§4. Isolated Singularities

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 29 (1983)

Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
21.07.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Proposition 3.3. Given L, W, V as above, then $D_{q}(V) \cup L$ is an algebraic subset of $W \times \mathbf{R}^{n}$.

Proof: Let $p: \mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow \mathbf{R}$ be an overt polynomial of degree e with V $=p^{-1}(0)$ and let q be as above. Define a polynomial $r: \mathbf{R}^{m} \times \mathbf{R}^{n} \rightarrow \mathbf{R}$ by

$$
r(x, y)=q(x)^{e} p\left(x, \frac{y}{q(x)}\right)
$$

We claim $r^{-1}(0)=D_{q}(V) \cup L$. It is easy to see that

$$
r^{-1}(0) \cap(W-L) \times \mathbf{R}^{n}=D_{q}(V) \cap(W-L) \times \mathbf{R}^{n},
$$

so it suffices to show that $r^{-1}(0) \cap\left(L \times \mathbf{R}^{n}\right)=L \times 0$. We decompose $p(x, y)$ $=p_{e}(x, y)+\alpha(x, y)$ where $p_{e}(x, y)$ is homogeneous of degree e and $\alpha(x, y)$ is a polynomial of degree less than e. Hence if $(x, y) \in r^{-1}(0) \cap\left(L \times \mathbf{R}^{n}\right)$ then $r(x, y)$ $=0$ and $q(x)=0$, which implies $r(x, y)=p_{e}(0, y)=0$. Then $y=0$ since p is overt, so $(x, y) \in L \times 0$. Conversely if $(x, y) \in L \times 0$ then $y=0$ and $q(x)=0$. Hence $r(x, y)=p_{e}(0,0)=0$, i.e. $(x, y) \in r^{-1}(0) \cap\left(L \times \mathbf{R}^{n}\right)$.

There is a more useful version of Proposition 3.3 which says that after modifying D_{q} we can get $D_{q}(V) \cup L$ to be a projectively closed algebraic set (Proposition 3.1 of $\left[\mathrm{AK}_{6}\right]$). This allows us to iterate this blowing down process.

§4. Isolated Singularities

The topology of real algebraic sets with isolated singularities is completely understood by the following Theorem.

Theorem $4.1\left(\left[\mathrm{AK}_{2}\right]\right) . \quad X$ is homeomorphic to an algebraic set with isolated singularities if and only if X is obtained by taking a smooth compact manifold W with boundary $\partial W=\underset{i=1}{\cup} M_{i}$, where each M_{i} bounds, then crushing some M_{i} 's to points and deleting the remaining M_{i} 's.

One direction the proof follows from the resolution of singularities [H]. To prove it to the other direction we need the following:

Proposition 4.2. If a closed smooth manifold M bounds a compact manifold, then it bounds a compact manifold W such that there are transversally intersecting closed smooth codimension one submanifolds W_{1}, \ldots, W_{r} with $W / \cup W_{i} \approx \operatorname{con}(M)$, in other words $\cup W_{i}$ is a spine of W.

Proof: Let $M=\partial Z$ where Z is some closed smooth manifold. Then pick balls $D_{i}, i=1,2, \ldots, r$ lying in interior (Z) such that:
(a) $\cup D_{i}$ is a spine of Z
(b) The spheres $S_{i}=\partial D_{i}$ intersect transversally with each other in Z
(c) $\cup D_{i}-\cup \partial D_{i}$ is a union of open balls $\underset{j=1}{\cup} B_{j}$.

Let $B_{j}^{\prime} \subset B_{j}$ denote a smaller ball. Then $Z_{0}=Z-\bigcup_{j=1}^{s}$ interior $\left(B_{j}^{\prime}\right)$ is a manifold with spine $\bigcup S_{i}$, and

$$
\partial Z_{0}=M \cup \bigcup_{j=1}^{s} \partial B_{j}^{\prime}, \quad \partial B_{j}^{\prime} \approx S^{m}
$$

Order $\left\{B_{j}^{\prime}\right\}$ so that there is an arc from M to ∂B_{1}^{\prime} intersecting exactly one S_{i}. Then attach a 1-handle to ∂Z_{0} connecting M to ∂B_{1}^{\prime} get $Z_{1}=Z_{0} \cup$ (1-handle) as in the figure:

Then $\partial Z_{1}=M \cup \bigcup_{j=2}^{s} \partial B_{j}^{\prime}$ and $\bigcup S_{i} \cup C_{1}$ is a spine of Z_{1}, where C_{1} is the circle defined by the core of the 1 -handle union of the arc. By continuing this fashion we get Z_{s} with $\partial Z_{s}=M$; and the spine of Z_{s} is transversally intersecting codimension one spheres and circles $\bigcup S_{i} \cup \bigcup_{j=1}^{s} C_{j}$. We are finished except C_{j} are not codimension one. We remedy this by topologically blowing up Z_{s} along $\bigcup C_{j}$, i.e. let $W=B\left(Z_{s}, \bigcup C_{j}\right)$ and let W_{i} to be the projectified normal bundles $P\left(C_{j}, Z_{s}\right)$ of C_{j} (i.e. the blown up circles), and $B\left(S_{i}, S_{i} \cap \bigcup C_{j}\right)$ we are done.

