of radius s centered at x for a sufficiently small 8

(recall algebraic sets are locally cone-like [M]). In [Su^ Sullivan observed that
for any x e F the Euler characteristic %(L(xj) of L(x) is even. This follows from
x(L(x)) %(Lc(x)) 0 (mod 2), where Lc(x) is the link of x in Fc. The first
equality holds since L(x) is the fixed point set of the involution j on Lc(x), the
second equality holds since Lc(x) is a stratified space with only odd dimensional
strata. Algebraic sets are triangulated [Lo] and the local even Euler
characteristic condition implies that the sum of /c-simplexes of a compact k-

dimensional algebraic set Vk is a cycle [F] e Hk(V; Z/2Z) which we call the
fundamental cycle. If F is connected then Hk(V; Z/2Z) Z/2Z and [F] is the

generator. This enables us to construct various polyhedra which can not be

algebraic sets. For example let X S1 u D2 where / is the degree
/

3 map / : ÔD2 S1. Then X can not even be homology equivalent to a 2-

dimensional algebraic set since H2(X ; Z/2Z) 0. The unreduced suspension Y

of RP2 can not be homeomorphic to an algebraic set since it violates Sullivan's
condition. However the reduced suspension Y of RP2, obtained from Y by

collapsing an arc running from the north pole to the south pole, is

homeomorphic to an algebraic set (since Y is an Ar-space, see §5). Hence unlike
the first example Y is homotopy equivalent to an algebraic set.

Another useful property of real algebraic sets coming from complexification
was observed by Benedetti and Tognoli [BTJ. They noticed that if a closed

smooth manifold M is a diffeomorphic image of a nonsingular algebraic set

under an algebraic map, then M — M has dimension less than dim(M) where M
denotes the Zariski closure of M. This can be easily generalized to :

Lemma 0.2. If f : X -+ Rm is an entire rationalfunctionfrom an irreducible

algebraic set such that %(f~ H*)) is oddfor a dense set ofpoints x e f(X), then

dim(7(Z) - f(X)) < dim f(X).

Proof: First replace X by the graph of f then we can assume that X c= R"

x Rm for some n and / is induced by the projection n to Rm. By projectivizing we

can replace Rn and Rm by RP" and RPm above (i.e. imbed them as charts).
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Consider Xc c= CP" x CPm and let nc : V be the map induced by the

projection to CPm and V 7tc(^c)- BY algebraic Sard's theorem (3.7 of [Mu]) nc

is a fibre bundle map over the complement of a complex algebraic subset W of V

The real part of W has real codimension ^ 1 in n(X). Therefore if dim(7i(Ar)

— 7t(20) ^ dim 7r(X) then we can find a point x0 g (k(X) — n(X)) n (V— W).

Also by hypothesis we can find a point xx g n(X) n (V— W) with 1(xi)) °dd.

The sets and nc fxJ are invariant by complex conjugation, and the fixed

point sets of the involutions induced by the complex conjugation are the empty
set and respectively. Hence x(ncHxo)) 0 (mod 2) and

this is a contradiction since nc ^Xq) « nc 1(x1) (because n is a fibre bundle map

Another important property of algebraic sets is the resolution property. This

property forces algebraic sets to satisfy many topological conditions (see §5).

Given an algebraic set V and an algebraic subset L ; the algebraic blowup of V
along L B(V, L) defined to be the Zariski closure of

where / : (V, L) - (R", 0) is a polynomial whose coordinates generate I(L)/I(V)
and 0: R" — {0} -> RP"-1 is the quotient map 0(xl5..., x„) [xx :... : xj. The

amusing fact is that B(V, L) is well defined algebraic subset of V x RP"-1.
Furthermore if V and L are nonsingular then B(V, L) is diffeomorphic to the

topological blowup of V along L Bt(K L) (V— interior N) u E(N) where N is

the normal disc bundle of L in V and E(N) is the /-bundle over the projectivized
normal bundle of L in V, i.e. E(N) is obtained by replacing each fiber Dk of N by
RP* - int(Dk). There are natural projections n, nt making the following
commute

x(xc X(^i)) x(n H^i)) 1 (mod 2) ;

over V — W).

§1. Resolution of Algebraic Sets

{(x, 0 f{x)) eV x RP"-1 I x g V - L}

WL)

« V

Bt(V, L)
Given any polyhedron M with L <= M <= V where-L, V smooth manifolds then
we define B,{M, L) to be the closure of 1(M) - it," X(L) in L).
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If M is a smooth manifold this definition coincides with the usual Bt(M, L).
From now on we drop the subscript and let B(M, L) A M to denote the

topological (algebraic) blowup if L c M are manifolds (algebraic sets). Any
inclusions L c= M c F give rise to inclusions B(M, L) c= 1?(L L). Given smooth
manifolds L c= M c= FandH(KL) A F then tu~ *(L) is the projectivized normal
bundle P(L, F) of L in F and tT X(L) n B(M, L) - P(L, M).

Let F be a nonsingular algebraic set (a smooth manifold) and M be an
algebraic subset (a smooth stratified subset). Then F A F is called an
algebraic (topological) multiblowup of F along M if: rc 71^ ° 7r2 o... o nk for

~ nk nk-i it\
some k, where VVk-»• _ 1 -> -> such that

7if

B(Vh Lt) Vi are blowups along nonsingular algebraic subsets (closed
smooth submanifolds) Lt of Vt. Furthermore Lt <= Mt with dim(LJ < dim(Mt)
where Mi + i B(Mh Lf), M0 M, and Mk is a nonsingular algebraic subset (a
smooth submanifold) of Vk. We will denote Mk by M. M is usually called the strict
preimage of M and L- s are called the centers of the multiblowup. If furthermore
the imbeddings Lt c= 1^ and M a V satisfy some particular property 0* we call
V -> F a ^ algebraic (topological) multiblowup.

Notice that if F c R" is an algebraic set then we can assume that

k

F c= R" x n RPa c= R" x Rm
i 1

for some m and n : F F is induced by the projection R" x Rm -> Rm.

Theorem 1.1 (Ffironaka [H]). Let V be a nonsingular algebraic set and

M be an algebraic subset. Then there exists an algebraic multiblowup V F

along M. Furthermore n \n-i(Non sing M) is a birational diffeomorphism.

This theorem says that a singular algebraic set can be made nice

(nonsingular) by blowing up along nice (nonsingular) algebraic subsets. We can

go one step further, namely starting with a nonsingular algebraic set we can
make it nicer (fine) by blowing up along nicer (fine) algebraic subsets. First we

need some definitions: Let M c F be nonsingular algebraic sets, then M is

called a fine algebraic subset if it is a component of a transversally intersecting
codimension one compact nonsingular algebraic subset of F M is called a stable

algebraic subset if M Z0 a Z1 a c Zr + 1 F where {Zj- 0 are compact

nonsingular algebraic subsets with dim(ZI + 1) — dim(Zf) + 1. Similarly
in these definitions by changing nonsingular algebraic sets with smooth
manifolds we define fine submanifolds and stable submanifolds.
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Clearly fine algebraic subsets (submanifolds) are stable algebraic subsets

(submanifolds). Stable algebraic subsets are useful because they obey trans-

versality (Theorem 2.7). In algebraic geometry sometimes fine algebraic subsets

are called complete intersections. If M is compact and has a trivial normal

bundle in V then M is a fine submanifold of V

Theorem 1.2 ([AK8]). Let V be a nonsingular algebraic set and M be a

compact nonsingular algebraic subset. Then there exists a fine algebraic

multiblowup V V along M.

Since any pair of closed smooth manifolds M ci V are pairwise

diffeomorphic to nonsingular algebraic sets (Theorem 2.12), Theorem 1.2 has the

obvious topological version. An application of this theorem is Proposition 2.11

(the definition of a(0)).

