## THE ACTION OF THE MAPPING CLASS GROUP ON CURVES IN SURFACES

Autor(en): Penner, Robert C.<br>Objekttyp: Article<br>Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 30 (1984)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
21.07.2024

Persistenter Link: https://doi.org/10.5169/seals-53820

## Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

## Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

# THE ACTION OF THE MAPPING CLASS GROUP ON CURVES IN SURFACES 

par Robert C. Penner

In this paper, we will discuss the solution to a problem originally suggested by Max Dehn in 1922 [D1] and more recently posed by William Thurston in [T3, problem number 20]. The problem is to compute the action of homeomorphisms of a surface on one-manifolds embedded in the surface. This computation has several applications to Riemann surface theory, dynamics of surface automorphisms, and low-dimensional topology. To give a precise statement to this problem requires a concise way to specify both homeomorphisms of surfaces and one-submanifolds of surfaces; we will discuss this background material.

This paper is a survey of some of the results in my thesis [P]; I would like to thank Dave Gabai for introducing me to some of this material and for sharing with me his initial work and insights on the main problem. Thanks also to James Munkres for his suggestions and encouragement.

Let $F_{g}$ denote the $g$-holed torus and let $H_{g}^{+}$denote the topological group of orientation-preserving homeomorphisms of $F_{g}$ (with the compactopen topology). The mapping class group of $F_{g}$, which we will denote $M C\left(F_{g}\right)$, is defined to be the group $H_{g}^{+}$modulo isotopy. By definition, this is the same as the group of path components of the space $H_{g}^{+}$. Moreover, Nielsen [N] shows that $M C\left(F_{g}\right)$ may be identified with the group of (orientation-preserving) outer automorphisms of the fundamental group of $F_{g}$. The mapping class groups are central objects of study in Riemann surface theory as well as in two- and three-dimensional topology. For instance, a useful technique is cutting and regluing a three-manifold along an embedded surface. The homeomorphism type of the resulting threemanifold depends only on the isotopy class of the gluing map.

I do not know who first studied the groups $M C\left(F_{g}\right)$, but they have. been actively researched since the beginning of this century. M. Dehn [D2] was the first to give a finite set of generators for $M C\left(F_{g}\right)$ of a certain geometrical type which are now called Dehn twists. If $c$ is a simple closed
curve embedded in $F_{g}$, then the right and left Dehn twists along $c$, denoted $\tau_{c}^{ \pm 1}: F_{g} \rightarrow F_{g}$, are defined as follows: cut $F_{g}$ along $c$, twist once around to the right or left and reglue. Thus, if $c$ and $d$ are as shown in Figure 1, then the curves $\tau_{c}^{ \pm 1} d$ are as pictured. The direction (right or left) of a Dehn twist is independent of an orientation on $c$ and depends only on the orientation of the surface $F_{g}$.


Figure 1

In 1938, Dehn [D2] described a finite collection of Dehn twist generators for $M C\left(F_{g}\right)$, and in 1964-66, R. Lickorish [L] independently refined Dehn's original set to a more useful collection of $3 g-1$ curves along which to perform Dehn twists. For later use, we will record Lickorish's result as a theorem.

Theorem [Lickerish]. For $g \geqslant 2, M C\left(F_{g}\right)$ is generated by the Dehn twists along the curves pictured in Figure 2.


Figure 2

Using the result of Nielsen stated earlier, it is easy to see that $M C\left(F_{1}\right)$ is isomorphic to $S l_{2}(\mathbf{Z})$, generated by the Dehn twists along the curves $c$ and $d$ pictured in Figure 1. For a closed surface of genus two, J. Birman and M . Hidden [BH] have given a complete set of relations amongst the Lickorish generators. For closed surfaces of arbitrary genus, A. Hatcher and W. Thurston [HT] have given an algorithm for constructing a complete set of relations for $M C\left(F_{g}\right)$, but their results are quite complicated. More


Figure 3


Figure 4
recently, B. Wajnryb [W] has carried through the beautiful techniques introduced in [HT] and given a presentation for $M C\left(F_{g}\right), g \geqslant 2$.

There is a great deal more known about structural properties of the groups $M C\left(F_{g}\right)$ (see [B]), but this introduction to generators and relations should suffice for our present purposes.