Proof of Theorem 4.1: By Proposition 3.1 it suffices to prove this for one point compactification of X. Hence we can assume that X is compact. Let W be a compact smooth manifold, $\partial W=\bigcup_{i=1}^{r} M_{i}$ and each M_{i} bounds. By Proposition 4.2 we can assume $M_{i}=\partial W_{i}$ such that each W_{i} has a spine consisting of union of transversally intersecting codimension one closed smooth submanifolds L_{i}. Let $M=W \underset{\partial}{\cup} \bigcup W_{i}$

By Theorem 2.12 we can assume that the manifolds $\left(M ; L_{1}, \ldots, L_{r}\right)$ are pairwise diffeomorphic to nonsingular algebraic sets $\left(Z ; Z_{1}, \ldots, Z_{r}\right)$. Let $h: Z \rightarrow \mathbf{R}$ be an entire rational function with $\left.h\right|_{Z_{i}}=i(h$ exists by Lemma 0.1$)$. Let $\lambda: Z \rightarrow \mathbf{R}$ be a polynomial with $\lambda^{-1}(0)=\underset{i}{\cup} Z_{i}$. By Proposition 3.2 there exists a nonsingular projectively closed algebraic set $V \subset \mathbf{R}^{2} \times \mathbf{R}^{n}$ and a birational diffeomorphism g making the following commute

V	\hookrightarrow	$\mathbf{R}^{2} \times \mathbf{R}^{n}$
${ }^{g} \uparrow \approx$		\downarrow^{π}
Z		\rightarrow
	\mathbf{R}^{2}	

where $f=(h, \lambda)$. Let $L=\{(1,0),(2,0), \ldots,(r, 0)\}$ then by Proposition 3.3 we can blow down V over L algebraically. This gives an algebraic set homeomorphic to X.

Corollary 4.3. Up to diffeomorphism nonsingular algebraic sets are exactly the interiors of compact smooth manifolds with boundary (possibly empty).

The following is a local knottedness theorem of real algebraic sets. It is an ambient version of Theorem 4.1. It says that unlike complex algebraic sets all knots can occur as links of singularities.

Theorem 4.4 ([AK $\left.\mathrm{AK}_{4}\right]$). Let W^{m} be a compact smooth submanifold of S^{n-1} imbedded with trivial normal bundle with codimension $\geqq 1$. Then there exists an algebraic set $V \subset \mathbf{R}^{n}$ with $\operatorname{Sing}(V)=\{0\}$ such that $\left(B_{\varepsilon}, B_{\varepsilon} \cap V\right) \approx\left(B^{n}\right.$, cone $\left.(\partial W)\right)$ for all small $\varepsilon>0$, where B_{ε} is the ball of radius ε centered at 0 . In fact $\varepsilon(\partial W)$ is isotopic to $\partial B_{\varepsilon} \cap V$ in ∂B_{ε}.

By taking W to be the Seifert surface of a knot we get an interesting fact.
Corollary 4.5. Any knot $K^{n-3} \subset S^{n-1}$ is isotopic to a link of an algebraic set V in \mathbf{R}^{n}.

A sketch proof of Theorem 4.4: First identify $W \subset \mathbf{R}^{n-1} \approx S^{n-1}-\infty$, and call $M=\partial W$. Then apply the process of getting nice spines to W^{m} (Proposition 4.2); i.e. pick a family of discs $D_{i}, i=1, \ldots, r$ in W whose boundaries are in general position, and $W / \cup D_{i} \approx \operatorname{cone}(M)$ and $\bigcup D_{i}-\bigcup S_{i}$ is a disjoint union of open balls $\bigcup B_{j}$ where $S_{i}=\partial D_{i}$. Let W_{1} be the manifold obtained by removing a small open ball from each B_{j}. Now by attaching 1-handles to W_{1} as in

Proposition 4.2 we obtain W_{2}, whose spine consists of $\bigcup S_{i}$ union circles $\bigcup C_{j}$, with $\partial W_{2}=M$.