There is a homology version of the resolution theorem, which says that

Z/2Z-cocycles (or cycles) can be desingularized by blowing up. For a

given compact nonsingular algebraic set V let H^(V; Z/2Z), AH^(V; Z/2Z),
Hlb(V; Z/2Z) denote the subgroups of H^(V; Z/2Z) generated by algebraic
subsets, stable algebraic subsets, imbedded closed smooth submanifolds

respectively. Let H%V; Z/2Z), AH*(V; Z), Hfmb(V; Z/2Z) denote the Poincaré
duals of these subgroups.

Theorem 1.3 ([AK8]). Let V be a compact nonsingular algebraic set, then

there exists an algebraic multiblowup V —> V such that, for all i

(a) 7i* Hl(V; Z/2Z) c H\mb(V Z/2Z)

(b) 7t* HlA{V; Z/2Z) c AH\V; Z/2Z)

Furthermore if we fix i we can assume that the centers of the multiblowup has

dimension < dim(F) — i.

As a corollary to the proof of Theorem 1.3 one gets an algebraic version of
Steenrod representability theorem :

Corollary 1.4. If V is a nonsingular algebraic set and

d e Hk{V; Z/2Z),

then there exists an algebraic multiblowup V A V along the centers of
dimension less than k and a k-dimensional nonsingular algebraic subset Z
of V and a component Z0 of Z, suchthat tu|Zo:Z0-»F represents 0.
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(b) Implies that the algebraic cohomology H%V\Z/2Z) is closed under
cohomology operations [AK8]. For example to show that the intersection of
two algebraic homology classes is an algebraic homology class we take a

resolution V -> V which makes these algebraic subsets stable algebraic subsets,
then by Theorem 2.7 we can make them transversal and project the intersection
back into V, then the Zariski closure of this set corresponds to the homology
intersection of the original homology classes.

Since any closed smooth manifold is diffeomorphic to a nonsingular
algebraic set (a) applies to smooth manifolds. It gives some interesting
topological corollaries. Here is an example : Let MO(r) be the Thorn space [T] of
the universal Rr-bundle. The Thorn class generates

Hr(MO(r) : Z/2Z) - Hr + n(ZnMO(r) ; Z/2Z)

hence it defines a map Z"MO(r) -> K(Z/2Z, r + n). By taking w-fold loops on both
sides we get a natural map

p : QnZ" MO(r) -+ K{Z/2Z, r).

It is well known that any r-dimensional cohomology class of a closed smooth
manifold M is classified by a map / : M -> K(Z/2Z, r) and the dual of this

cohomology class can be represented by an immersed submanifold if and only if

/ lifts to MO(r) for some large n. So it is useful to understand the map p.

Interestingly, Theorem 1.3 implies that p is an injection in Z/2Z cohomology as

follows: By taking the boundary of a tubular neighborhood V of some big
skeleton of K(Z/2Z, r) in R" we get an inclusion f : V K(Z/2Z, r) with /*
isomorphism for large *. By Theorem 1.3 we can take a multiblowup V V with

7u*/*(i) g Hfmb{V : Z/2Z), where i is the fundamental class. Hence the dual of

7u*/*(t) is represented by an immersed submanifold, therefore there is a map g

making the following commute

V ^ Q"T,"MO(r)

* I I"V-iKZ/2Z,r)

Since n is a degree 1 map it is an injection in cohomology, hence p* must be an

injection.
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§2. Nonsingular Algebraic Sets

The fact that closed smooth manifolds are diffeomorphic to nonsingular

algebraic sets can be traced back to the following simple fact.

Proposition 2.1. Let L be a nonsingular algebraic set and K be a

compact set with L c X c R", let f : R" -> R be a smooth function with

f \l u for some entire rational function u. Then there is an entire rational

function p : R" -> R which approximates f arbitrarily closely near K with

p\L u (if u is a polynomial then p can be taken to be a polynomial).
Furthermore if f — u has compact support then p can approximate f on all
of R"

Proof: First write / — u =* Z at. ßf where at are smooth functions and
i

e 7(L). Clearly we can do this locally, and then by putting these local
expressions together by partitions of unity we get the global expression. We

approximate at(x) by polynomials oc;(x) near K and let p u + £ af. ßf. p(x) has
i

the required properties. If p — u has compact support we can define a smooth
function g : 5" -> R by g (/ — u) ° 0 on Sn — (0, 1) and g(0, 1) 0, where S"

c R" x R is the unit sphere and 0 : Sn — (0, 1) -» R" is the stereographic
x

projection, 0(x, t) -. Then

g:{S\d-\L)v(0, 1)) - (R, 0)

hence by the first part of the theorem g can be approximated by an entire rational
function

p^s-.e-V-jufo, i))-(R, o).

Let p p o
1 + u.

The following was introduced in [AK2] to simplify Nash's and Tognoli's
theorems.

Proposition 2.2 (Normalization). Given L c X c R", If c Rm where

L, W are nonsingular algebraic sets and K is a compact set, and f : K -> W a
smooth function with f \L u for some entire rational function u : L-» W
Then there is an algebraic set Z c, R" x Rm and an entire rational function
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p : Z -> W and an open neighborhood U of K in Rn and a smooth function
<p : {U, L) (Rm, 0) such that

(i) The set LJ {(x, cp(x)) | x e U] c R" x Rm is an open nonsingular subset

of Z.

(ii) p is arbitrarily close to f ° n on U where n is the projection to thefirst
factor.

(iii) L x 0 cz U and p \L x 0 u.

Proof: Let 6 : Rm -* R2 be an entire rational function with

8(x) g G(m, m — dim W)

is the normal plane to W at x g W (from §0). By Proposition 2.1 there is an entire
rational function g : R" - Rm which approximates f on K with g \L — u.

Define :

Z {(x, y) eR" x Rm | g(x) e 8 + y}

p :Z-xRm, p(x,y)(x) + y

Clearly Z is an algebraic set. Let U be a small open tubular neighborhood of K
such that g is arbitrarily close to / on U. Therefore when xeU there is a unique
closest point u(x) on W to g{x). Define cp(x) v(x) - g{x) to be the vector from

g(x) to v(x). Hence cp(x) is perpendicular to W at u(x) g(x) + cp(x), so cp(x) is the

unique "small" solution of the equations

„M + ,eW 1

which,s to + ,Slf
S(ff(x) + y)y y) ly is 1 to at g(x) + y\
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Hence Ü {(a, q>(x)) \ x e U] has the property

Ü Z nU x {yeRm\\y \ < e}

for some small s > 0. Clearly Z, I/, p has the required properties.

Theorem 2.3 (Generalized Seifert Theorem). Let Mm c= Vv be a closed

smooth submanifold of a nonsingular algebraic set V, imbedded with a trivial
normal bundle, and let L a M be a nonsingular algebraic set. Then by an

arbitrarily small isotopy M is isotopic to a component of a nonsingular

algebraic subset of V fixing L.

Proof : Let F c R" and let W, U be small open neighborhoods of Mm in Vv,

and in R" respectively. Let f : W -> Ru ~ m be the trivialization map of the normal
bundle of M in V, f is transverse to 0 e Rû ~ m and / ~ 1(0) M. Then extend / to

/ : U -> Ry-m. Since / \L 0 by Proposition 2.1 we can approximate / on

Closure(L) by a polynomial F : (R", L) - (Ry_m, 0). By transversality
F-1(0) n W is isotopic to /-1(0) n W M. In general F-1(0) might have

extra components outside of U.

It is interesting to note that in general the extra components of F~1(0) can
not be removed, there are homotopy theoretical obstructions [AK8] (even
when L 0).

Remark 2.4. In Theorem 2.3 it is not necessary to assume that L is

nonsingular, it suffices to assume that some open neighborhood W of L in M
coincides with an open subset of a nonsingular algebraic set. The proof is the

same except it requires a slight modification in Proposition 2.1 (see [AK2]).

Theorem 2.5 (Generalized Nash theorem). Let Mm c= R" be a closed

smooth submanifold, and LcM be a nonsingular algebraic set. Assume that
some open neighborhood W of L in M is an open subset ofsome nonsingular
algebraic set. Then by an arbitrarily small isotopy M can be isotoped to a

nonsingular component ofan algebraic subset of R" x Rs keeping L fixed (for
some s).