We will explicitly compute a certain action of the groups $M C\left(F_{g}\right)$ : the natural action of $H_{g}^{+}$on (non-oriented) curves embedded in $F_{g}$ descends to an action of $M C\left(F_{g}\right)$ on isotopy classes of curves in $F_{g}$. Thus, given $[\phi] \in M C\left(F_{g}\right)$ and an isotopy class $[c]$ of curves on $F_{g}$, we will compute the isotopy class $[\phi(c)]$. We require some concise way to describe an isotopy class of curves in $F_{g}$. In fact, we will describe a one-to-one correspondence between such isotopy classes and a subset of $Z^{N}$, for some big $N$. Such a one-to-one correspondence will be termed a parametrization.

In 1922, Dehn [D1] described such a parametrization in a Breslau lecture. This work was not published and remained generally unknown. In 1976, W. Thurston [T2] independently rediscovered and generalized Dehn's parametrization. We call this parametrization the Dehn-Thurston parametrization and will presently describe it.

Though we are primarily interested in curves embedded in $g$-holed tori $F_{g}$, more generally we will be led to consider a one-manifold $c$ properly embedded in an oriented surface $F$ perhaps with boundary. We choose once and for all an arc, called a window, in each boundary component of $F$. We require that $\partial c$ is contained in the windows, that no closed component of $c$ bound a disc in $F$, and that no arc component of $c$ can be isotoped into $\partial F$. Define a multiple arc in $F$ to be an isotopy (fixing the boundary pointwise except in the windows) class of such one-submanifolds, and denote the collection of multiple arcs in $F$ by $\mathscr{S}^{\prime}(F)$. The Dehn-Thurston theorem gives a parametrization of $\mathscr{S}^{\prime}(F)$, provided the Euler characteristic of $F$ is negative. Exposé 4 of [FLP] contains a proof of the result we describe below.

We will first consider $\mathscr{S}^{\prime}(F)$ for a particularly simple surface $F$. A pair of pants $P$ is a disc-minus-two-discs with the boundary components denoted $\partial_{i}$ and the windows $w_{i}, i=1,2,3$, as indicated in Figure $3 a$. Let $\Delta_{i}$ be a fixed neighborhood of $\partial_{i}$ in $P$, and consider the nine examples of one-manifolds $l_{i j}, 0 \leqslant i \leqslant j \leqslant 3$, illustrated in Figure 4. We assume that $l_{0 j} \subset \Delta_{j}, j=1,2,3$. In case $[c] \in \mathscr{S}^{\prime}(P)$ is represented by a connected onemanifold, one can show that $c$ is isotopic to one of the models $l_{i j}$. Moreover, if $c$ is represented by an arc properly embedded in $P$, then $c$ is isotopic (fixing $\partial P$ pointwise) to an arc $c^{\prime}$ which agrees with some $l_{i j}, i \neq 0$, on $P \backslash\left(U_{k} \Delta_{k}\right)$ and twists to the right or left some number of times in each of $\Delta_{i}$ and $\Delta_{j}$.

One may thus parametrize connected $[c] \in \mathscr{S}^{\prime}(P)$ as follows. Let $m_{i}$ denote the number of times $c$ (or $c^{\prime}$ ) intersects $\partial_{i}, i=1,2,3$. Furthermore, define integers $t_{i}, i=1,2,3$, by taking $\left|t_{i}\right|$ to be the number of times $c^{\prime}$ twists in $\Delta_{i}$ with the sign of $t_{i}$ positive if $c^{\prime}$ twists to the right in $\Delta_{i}$ and negative if $c^{\prime}$ twists to the left in $\Delta_{i}$. Moreover, if $c$ is isotopic to $l_{0 j}$ so that $m_{j}=0$, then we choose to call the twisting positive. Thus, the examples in Figure $3 b$ have parameter values $t_{3}=1, t_{1}=t_{2}=m_{1}=m_{2}$ $=m_{3}=0$ and $m_{1}=m_{2}=t_{2}=1, t_{1}=-2, m_{3}=t_{3}=0$.