Observe that this whole process can be done inside \mathbf{R}^{n-1} and C_{j} and S_{i} are unknotted in \mathbf{R}^{n-1}

We claim that there is disjointly imbedded $m-1$ spheres $T_{j}, j=1, \ldots, s$ in W_{2} such that
(1) Each T_{j} is unknotted in \mathbf{R}^{n-1}.
(2) Each T_{j} meets C_{j} at a single point, and $T_{j} \cap C_{i}=\varnothing$ for $i \neq j$.
(3) For each i there is $B_{i} \subset\{1,2, \ldots, s\}$ so that $S_{i} \cup \bigcup_{j \in B_{i}} T_{j}$ separates W_{2}.

This can be easily done as in the following picture.

(1) and (2) are easily checked from the picture. To see (3), let B_{i} $=\left\{j \mid C_{j} \cap S_{i} \neq \varnothing\right\}$.

Let $W_{3}=W_{2} \cup-W_{2}$. The imbedding $W_{2} \subset \mathbf{R}^{n-1}$ can be extended to an imbedding of W_{3}. Since T_{j} and C_{j} are unknotted and by (2), we can isotop W_{3} so that $T_{j} \cup C_{j}$ in W_{3} coincides with $S^{m-1} \cup S^{1}$ in $\left(S^{m-1} \times S^{1}\right)_{j}$, where $\left(S^{m-1}\right.$ $\left.\times S^{1}\right)_{j}, j=1, \ldots, s$ are disjointly imbedded copies of the standard $S^{m-1} \times S^{1}$ in \mathbf{R}^{n-1}. We can assume that some open neighborhoods of these sets in W_{3} and $\left(S^{m-1} \times S^{1}\right)_{j}$ also coincide. By Theorem 2.3 and Remark 2.4 we can isotop W_{3} to a component of a nonsingular algebraic set Z fixing $T_{j} \cup C_{j}$ for all j. In fact after a minor adjustment (to proof of Theorem 2.3) we can assume that Z is projectively closed. Continue to call isotoped copy of S_{i} by S_{i}.

Since as codimension one homology classes $\left[S_{i}\right]=\left[\bigcup_{j \in B_{i}} T_{j}\right]$ and $\bigcup T_{j}$ is a nonsingular algebraic set, S_{i} can be made a nonsingular algebraic set for each i (Theorem 2.6). Hence the spine $L=\bigcup S_{i} \cup \bigcup C_{j}$ of $W_{2} \subset Z$ can be assumed to be an algebraic set. Since Z is projectively closed so is L.

Let p, q be overt polynomials with $p^{-1}(0)=Z$ and $q^{-1}(0)=L$. Define

$$
V=\left\{(x, t) \in \mathbf{R}^{n-1} \times \mathbf{R} \mid t^{2 e+1}=q^{*}(x, t)^{2}, p^{*}(x, t)=0\right\}
$$

where $p^{*}(x, t)=t^{d} p(x / t), q^{*}(x, t)=t^{e} q(x / t)$ where $d=$ degree $p, e=$ degree q. If $(x, t) \in V$ then $t \geqq 0$; and if $t=0$ then $x=0$ since p is overt.

$$
\left(\mathbf{R}^{n-1} \times \varepsilon,\left(\mathbf{R}^{n-1} \times \varepsilon\right) \cap V\right) \approx\left(\mathbf{R}^{n-1}, q^{-1}(\varepsilon) \cap Z\right) \approx\left(\mathbf{R}^{n-1}, M\right),
$$

since $q^{-1}(\varepsilon) \cap Z \approx \partial W_{2}=M$. We are almost done.

Let $S_{\varepsilon}^{n-1}=\left\{(x, t) \in \mathbf{R}^{n-1} \times\left.\mathbf{R}| | x\right|^{2}+t^{2}=\varepsilon^{2}\right\}$, and $\varphi_{\varepsilon}: \mathbf{R}^{n-1} \rightarrow S_{\varepsilon}^{n-1}$ be the imbedding $\varphi_{\varepsilon}(y)=\left(1+|y|^{2}\right)^{-1 / 2}(\varepsilon y, \varepsilon)$. Then

$$
\varphi_{\varepsilon}^{-1}\left(S_{\varepsilon}^{n-1} \cap V\right)=\left\{y \in \mathbf{R}^{n-1} \mid p(y)=0, \quad q^{4}(y)\left(1+|y|^{2}\right)=\varepsilon^{2}\right\}
$$

which is isotopic to M in \mathbf{R}^{n-1} for all small $\varepsilon>0$. Hence ($S_{\varepsilon}^{n-1}, S_{\varepsilon}^{n-1} \cap V$) $\approx\left(S^{n-1}, M\right)$ for all small $\varepsilon>0$.

\qquad to the upper hemisphere of S_{ε}^{n-1}