Proof : Let U be an open tubular neighborhood of M in Rn and /: U

- E(n, k) be the map which classifies the normal bundle of M in U. f G(n, k)
and /_1(G(n, k)) - M. By using W we can assume / \L — u for some entire
rational function u (see §0). By Proposition 2.2 there is a nonsingular open subset
0 of an algebraic set Z c R" x Rs for some s, and an entire rational function
p : Ü -+ E(n, k) which makes the following commute
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R" x Rs U

in i*
R" => U f E(n, k) z> G(n, k)

where n is projection, and / o n is close to p, and L x 0 <= Ü with p \Lx 0 w.

t7 {(x, cp(x)) I

for some smooth function cp(x). Let p(x) p(x, cp(x)) then p is close to / on U.

By transversality p-1(G(rc, /c)) n U is isotopic to /_1(G(n, k)) n U M
in U. Since tt is an isomorphism on Ü and p p ° n,

p~1(G{n, k)) n Ü n~1(p~1(G(n, kj) n U) & M

p~1(G(n,k))n Ü is a component of an algebraic set by construction and

nonsingular by transversality, furthermore it contains L x 0.

Let F be a nonsingular real algebraic set of dimension n. Recall

AHn_ X(F ; Z/2Z) is the subgroup of X(F; Z/2Z) generated by nonsingular
algebraic subsets. We define

which we call the group of codimension one transcendental cycles. For any
codimension and closed smooth submanifold M c= V let a(M) be the image
of the fundamental homology class [M] under the quotient map.

Theorem 2.6 ([AK8]). Any codimension one closed smooth submanifold

M cz V of a nonsingular algebraic set V is isotopic to a nonsingular algebraic
subset by an arbitrarily small isotopy if and only if a(M) 0.

Sketch ofproof: For simplicity assume that M has a trivial normal bundle
and [M] is represented by a single nonsingular algebraic subset IF of F If
M n W 0 then M u W separates F into two components F+, F_ with one
of them, say F+, is compact (since M is homologous to W). Let / : (V9 MuW)

- (R, 0) be a smooth function with / > 0 on F+ and / < 0 on F_. We can

assume that / is transversal to 0 and is constant outside of a compact set

containing V+. By Proposition 2.1 we can approximate / by a polynomial
F : (K W) - (R, 0), then by transversality F-1(0) M' u W where M' is

isotopic to M.M' u IF is a nonsingular algebraic set hence M' is a nonsingular
algebraic set.

Hn- i(F) HB.1(7;Z/2Z)MHB_1(F;Z/2Z)J
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If M n W =£ 0 then we can find a smooth representative N of [M] with
N n M 0 and N n W 0. By the first part we can isotope N to a

nonsingular algebraic set N' by a small isotopy. Hence N' n M 0; and since

N' is homologous to M by the previous case M is isotopic to a nonsingular
algebraic set by a small isotopy.

The proof of the case M does not have a trivial normal bundle is more
difficult, we refer the reader to [AK8].

Proposition 2.10 implies that H^fV) is nontrivial in general. One of the

corollaries of Theorem 2.6 is that codimension one nonsingular algebraic sets

can be moved around by isotopies. A natural generalization of this fact is:

Theorem 2.7 (Algebraic transversality [AK8]). Let V be a nonsingular
algebraic set and M c= V be a stable algebraic subset. Let N be a smooth

subcomplex of V Then there exists an arbitrarily small isotopy f: M -»• V
with /o(M) — M and ffM) is a stable algebraic subset transverse to N.

Let rj^F) be the unoriented bordism group of a nonsingular algebraic set V

Let r\*(V) be the subgroup of rj^(F) generated by entire rational maps / : M
-> V where M is a compact nonsingular algebraic set. By taking graph of / one

easily sees that every element of r^iV) has a representative (M, /), where M
c 7 x R" is a nonsingular algebraic set for some n, and / is induced by

projection.

Theorem 2.8. Let f : M -> V be a mapfrom a closed smooth manifold to a

nonsingular algebraic set V. Then (M,/) e rfiJ(F) ifandonlyif fx 0 can be

approximated by an imbedding onto a nonsingular algebraic subset of V x R"

for some n.

Proof: One way the proof is trivial. Assume (M, /) r\*(V), then there is a

smooth manifold Z and a map F : Z -+ V with dZ M u IV and AT is a

nonsingular algebraic set, F \M f and F |N is an entire rational function. Let Z
be the double ofZ i.e.Z ô(Z x [ — 1,1 ]). By taking graph ofF we may assume

Z c= V x Rs is imbedded for some 5. In particular N a Z is a nonsingular
algebraic subset of V x Rs. Then extend this imbedding to an imbedding Z
c= V x Rs x R which is identity on N x (—1, 1). Then by Theorem 2.5 we can

isotope Z to a nonsingular component of an algebraic set Y a V x R" for some

n with N a Y. Since the codimension one submanifolds N and M of Z are

homologous, M can be isotoped to a nonsingular algebraic subset of Y, by
Theorem 2.6.

L'Enseignement mathém., t. XXIX, fasc. 3-4. 16
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Corollary 2.9 (Tognoli [To]). Every closed smooth manifold is

diffeomorphic to a nonsingular algebraic set.

The hypothesis of Theorem 2.8 is not void in fact we have :

Proposition 2.10 ([AK8]). For any k there exist a nonsingular
connected algebraic set V and a closed smooth codimension k submanifold M
er V which can not be isotopic to a nonsingular algebraic subset in V x R"

for any n.

Proof: Let W Rm with m — k even, and X be an algebraic subset given

by *2 + (xi — 1) • (xi— 4) — 0andx3 x4 xm 0. X is a nonsingular
irreducible algebraic set of two components X0 u X1 each of which is

homeomorphic to a circle. Let N be any smooth submanifold of W with N n X
Xm and dim(iV) m - k. Then let M B(N, X0), V B(W, X) A W be

topological and algebraic blowups, respectively. Assume that M x 0 was

isotopic to an algebraic subset Y of V x R" by a small isotopy. Then we get a

compact nonsingular algebraic set Z Y n (nop)~1(X) and an entire rational
function / n o p where p: V x Rn -»> V is the projection. Furthermore / : Z

- Rm has the properties: /(Z) X0 and f~1(x) ^ Rpm~fc~2 for x e X0 by
transversality. Hence since X0 X and x(RPm~fc_2) is °dd we get a

contradiction to Lemma 0.2.

Recall T[ifV) ä H^(V; Z/2Z) (2) ri*(point) and r|+(F) is generated by Q

x N Q V where n is the projection and N is a generator of rijpoint) and

0*[ß] is a generator of ; Z/2Z). Given (M, /) g rj^(F) with (M, /) S 0

(g) Ui then it follows that (M, /) g t^(F) if each 0, g H*(V; Z/2Z) ([AK2]). If an

algebraic set V has the property H^(V; Z/2Z) H^(V, Z/2Z) for all * we say

that K has totally algebraic homology; therefore such algebraic sets have the

W V x R"
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property p^K) P*(L)- RPm and more generally G(n, m) are examples of

algebraic sets with totally algebraic homology, because their homology is

generated by Schubert cycles. This property is invariant under cross products.
Also if L c= V are nonsingular algebraic sets with totally algebraic homology,
then so is B{V, L) (Proposition 6.1 of [AK6]). It is still an open question that
whether any closed smooth manifold is diffeomorphic to a nonsingular algebraic
set with totally algebraic homology.