This gives a parametrization of connected $[c] \in \mathscr{S}^{\prime}(P)$ by a six-tuple $\left(m_{i}\right) \times\left(t_{i}\right) \in\left(\mathbf{Z}^{+}\right)^{3} \times \mathbf{Z}^{3}$ of integers. To extend this to a parametrization of arbitrary (possibly disconnected) $[c] \in \mathscr{S}^{\prime}(P)$, one simply lets $\left\{c_{n}\right\}$ denote the components of $c$ and defines $m_{i}([c])=\Sigma_{n} m_{i}\left(\left[c_{n}\right]\right)$ and $t_{i}([c])=\Sigma_{n} t_{i}\left(\left[c_{n}\right]\right)$. Notice that if $c_{1}$ and $c_{2}$ are components of $c$ and $m_{i}\left(\left[c_{1}\right]\right) \neq 0 \neq m_{i}\left(\left[c_{2}\right]\right)$ for some $i=1,2,3$, then $t_{i}\left(\left[c_{1}\right]\right)$ and $t_{i}\left(\left[c_{2}\right]\right)$ have the same sign since $c_{1}$ and $c_{2}$ are disjointly embedded. Similarly, if some component of $c$ is isotopic to $l_{0 j}, j=1,2,3$, then $m_{j}([c])=0$.

For disconnected $[c] \in \mathscr{S}^{\prime}(P)$, the parameters $m_{i}([c])$ and $t_{i}([c])$ have the following geometrical interpretation. We say $d$ is an $\varepsilon$-translate of $l_{i j}$ if there is a neighborhood of $l_{i j}$ identified with the unit normal bundle $l_{i j} \times[-1,1]$ so that $d$ corresponds to $l_{i j} \times \varepsilon$. Given $[c] \in \mathscr{S}^{\prime}(P)$, we choose $c^{\prime}$ representing [c] so that $c^{\prime}$ agrees with a collection of $\varepsilon$-translates of the $l_{i j}$ on $P \backslash\left(U_{k} \Delta_{k}\right) . m_{i}([c])$ is simply the number of times $c^{\prime}$ intersects $\partial_{i}$, and $t_{i}([c])$ is the total twisting of $c^{\prime}$ in $\Delta_{i}$. Notice that for any [c] $\in \mathscr{S}^{\prime}(P), \Sigma_{i} m_{i}([c])$ is even since representatives of $[c]$ are properly embedded.

To parametrize $[c] \in \mathscr{S}^{\prime}\left(F_{g}\right), g \geqslant 2$, we choose a decomposition, called a pants decomposition, of $F_{g}$ into pairs of pants: we choose a collection of curves with windows $\left\{\left(K_{i}, u_{i}\right)\right\}$ so that each component of $F_{g} \backslash \cup\left\{K_{i}\right\}$ is the interior of a pair of pants. (For Euler characteristic reasons, there are $3 g-3$ pants curves $K_{i}$ in a pants decomposition of $F_{g}$.) Some examples of pants decompositions of $F_{2}$ are shown in Figure 5. Note that we do not require the closure of a component of $F_{g} \backslash \cup\left\{K_{i}\right\}$ to be a pair of pants; see Figures $5 b$ and $c$.

Let $A_{i}$ be an annular neighborhood of $K_{i}$, and identify once and for all each component of $F_{g} \backslash \cup\left\{\right.$ Interior $\left.A_{i}\right\}$ with the pair of pants $P$. Given some $[c] \in \mathscr{S}^{\prime}\left(F_{g}\right)$, we compute the corresponding parameter values as follows. Isotope $c$ so that it intersects each $K_{i}$ a minimal number of times, and let $m_{i}$ be this intersection number. Now isotope $c$ so that it intersects $K_{i}$ in the window $u_{i}$ (if at all) and so that (relative to our identifications) it coincides with $\varepsilon$-translates of $l_{i j}$ in each component of $F_{g} \backslash \cup\left\{\right.$ Interior $\left.A_{i}\right\}$; let


Figure 5
$t_{i}$ be the number of times $c$ twists in the annulus $A_{i}$ with the conventions as before. The $(6 g-6)$-tuple of integers $\left(m_{i}\right) \times\left(t_{i}\right) \in\left(\mathbf{Z}^{+}\right)^{3 g-3} \times \mathbf{Z}^{3 g-3}$ is the Dehn-Thurston parameter value for [ $c]$.