Therefore it would be useful to understand when a given homology class

0 e H^V ; Z/2Z) of a nonsingular algebraic set V lies in H*(V ; Z/2Z). This can
be detected by a single obstruction cr(0) as follows. Let M a V be a fine
submanifold of a nonsingular algebraic set, in particular

M V0 c= V1 cz m Vr c Vr+1 V

for some closed smooth manifolds {J^} with dim(l^ + 1) dim(I^) + 1, then let

a(M) Inf [k | a(l^) 0 for i ^ k}

(make the convention a(Kr + 1) 0). Recall the definition of a{Vr) e Htn_1{V\
where n dim(F). Theorem 2.6 says that if oc(Lr) 0 then Vr can be made a

nonsingular algebraic subset of V and therefore e Htn_2(Vr) is defined...
etc. Hence by continuing this fashion we see that if a(M) 0 then M is isotopic
to an algebraic subset of V

If M ci V is just a smooth submanifold of V, then let J^(K M) be the set of all
fine topological multiblowups V V along M (^(V, M)) ^ 0 by Theorem 1.2
and the remarks proceeding it) :

wherein - B(Vt_ l5 Lt_ J, and Lt a. Vb M c Vk are all fine submanifolds. Make
the convention M Lk then for (V, n) e ^(V, M) define

a(K 71 Inf {k - n | a(LJ 0 for i < n}

Then a(K ti) 0 implies that all a(Lt) 0, hence inductively we can assume
that L; c Vx are nonsingular algebraic subsets and therefore we can make V A V
an algebraic multiblowup and M c V an algebraic subset. In fact a(K n) Oif
and only if V A V is a stable algebraic multiblowup along M. Let

a(M) Inf {a(K tu) | (V, n) e ^(V, M)}

and if 0 e Hk(V; Z/2Z) define



236 S. AKBULUT AND H. KING

a(0) Inf I a(M)

Then we have :

M F x Rs is an imbedding for some s,|

/^[M] 0 where p is the projection ]

Proposition 2.11 ([AK8]). If 0e^(V,Z/2Z) then QeH*(V; Z/2Z)
if and only if a(0) 0.

In particular this obstruction a(0) is a function of the codimension one
obstruction of Theorem 2.6. It measures whether certain codimension one

homology classes are transcendental. There is also a relative version of Nash's
theorem :

Theorem 2.12 ([AK3]). Let M be a closed smooth manifold and Mt
c M i 0,..., k be closed smooth submanifolds in general position. Then there

exists a nonsingular algebraic set V and a diffeomorphism. X : M -> V such

that X(Mt) is a nonsingular algebraic subset of V for all i.

A proofof special case : Here we give a proof of the case when each Mt is a

codimension one submanifold. Since RP" approximates K(Z/2Z, 1) for n large,

we can find imbeddings yf : M c» RP" with yf_1(RP"_1) Mf. Consider the
k

product imbedding y : M c+ n w" where RP- RP", y (y1?..., yfc). Then
i 1

by Theorem 2.8, after a small isotopy we can assume that y(M) is a nonsingular
k k

algebraic subset V of n RP? x Rm for some m (since f[rp? has totally
i 1 i l

k

algebraic homology). Let 7if : Y\ RP? x Rm RP" be the projection to the i-th
i 1

factor, and call Vt nf ^RP"- x) n V then Vt ^ by transversality. In
fact y induces a diffeomorphism

In [BT2] another proof of this theorem is given. Theorem 2.12 can be used to

produce distinct algebraic structures on smooth manifolds. If F is a smooth

manifold we can define a usual structure set

^AIÀV) w, g)
V' is a nonsingular algebraic set

g : V ->• V is a diffeomorphism

~ is the equivalence relation (V, g) ~ (F", /i) if there is a birational

diffeomorphism y making the following commute
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^Alg(F) is the set of distinct algebraic structures on V Hence a natural problem is

to compute S^Alg(V), or at least produce nontrivial elements of this set. For
example if we take M c F as in Proposition 2.10, then by Theorem 2.12 (V, M) is

diffeomorphic to nonsingular algebraic sets (V\ AT). Let \V\ \ Vr] denote the

underlying smooth structures and let V | V |, V \ V | be the forgetful maps.

Then (K g) and (V, g') are distinct elements of ^Aig(|L|), otherwise M would be

isotopic to a nonsingular algebraic subset of V

An interesting question is whether algebraic structures on smooth manifolds

satisfy the product structure theorem ; that is, whether the natural map

^Alg(M) x R" - ^Alg(M x R"), (V, g)^(Vx R", g x id)

is surjection. The answer would be negative if one can find a smooth manifold M
and 0 e H^,(M ; Z/2Z) such that M can not be diffeomorphic to a nonsingular
algebraic set AT with 0 e H^(M' ; Z/2Z). To see this, pick any smooth

representative N M of 0 öuC-ZV]. By graphing g, we can assume N a M
x Rn for some n and g is induced by projection. By Theorem 2.12 we can find a

diffeomorphism X : M x R" V to a nonsingular algebraic set V with X(N) is

an algebraic subset (one has to modify Theorem 2.12 to apply to this

noncompact case). Then there can not exist a birational diffeomorphism p : V

- M' x R" where AT is a nonsingular algebraic set diffeomorphic to M,
u projection

otherwise X(N) AT x R" AT would represent 0 e H^(M' ; Z/2Z).

§3. Blowing Down

Real algebraic sets obey some simple but useful topological properties :

Proposition 3.1.

(a) One point compactification an algebraic set is homeomorphic to an algebraic
set.

(b) Given algebraic sets L a V, then V — L is homeomorphic to an algebraic
set.

(c) Given algebraic sets L a V with V compact then V/L is homeomorphic
to an algebraic set.
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Proof:
(a) Let Z c R" be an algebraic set and assume that Z # R" and 0 Z

(otherwise translate Z). Let Z /" *(0) for some polynomial /(x); then define

F(x) I x —|2^j ' where à is the degree of /(x). Clearly F(x) is a poly-

xnomial and F TO) is the one point compactification of Z, since x i—> 5- is the
1*1

inversion through the unit sphere.

(b) Let V f~1(0), L « g~l(0) for some polynomials f g : R" R.

Define G(x, t) | /(x) |2 + | tg(x) — 1 |2, then G_1(0) « V — L.

(c) By applying (a) we get the one point compactification of G~ *(0) to be an
algebraic set; if V is compact this set is homeomorphic to V/L.

This proposition implies that a set is homeomorphic to an algebraic set if and

only if the one point compactification is homeomorphic to an algebraic set.

Hence any noncompact algebraic set has a collar at infinity, since every algebraic
set is locally cone-like [M]. Also we get that the reduced suspension ZnX X
x Sn/X V Sn of any algebraic set X is homeomorphic to an algebraic set.

There is a fancier version of the blowing down operation (c) (Proposition 3.3).

First we need to discuss projectively closed algebraic sets. Let p : R" -> R be a

polynomial. Another interpretation of this concept is the following : Let X : R"
d. We call p(x) an overt polynomial ifpf ^0) is either the empty set or {0}. We call

an algebraic set V p~ x(0) a projectively closed algebraic set if p(x) is an overt

polynomial. Another interpretation of this concept is the following : Let X : R"

- RP" be the inclusion X(xl5..., xn) [1 ; xx ;xj then V — p~x{0) is

projectively closed if and only if X is a projective algebraic subset of RP" in other
words X(V) is Zariski closed in RP" (see also [AK2]). Real algebraic sets along
with maps can easily be made projectively closed by the following.

Proposition 3.2. Let f : Z -> W be an entire rational function between

algebraic sets with Z nonsingular and compact. Then there is a projectively
closed algebraic set V cz W x R" a birational dijfeomorphism g which makes

the following commute

V c> W x R"

0 Î « I 71

z L

where n is the projection, n is some integer.
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Proof: By taking the graph of / we can assume that Z cz W x Rm <= Rr

for some r, and / is induced by projection. Also identify Rr c: RPr via X. Then let

Z be the Zariski closure of Z in RPr. We claim dim(Z —Z) < dim(Z). This is

because if U is an irreducible component of Z then U n Z # 0, and therefore
U — Z — U n RPr_1 is a proper algebraic subset of U where RPr_1

{[0; xx ;xj 6 RPr}. Since U is irreducible dim(U — Z) < dim(I/), also

dim(U) dim(Z). Therefore dim(Z —Z) < dim(Z). So Z — Z Sing(Z). By
resolution of singularities [H] (Theorem 1.1) there is a nonsingular algebraic set

V a RPr x Y[ RPai such that the projection induces birational diffeomorphism
i

between V and Z. In particular V <= Rr x nRpai
i

RPr X U RPa' g. RC + d' +^ + I)2

i

is a projectively closed algebraic set. Hence V is projectively closed (check
details).

Now assume that L cz W c Rm be real algebraic sets, and V a W x Rn be

a projectively closed algebraic set. Let q : Rw - R be a polynomial with q~\0)
L. Define

Dq : W x R" ^ W x R"

by P>q(x,y) (x9yq(x)). Dq is a diffeomorphism on (W — L) x R" and Dq(L
x R L x 0. Therefore Dq(V) is the quotient space of V by the equivalence
relation (x, y) ~ (x, 0) if x g L. We call the operation V -> Dq(V) u L (L is
identified by L x 0) blowing down V over L.
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Proposition 3.3. Given L, W, V as above, then Dq(V) u L is an

algebraic subset of W x R".

Proof: Let p : Rm x Rn - R be an overt polynomial of degree e with V

p_1(0) and let <2 be as above. Define a polynomial r : Rm x R" R by

We claim r ^0) Dq(V) u L. It is easy to see that

r_1(0) n (W-L) x R" Ö,(L) n (IT-L) x R",

so it suffices to show that r_1(0) n (LxR") L x 0. We decompose p(x, y)

— y) + y) where pe(x, y) is homogeneous of degree e and a(x, y) is a

polynomial of degree less than e. Hence if (x, y)er_1(0)n(Lx Rn) then r(x, y)
0 and q(x) 0, which implies r(x, y) — pe(0, y) 0. Then y 0 since p is

overt, so (x, y) e L x 0. Conversely if (x, y) g L x 0 then y 0 and q(x) 0.

Hence r(x, y) pe(0, 0) 0, i.e. (x, y) g r~ ^0) n(Lx R").

There is a more useful version of Proposition 3.3 which says that after

modifying Dq we can get Dq(V) u L to be a projectively closed algebraic set

(Proposition 3.1 of [AK6]). This allows us to iterate this blowing down process.

The topology of real algebraic sets with isolated singularities is completely
understood by the following Theorem.

Theorem 4.1 ([AK2]). X is homeomorphic to an algebraic set with isolated

singularities ifand only if X is obtained by taking a smooth compact manifold W
r

with boundary dW u Mh where each Mt bounds, then crushing some

§4. Isolated Singularities

i 1

s to points and deleting the remaining M-s.
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One direction the proof follows from the resolution of singularities [H]. To

prove it to the other direction we need the following :

Proposition 4.2. If a closed smooth manifold M bounds a compact
manifold, then it bounds a compact manifold W such that there are transversally
intersecting closed smooth codimension one submanifolds Wu Wr with

Wjsj Wt « con(M), in other words u Wt is a spine of W

Proof: Let M dZ where Z is some closed smooth manifold. Then pick
balls Dh i 1, 2,..., r lying in interior (Z) such that:

(a) uDt is a spine of Z
i

(b) The spheres St dDt intersect transversally with each other in Z

(c) uDf — udDt is a union of open balls u Bj.
j= i

Z

Let Bj c: Bj denote a smaller ball. Then Z0 Z

manifold with spine (J Sh and

(J interior(£}) is a

ÔZ0 M u (J dB), dB) » Sm

7=1
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Order {B'j} so that there is an arc from M to dB\ intersecting exactly one Sv

Then attach a 1-handle to dZ0 connecting M to dB\ get Zx Z0 u (1-handle)
as in the figure :

Then dZx M u (J dB'j and IJ^ u Cx is a spine of Zl3 where Cx is the circle
j=2

defined by the core of the 1-handle union of the arc. By continuing this fashion we

get Zs with dZs M; and the spine of Zs is transversally intersecting

codimension one spheres and circles u (J C,. We are finished except Cj are
j= i

not codimension one. We remedy this by topologically blowing up Zs along
IJCp i.e. let W B(ZS, IJC7) and let Wt to be the projectified normal bundles

P(Cp Zs) of Cj (i.e. the blown up circles), and B(Sh Sin{JCj) we are done.

Proof of Theorem 4.1 : By Proposition 3.1 it suffices to prove this for one

point compactification of X. Hence we can assume that X is compact. Let W be a
r

compact smooth manifold, dW (J Mt- and each Mt bounds. By Proposition

4.2 we can assume Mf dWt such that each Wt has a spine consisting of union of
transversally intersecting codimension one closed smooth submanifolds Lt. Let
M JTu [jW,

Z

d
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By Theorem 2.12 we can assume that the manifolds (M ; Ll5Lr) are pairwise

diffeomorphic to nonsingular algebraic sets (Z ; Zu Zr). Let h : Z -» R be an

entire rational function with h \z i (h exists by Lemma 0.1). Let X : Z — R be a

polynomial with ^-1(0) uZ{. By Proposition 3.2 there exists a nonsingular
i

projectively closed algebraic set V cz R2 x Rn and a birational diffeomorphism

g making the following commute

V R2 x Rn

0 Î « I 71

Z - R2
/

where / (h, X). Let L {(1,0), (2, 0),..., (r, 0)} then by Proposition 3.3 we

can blow down V over L algebraically. This gives an algebraic set

homeomorphic to X.

Corollary 4.3. Up to diffeomorphism nonsingular algebraic sets are

exactly the interiors ofcompact smooth manifolds with boundary possibly empty

The following is a local knottedness theorem of real algebraic sets. It is an
ambient version of Theorem 4.1. It says that unlike complex algebraic sets all
knots can occur as links of singularities.

Theorem 4.4 ([AK4]). Let Wm be a compact smooth submanifold of
S"-1 imbedded with trivial normal bundle with codimension ^1. Then there

exists an algebraic set F c R" with Sing(K) {0} such that
(Be, BtnV) zz (Bn, cone(dfT)) for all small 8 > 0, where BE is the ball of
radius & centered at 0. In fact z(dW) is isotopic to 3BE n V in 8BE.

By taking W to be the Seifert surface of a knot we get an interesting fact.

Corollary 4.5. Any knot Kn~3 e S""1 is isotopic to a link of an
algebraic set V in R".

A sketch proof of Theorem 4.4: First identify W c= R"-1 ^ S"-1 — oo,
and call M dW. Then apply the process of getting nice spines to Wm

(Proposition 4.2) ; i.e. pick a family ofdiscs Db i 1,..., rinW whose boundaries
are in general position, and JT/uD; ä cone(M) and [jDt - is a disjoint
union of open balls (jBj where St dDb Let W1 be the manifold obtained by
removing a small open ball from each Bj. Now by attaching 1-handles to W1 as in
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Proposition 4.2 we obtain W2, whose spine consists of (JSf union circles (J Cj9

with dW2 M.

Observe that this whole process can be done inside R"~1 and Cj and St are

We claim that there is disjointly imbedded m — 1 spheres Tpj 1,..., 5 in W2

such that

(1) Each Tj is unknotted in R"-1.

(2) Each Tj meets Cj at a single point, and 7} n Ct 0 for i ^ j.

(3) For each i there is Bt tz {1, 2,5} so that St u |J 7} separates W2.

jeßi

This can be easily done as in the following picture.
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(1) and (2) are easily checked from the picture. To see (3), let Bt

{j I Cj n Si ^ 0}.
Let W3 W2 v — W2. The imbedding W2 <= R"-1 can be extended to an

imbedding of W3. Since 7} and Cj are unknotted and by (2), we can isotop W3 so

that Tj u Cj in W3 coincides with Sm_1 u S1 in (Sm_1 x 5% where (Sm~1

x Sl)jJ 1,s are disjointly imbedded copies of the standard Sm~1 x S1 in
Rn_1. We can assume that some open neighborhoods of these sets in W3 and

(Sm~1 x S^j also coincide. By Theorem 2.3 and Remark 2.4 we can isotop W3 to a

component of a nonsingular algebraic set Z fixing Tj u Cj for all j. In fact after a

minor adjustment (to proof of Theorem 2.3) we can assume that Z is projectively
closed. Continue to call isotoped copy of St by St.