Theorem [Dehn-Thurston]. $\mathscr{S}^{\prime}\left(F_{g}\right)$ is parametrized by a subset of $\left(\mathbf{Z}^{+}\right)^{3 g-3} \times \mathbf{Z}^{3 g-3}$. A point $\left(m_{i}\right) \times\left(t_{i}\right) \in\left(\mathbf{Z}^{+}\right)^{3 g-3} \times \mathbf{Z}^{3 g-3}$ corresponds to a multiple arc if and only if the following conditions are satisfied.
a) If $m_{i}=0$ then $t_{i} \geqslant 0$.
b) If $K_{i}, K_{j}$, and $K_{k}$ are pants curves that bound an embedded pair of pants in $F_{g}$, then $m_{i}+m_{j}+m_{k}$ is even.
c) If $K_{i}$ is a pants curve that bounds an embedded torus-minus-a-disc, in $F_{g}$, then $m_{i}$ is even.
Restriction a) is simply a choice of convention as before, restriction b) has been discussed previously, and restriction c) is similar.

We illustrate how one draws a representative of $[c] \in \mathscr{S}^{\prime}\left(F_{2}\right)$ from its Dehn-Thurston parameter values in the following example.

Example 1: Consider the pants decomposition on $F_{2}$ as indicated in Figure $5 a$. The parameter value $(3,1,2) \times(2,-1,0)$ represents the multiple
curve in Figure 6. In an annular neighborhood of $K_{1}$, the curve corresponding to $(3,1,2) \times(2,-1,0)$ twists twice to the right with three components, in an annular neighborhood of $K_{2}$ twists once to the left with one component, and in a neighborhood of $K_{3}$ there is no twisting with two components. One draws models in each annulus and connects them up uniquely using $\varepsilon$-translates of the arcs $l_{i j}$.


Figure 6

In this example, we give the parameter values for a connected multiple arc. There is no known algorithm for deciding if a given parameter value corresponds to a connected multiple arc. This is a hard combinatorial problem in general.

We are now in a position to give a precise statement to our main problem.

Problem: Compute the natural action of Lickorish's generators for $M C\left(F_{g}\right)$ on the Dehn-Thurston parameter values for $\mathscr{S}^{\prime}\left(F_{g}\right)$.

Before we describe how to attack this problem, let me indicate the nature of the results obtained. Regard our parameter space $\left(\mathbf{Z}^{+}\right)^{3 g-3} \times \mathbf{Z}^{3 g-3}$ as a subset of $\mathbf{R}^{6 g-6}$ in the natural way. Given $[\phi] \in M C\left(F_{g}\right)$, there corresponds a finite decomposition $K_{[\phi]}$ of $\mathbf{R}^{6 g-6}$ by cones based at the origin, and [ $\phi$ ] acts like an invertible integral matrix on the parameter values in each cone of $K_{\text {[ } \phi \text { ] }}$. Following Thurston [T1], we will call such an action on $\mathscr{S}^{\prime}\left(F_{g}\right)$ piecewise-integral-linear (or PIL) transformation.

Theorem. The action of $M C\left(F_{g}\right)$ on $\mathscr{S}^{\prime}\left(F_{g}\right)$ admits a faithful representation as a group of PIL transformations.

In fact, the representation is faithful in the strong sense that there are $2 g+1$ multiple arcs so that $[\phi]=1 \in M C\left(F_{g}\right)$ if and only if [ $\phi$ ] fixes each multiple arc in the collection. This immediately gives the following corollary.

Corollary. There is a practical algorithm for solving the word problem in Lickorish's generators for $M C\left(F_{g}\right)$.

Given a word $w$ in Lickorish's generators, one simply considers the action of $w$ on our collection of $2 g+1$ multiple arcs, and $[w]=1$ $\in M C\left(F_{g}\right)$ if and only if $w$ fixes each multiple arc in our collection.

We prove the theorem and corollary by actually writing down formulas that describe the action of Lickorish's generators as in the problem, noting the PIL character and checking faithfulness. For convenience, we now restrict attention to the case of genus two. In this case, we choose the pants decomposition in Figure 5a. Three of the Lickorish generating curves (see Figure 2) are curves in this pants decomposition in this case, and we first investigate the action of Dehn twists along these on the Dehn-Thurston parametrization for multiple arcs.