Since as codimension one homology classes [SJ [ |J Tj] and (J 7} is a

nonsingular algebraic set, St can be made a nonsingular algebraic set for each i

(Theorem 2.6). Hence the spine L u (JC,- of W2 cz Z can be assumed to
be an algebraic set. Since Z is projectively closed so is L.

Let p, q be overt polynomials with p_1(0) Z and g_1(0) L. Define

V {(x, t) e R"1 x R I t2e+1 q*(x, t)2, p*(x, t) 0}

where p*(x, t) tdp(x/t\ q*(x, t) teq(x/t) where d degree p,e degree q.

If (x, t) e V then t ^ 0 ; and if t 0 then x 0 since p is overt.

(R"~1 X 8, (R"~1 x e) n V) K (Rq~\e) n Z) « (Rb_1,M),

since g_1(e) n Z « dW2 M. We are almost done.

Let SJT1 {(x, t) e R"1 x R I | x |2 + t2 s2}, and cpe: Rn_1 - S£_1
be the imbedding (pe(y) - (1+ |y|2)_1/2(sy, e). Then

(pL^r'nL) {y e R"_1 I p(y) 0, q\y) (1 + |y|2) 82}

which is isotopic to M in R"_1 for all small 8 > 0. Hence (S"-i, S"_1nF)
~ (Sn~ \ M) for all small 8 > 0.

Ô

M V

n — 1
X 8 —

cpE takes R" 1 x e

to the upper
hemisphere of S"_10 sr1
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§5. Algebraic Structures on P.L. Manifolds

To prove that P.L. manifolds are homeomorphic to algebraic sets we first
define a class of stratified spaces (T-spaces) which admit "topological
resolutions" to smooth manifolds, then we prove that these spaces are

homeomorphic to algebraic sets. Then the result is achieved by showing that this
class is big enough to contain all P.L. manifolds.

Define T0-spaces to be smooth manifolds. Inductively let Ak-spaces to be

spaces in the form M M0 (J Nt x cone(Zi) where M0 is an ^space and
d

Zi are boundaries of compact Ak- x-spaces and Nt are smooth manifolds. The

union is taken along codimension zero subsets of dM0 and Nt x Zf er N

x cone(Zi). We define

dM {dM0 - {jNt X Zf) u [jdNi x cone(Zf),

hence boundaries of Trspaces are Tfe-spaces. We call a space an A-space if it is an

Ak-space for some k. If in the above definition we also assume that each Z£ is a

P.L. sphere then we call the resulting T-space A-manifold. A-manifolds are P.L.

manifolds equipped with above special structure. T-spaces are more general than

A-manifolds, for example they don't have to be manifolds.

T-spaces are constructed so that they can be "topologically" resolved. If M is

an Arspace M0 u \jNt x cone(Zj), we can choose compact Ak_1 spaces Wt

with dWt ZWe can construct the obvious Ak_1 space Mk-1 M0 u (JNt
x Wt. There is the obvious map nk: Mk^l -> M which is identity on M0 and

takes Af x Wt to Ni x cone(Zi) by collapsing Nt x spine( onto Nt x point.
By iterating this process we get a resolution tower :

~ ^ ^ 712 ~ Ttk

M M0 — M1 — -> 1 -> M
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with M a smooth manifold. In fact by proving a generalized version of

Proposition 4.2 we can adjust Wt so that each Wt has a spine St consisting of

transversally intersecting Ak-1 spaces without boundaries, and then each map

nh collapses Nt x St to Nt x point. This makes n:M -+ M, where

Tc nk o o nl9 very much analogous to a multiblowup.

Theorem 5.1 ([AK6]). The interior of any compact A-space is

homeomorphic to a real algebraic set. Furthermore the natural stratification on this

algebraic set coincides with the stratification of the A-structure.

Theorem 5.3 tells that the class of A-spaces contain all compact P.L.

manifolds hence:

Corollary 5.2. The interior of any compact P.L. manifold is P.L.

homeomorphic to a real algebraic set.

The idea of the proof Theorem 5.1 goes as follows. First define (9Jf>0, a

bordism group for an algebraic set V It is the usual bordism group of maps of A-

spaces into V modulo the subgroup generated by maps X x N -> N -> V where

X is an A-space, N is a nonsingular algebraic set and the map is the projection
followed by an entire rational map N -» V Then inductively we prove a

generalized version of Theorem 2.8 : that is if M a V is an imbedding of a

compact A-space without boundary into a nonsingular algebraic set V such that
M represents 0 in (9*{V\ then M can be moved to an algebraic subset Z of V

x Rn by a small isotopy (for some n). This implies the proof of Theorem 5.1 (by
taking V R"). Because one point compactification of an interior of a compact
A-space is a compact A-space without boundary hence is homeomorphic to an
algebraic set by above (and use Proposition 3.1 (b)).

Roughly the proof of the above claim proceeds as follows. Let M
M0 u N x cone(E) c= V then the bordism condition on M implies that

[N] e r|*(F), so by Theorem 2.8 we can assume that IV is a nonsingular algebraic
subset of V x Rm for some m. Define BfiV x Rm, N) B(V x Rm x R, N x 0),
then this contains a natural nonsingular algebraic subset NfiV x Rm, N) B(N
x R, N x 0) which is diffeomorphic to N. By continuing in this fashion let

Bk(V x Rm, N) B(Bk_fVxRm,N) x R, Nk_fV xRm, N) x 0),

Nk(V x Rm, N) B(Nk^1(V x Rm, N) x R, Nk_ fiV x Rm, N) x 0).

Then we get a generalized algebraic multiblowup nk : Bk(V x Rm, N) -> V x Rm
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such that nk 1(N) is a union of codimension one submanifolds (JS{- in general

position and

nk x Rm —TV) (V x Rm — N) x Rk

Since M is an Afc-space, £ dW for some compact Ak_ x-space IF By proving a

generalized version of Proposition 4.2 we can assume that the spine of W is a

transversally intersecting codimension one Ak_ i subspaces (J Lf with dLt 0.
We then imbed the space Mfe_1 M0 u A x fP (blown up M) into
x Rm, A) such that

(i) Mk_1 is transversal to IJS; with Mk_1 n U St N x U Lb

(ii) nk(Mk_1) is isotopic to M by a small isotopy,

(iii) Mk_1 represents 0 in (9^{Bk{V x Rm, N)\

VxRm Bk{Vx Rm, N)

This is somewhat hard to prove (see [AK6]). Then by induction, with a small

isotopy Mk_ can be moved to an algebraic subset Z of Bk(V x Rm, N) x Rs for

some s. Hence Z still satisfies (i) and (ii), after composing nk with the obvious

projection. Then by using a version of Proposition 3.3 we blow down Z to

get an algebraic set homeomorphic to M.
The class of A-spaces does not contain all algebraic sets. For example the

Whitney umbrella x2 zy2 is not an Z-space.

Therefore to classify real algebraic sets we need a bigger class of resolvable spaces

(§6).

In order to show that P.L. manifolds admit Z-structures one has to appeal to

algebraic topological methods. This is done in [AT2], here is a brief summary of
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[AT2] : One first verifies that ^-structures on P L. manifolds obey the usual

structure axioms ([L]). For example they satisfy the product structure axiom i.e.

foranyP.L. manifold M an ^-structure (M x I)y on M x I is concordant to Mr
x I where My is an ^-structure on M. Using [W] we can define an r-
dimensional ^-thickening on X to be a simple homotopy equivalence X -> Wr

where W is an r-dimensional ^fc-manifold (with boundary). Let T[(X) to be the

set of all r-dimensional ^-thickenings on X with the equivalence relation:

/i) ~ f2) if there is an {r+ l)-dimensional Tfc-thickening (W, F) with
cW Wl u W2 and making the following diagram commute up to homotopy :

There are natural maps Trk(X) -+ Tk+ l(X) given by (W, f) 1— (W x /, / x id), so

using these maps we can take the direct limit Tk(X) lim Trk(X). It follows that
the functor X i-> Tk(X) is a representable functor (see [Sp]), hence by Brown

representability theorem there exists a classifying space BAk such that Tk(X)

\_X ; BAk]. There are natural indusions BAfc_l BAu> and let BA lim BÄfc.

There is a natural forgetful map BA A BPL. Then one shows that the usual

structure theorem holds : Namely that a compact P.L. manifold M has an A-
structure ifand only if the normal bundle map (thickening map) M - BPL lifts to

Ba. Let PL/A be the homotopy theoretical fibre of n, then :

Theorem 5.3 ([AT2]). BA ^ BPL is a trivial fibration, i.e. BA ~ BPL

x PL/A and PL/A is a product of Eilenberg-Mclain spaces K(Z/2Z, nfs.
The number p„ of K(Z/2Z, n) for each n in this product is given by

v. infinite but countable if n > 8

Corollary 5.4. Every compact P.L. manifold M has an A-structure and

the number of different A-structures (up to A-concordance) on M is given by

F
W

f 0 if n < 8

P„ 26 8

© H"{M ; k„(PL/A))

L'Enseignement mathém., t. XXIX, fasc. 3-4. 17
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Briefly the proof of Theorem 5.3 goes as follows : By a standard argument,
Ki(PL/Ak) coincides with the concordance classes of ^-structures on Sl (the
exotic Afe-spheres). Since k^PL/A) lim Ki(PL/Ak) it follows by definitions
that the inclusion n^PL/A) - r\f is an injection, where r\f is the cobordism

group of /-dimensional A-manifolds. Then we construct a Thorn space MA such

that n^MA) ä r\f (by using a transversality argument for A-manifolds). Then it
~ VM

turns out that the map r\f -> Ht(BA ; Z/2Z) given by {M -> BA} i— (v^ [M] is

an injection. We can put these maps into the following commutative diagram :

ntPL/A) -h

if I

Ht(PL/A ; Z) A Hi{PL/A ; Z/2Z) ^ H{BA : Z/2Z)

where h is the Hurewicz map, r is the reduction and g is induced by inclusion.
Since the other two maps are injections then / must be injection. In fact / is a

split injection since it is a map between Z/2Z-vector spaces. Hence h is a split
injection. This implies that all fc-invariants of PL/A is zero, i.e. PL/A is a

product of Eilenberg-Mclaine spaces ]^[K(Z/2Z, nf). Then by dualizing the split
injection g ° f we get a surjection

H\Ba-Z/2Z)^ Hom(TC,(PL//l); Z/2Z)

Let 8„. g Hni(BA ; Z/2Z) such that ^(8„.) is the generator of Z/2Z.

8 f]8„. defines a map £4 ]~JK(Z/2Z, nf) PL/A

Then the map n x 8 : BA - BPL x PL/A turns out to be the desired splitting.
The calculation of p„ can be done by using the geometric interpretation of

7i,(PL/A).
The set ^A{M) © Hn(M ; nn(PL/A)) measures the number of different

n

"topological resolutions" of M, up to concordance (i.e. A-structures). Therefore

often SfA(M) is infinite ; and 6fA(M8) has 226 elements for any closed 8-manifold
M8.

§6. On classification of Real Algebraic Sets

The resolution and complexification properties of real algebraic sets impose

many restrictions on the underlying topological spaces. To give a topological
characterization of algebraic sets one has to find all such properties, such that a
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set is homeomorphic to an algebraic set if and only if it satisfies these properties.

Call a polyhedron V an Euler space if x(Link (*)) is even for all vertices x g V

Recall that all algebraic sets are Euler spaces, in fact in low dimensions this

topological property completely determines compact algebraic sets (and hence

all algebraic sets by Proposition 3.1).

Theorem 6.1. Let X be a compact polyhedron ofdimensions ^2. Then

X is homeomorphic to a real algebraic set if and only if X is an Euler spaces.

This theorem was announced in [AK2] and a proof was given [AK7]. Since

[AK7] did not appear in print we repeat that proof here. This proof is very useful

to understand the high dimensional case. It is done by first constructing a

''topological resolution" for X then proceeding as in the proof of Theorem 5.1.

Proof: The proof of case dim(X) ^ 1 follows from Theorem 4.1, so assume

that dim(X) 2. Let X' be the barycentric subdivision of X. Let X{ the i-
skeleton of X'. Then (exercise) X1 satisfies the even local Euler characteristic
condition also. We will say a one simplex in X' has type i (i 0,1) if the number
of faces containing it is congruent to 2i mod 4. Let Xu be the unions of edges of

type i, then (exercise) X10 and Xxl each satisfy the even local Euler characteristic
condition. Hence, they have resolutions 7ilf : Zu — Xu where Zu are unions of
circles, and the rclf are diffeomorphisms over Xu — X0.

First, we imbed X0 in R4. Now let Vx J5(R4, 2f0) and let \ix : V1 -> R4 be

the projection. We may imbed Z10uZn in Vx so that ^(ZJ u is

homeomorphic to Xu and px \z nu. Since Vx has totally algebraic
homology, by Theorem 2.8 we may assume after replacing Vx by Vt x R" that
each component of each Zu is a nonsingular algebraic subset of Vv We now let
V2 B(VU Z10uZn) and X2 : V2 Vx be the projection and p2 : V2 -> R4 be
the composition of px and X2. We will now imbed a surface Z2 in F2 so that

M-2^2) u PrC^io^^n) u

is homeomorphic to X.
We pick some pairing of the faces coming into each edge, i.e. there are an even

number of them, and we divide them into groups of two. This gives a resolution
of X - X0i namely, take the disjoint union of the faces with vertices deleted and
identify two edges if they are in the same group of two. This will be part of our
surface Z2, but we will not imbed it until later. We will first imbed the part of Z2
lying over a small neighborhood of X0.
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Take any vertex v of X0 and let e be an edge containing v, let i 0, 1 be such

that e c= Xu. Then e Pi(U) for some interval U in Zu. Let there be 4k + 2i
faces containing e. Pick a point p in P2 1(v) n ^2 1(u) where ueU is the point so

that v. Then in a neighborhood of p, we have two codimension one
submanifolds x(v) and X2 1(Z1$. We imbed k + i squares in a neighborhood of

p as indicated below.

K\v')

^—kr
/ -
y

<•*= /
> 7

'

7

k folded squares

i 0 or 1 square

'K\v)
^2 H«)

We do this for each edge containing v. Notice that one of these edges is Pi(L') for

some interval U' in Zu so U' n U u, i.e. the interval on the other side

of u. If i 1, we connect the bottom squares of the two sides together
as shown below.

In the end, we have a bunch of squares
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whose horizontal midlines are mapped by p2t0 v and whose vertical midlines are

mapped by X2 to Z10 u Zn. Furthermore, this map is either equivalent to x2 or

x if we choose our imbedding nicely. To each corner of each square, we may
assign a face ofX' which contains v so that the following conditions are met : each

face containing v is assigned to exactly two corners, if e is the edge containing p2

of the top half of the vertical midline, then the faces assigned to the top two

corners each contain e and are, in fact, paired, and likewise, for the bottom two
corners and the bottom midline half. We may now form a number of polygons by
taking the vertical side edges of all the squares and identifying their endpoints, if
the corresponding faces are the same. We claim these polygons are the boundary
of a surface S which contains L, a union of arcs and circles in general position so
that S is a regular neighborhood of L,dSnL is the union of the endpoints of all
the arcs in L and dS n Lis also the union of all the midpoints of the sides of the

boundary polygons.

Given this, we imbed Sin V2 so that Smisses X2l(Z10uZn)and '(xo - v) and
so p2 '((') n SL,andso S intersects the squares we have already imbedded in
the union of the side edges of all the squares, furthermore, these intersect in the
natural way so that the point of Ln dSwhich corresponds to the midpoint of a
side of a polygon, is mapped to the midpoint of the corresponding side of a
square. So, letting S' be Sunion all the squares, we have that p2(S') is
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homêomorphic to the star of v in the union of the faces of X. This is because

clearly p2(S') is the cone on p2(dS")> but p2(dS') is obtained by taking the polygon
formed by all the top and bottom sides of the squares and identifying endpoints
corresponding to the same face and identifying midpoints of all sides which map
to the same edge of X'. This is clearly the link of v in the closure of all faces.

We do this for all the vertices and we get a surface S". We now add some more

squares. For each edge e of X\ let v and v' be its vertices. We have previously
paired up the faces containing e. For each pair of faces, we have a corresponding

top or bottom side of a square over v9 and a top or bottom side of a square over v'

(namely the sides between the two corners assigned to the pair), we connect these

two sides with another square as shown (S is not shown).

If we do this for each pair of faces coming into each edge of X', we get a surface S*

imbedded in V2 so that p2(S*) is homêomorphic to a neighborhood of X in the

union of the faces ofX'. It is now easy to imbed a bunch of discs (one for each face

of X') and so get a surface Z2 in V2, so that p2(Z2) is the union of the faces of X'
and so

1^2(^2) u MZiouZn) u X0

is homêomorphic to X.
We could now try to approximate Z2 by a nonsingular algebraic set and then

blow down to finish off the proof, but the problem is Z2 is not stable, i.e. Z2 is not
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transverse to p2 0). However, we may, after replacing V2 by V2 x RÄ, assume

that Z2 n p2 is a union of nonsingular algebraic sets. An exercise below
shows that if we blow up along each of these algebraic sets twice, then Z2
becomes transverse to \i2 1(X0). Then we are able to finish off by approximating
Z2 by an algebraic set (Theorem 2.8) and blowing down, first over Z10 u Zlt
and then over X0 (Proposition 3.3).

We deferred the proof that the polygon bounds the surfaces S, so we give it
here. First, by induction, we may assume all polygons have either one or two
sides, for we may take three sides and fill in part of the surface and reduce to the

problem with those three sides replaced by one side (see below).

The shaded region is filled in part, + is part of L. If
we can fill in the rest, then adding on will fill
in all of it.

But we can easily fill in a polygon with two sides, and we can also fill in two one
sides. Since the total number of sides is even, we are done.

two sides filled in

\/,w//'' nu.ipm' w

two one-sides filled in

Exercise: Think of Rn as {(x, y, z, w) | x, y, z e R and wgR" 3}. Let S

{z xayb, w 0} and T {z 0}. Blow up along the x axis twice and
along the y axis twice, and show that after blowing up S becomes transverse to
the inverse image of T, (assuming a 1, 2 and h m 1 or 2). Note that by
imbedding the S in the above proof correctly, we may assume that locally it looks
like this with T p2 x(t;). r-1

The proof of the 2-dimensional case is done by first constructing an
appropriate topological resolution. In the general case this leads us to make the
following definition. A topological resolution tower {Vb Vjh pß} is a collection
of smooth manifolds Vh i 0,..., n, subsets Vß a Vbj 0,..., i - 1 and maps
Pß '• Vß K' satisfying the following properties :
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(I) Pji(VjinVki) Œ Kj for k < j < i.
(II) pkj o Pji\Vjinvki Pki \vJinvki for k <j < i.

(I") PTt'iUVj* Vji n U Ka.
m^k m^k

(IV) Vkj is a union of codimension one smooth submanifolds of Vj in general

position ; we call them the sheets of Vkj. If S is a sheet of Kj then pji i(S) is the

intersection of Vß with a union of sheets of (J Vmi.

m^k

(V) Pß is smooth on each sheet of Vjb and

Pji Vjt -Uvu - Vj U Vkj
k<j k<j

is a locally trivial fibration.

(VI) For any q e Vß let qt q, q} pjt{q).

Then there are smooth local coordinates

Qa'-(Ua, 0) (Ya,qJ,a i, j
where Ua is an open neighborhood of 0 in some RCa0 x RCal x x RCaa such

that :

f0 if cat 0
(1) f Cat

H* I n ^ 0} n Ua if 0
s 1

(2) [071 o Pjioe^x)]^ n n <pjx) if /c < j,
t 0 5=1

where Ikm is a nonnegative integer, and each cpfcm is a nowhere zero smooth
function. xts denotes the s-th coordinate of x in RCit, and [0r1 o pß o 0f(x)]kTO

denotes the m-th coordinate of 0/1 o pji o 0.(x) in Rc->'k.

Even though (VI) looks like an algebraic condition it is a' topological
condition. It says that topologically the map pß has only certain types of
singularities (i.e. it folds or crushes). We call a topological resolution tower
{ Vb Vjb Pji} an algebraic resolution tower if all Vb Vß are compact algebraic sets

and Pu are entire rational functions.

The realization | FT | of a (topological or algebraic) resolution tower SF

{ Vb Vjb pji} is the quotient space (J V-Jx ~ Pj£x) for x e Vjb | 2T | is a stratified

space with i-th stratum equal to Vt — (J Vjb It turns out that if 2T is an algebraic
j<i

resolution tower then | ZT | is an algebraic set. | FT | is a generalization of an A-

space.
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Real algebraic sets are obvious candidates for realizations of topological
resolution towers : If X is a real algebraic set, it has an algebraic stratification

*0 C X1 c c= c= X

with Sing(Xj) <= l5 i 1,..., n. Then the resolution of singularities theorem

[H] says that there is a multiblowup :

Vn Zn ^ Z„_! -> Z0 X

with n1: Z1 Z0 is a multiblowup of X which resolves the singularities of Xu
i.e. there is a nonsingular V1 cz making the following commute

Vt c, Zi

I I

Xi Zo
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If Kji : Zt — Zj is the composition projection, then ni+1 is a multiblowup of Z,
which resolves the singularities of the strict preimage of Xi + 1 under n0i, i.e. there
is a nonsingular Vi + 1 cz Zl + 1 and the commutative diagram

ff+l ^i+l

1 I 0, i+ 1

Xi+1 C+ Z0

Let Vß ^ and nß \y pß : Vß - Vß Then one can show that

* « U vi/pjM~* '

for x g

In fact after refining this process one gets :

Theorem 6.2. A set is an algebraic set ifand only if it is homeomorphic to a

realization \ &~ \ of some algebraic resolution tower 3T {Vh Vjh pß}.

Hence we have natural maps

{Algebraic sets} i of .opologicall

v J (resolution towers J

/p
(realization of algebraicl

(resolution towers J

onto

where p is the forgetful map, and x is the composition. We will denote the set of
realization of topological resolution towers by To characterize algebraic sets

topologically, we need to show that p maps onto Presently to prove this we

need each Vt to be diffeomorphic to a nonsingular algebraic set with totally
algebraic homology (see §2). We believe that these restrictions should not be

necessary.
Once surjectivity of x is proven, then it would be useful to find the

combinatorial conditions which characterize elements of M (i.e. algebraic sets).

For spaces of dimension 5^2 the only condition is that the space has to be an
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Euler space (Theorem 6.1). In dimension 3 this is not sufficient. For example ifX3

is the suspension £(F2) of Y2 where

then X3 is an Euler space but it can not be in 0l \ in particular X3 can not be

homeomorphic to an algebraic set (also see [K2] for a discussion of this).
In general we start with a Thorn stratified space X, by refining the

stratification we can assume that each-stratum has a trivial normal bundle. Then
by proceeding as in [Su2] we can find obstructions ak e Hk(X(k); T„_fc_1) to X
being an algebraic set with this stratification, where X(k) is the k-th stratum of
X, n dim(2Q and F) is the cobordism group of i-dimensional elements of 0t.

For example we can show T0 T1 Z/2Z and F2 (Z/2Z)16. It would be

useful to compute the cobordism groups T^ for * ^ 3 or reduce the computation
to a certain homotopy group of a universal space (as in the smooth cobordism
group). A more precise discussion of this section will appear in [AK9J.

Y2 £ (figure 8) u £ (three points)

y an arc
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