Example 2: We compute the action on the curve $(3,1,2) \times(2,-1,0)$ in example 1 of the Dehn twist $\tau_{K_{3}}^{+1}$ along the pants curve $K_{3}$ in Figure 5a. The result of this Dehn twist is shown in Figure 7. This curve has coordinates $(3,1,2) \times(2,-1,2)$ and differs from $(3,1,2) \times(2,-1,0)$ only in an annular neighborhood of $K_{3}$.


Figure 7

This example is typical, and a Dehn twist on the pants curve $K_{i}$ acts on the Dehn-Thurston parametrization as the linear map

$$
\begin{gathered}
\tau_{K_{i}}^{ \pm}:\left(m_{1}, \ldots, m_{3 g-3}\right) \times\left(t_{1}, \ldots, t_{3 g-3}\right) \\
\rightarrow\left(m_{1}, \ldots, m_{3 g-3}\right) \times\left(t_{1}, \ldots, t_{i} \pm m_{i}, \ldots t_{3 g-3}\right) .
\end{gathered}
$$

This fact was noted by Dehn.
However, the action of Dehn twists along the other two curves in the Lickorish generating set are not nearly so simple. To tackle the problem of computing them, we note that these curves are curves in the pants
decomposition indicated in Figure $5 c$. If we had a way of computing the Dehn-Thurston parameter values relative to the pants decomposition in Figure $5 c$ from the parameter values relative to the pants decomposition in Figure $5 a$ and vice-versa, then we would be able to compute the action of each of the Lickorish generators relative to the original pants decomposition in Figure 5a. This is in fact what we do. The philosophy comes from linear algebra: if a transformation (a Dehn twist) is hard to compute, change basis (pants decomposition).

We pass from Figure $5 a$ to Figure $5 c$ by means of two elementary transformations, which we now describe. The first one takes us from the pants decomposition in Figure $5 a$ to the one in Figure $5 b$. It may also be described as the transformation pictured in Figure $8 b$; cutting along the rightmost and left-most curves in Figures $5 a$ and $5 b$ gives us the surface pictured in Figure $8 b$. The second transformation takes us from the pants decomposition in Figure $5 b$ to the one in Figure $5 c$. It may also be described by two applications of the transformation pictured in Figure $8 a$; cutting along the nullhomologous curves in Figures $5 b$ and $5 c$ gives us two copies of the surface pictured in Figure $8 a$.


We will call the transformations pictured in Figure $8 a$ and $8 b$ the first and second elementary transformations, respectively. Thus, the computation of the action of $M C\left(F_{2}\right)$ on the collection of multiple curves in $F_{2}$ is reduced to the computation of the two elementary transformations. In fact, the same procedure works for surfaces of arbitrary genus; there exists a (finite) collection of pants decomposition of $F_{g}$, all related by sequences of elementary transformations, so that each of the Lickorish generating curves is a pants curve in at least one of the pants decompositions. Our problem reduces in general to the computation of the two elementary transformations. In fact, somewhat more is true. [HT] show that any two pants decompositions on $F_{g}$ are related by sequences of our elementary transformations, but we will not need this stronger result.

The first elementary transformation is relatively easy and can be done by actually isotoping representatives of multiple arcs about on the torus-minus-a-disc. The second elementary transformation requires more work. The techniques we develop for the second elementary transformation also apply to the first elementary transformation, and we concentrate on the second elementary transformation for now.

The basic idea of the computation is to lift to an appropriate covering space. This on the one hand simplifies visualizing curves on surfaces and on the other introduces some complications. Let $S_{2}$ denote the sphere-minus-four-discs. We will define a regular planar cover $\pi_{2}: \tilde{S}_{2} \rightarrow S_{2}$ below. If $[c] \in \mathscr{S}^{\prime}\left(S_{2}\right)$ is a multiple arc, we orient the components of $c$ arbitrarily and choose some lift $\tilde{c}$ of $c$ to $\tilde{S}_{2}$. We will isotope $\tilde{c}$ about in $\tilde{S}_{2}$ to some $\tilde{\bar{c}}$ and define $\bar{c}$ to be the projection of $\tilde{\bar{c}}$ by $\pi_{2}$. The isotopy in $S_{2}$ is chosen in such a way that $c$ looks locally like the appropriate Dehn-Thurston model. We cannot guarantee that this isotopy is $\pi_{2^{-}}$ equivariant, so $\bar{c}$ is not necessarily embedded. Note, however, that $\bar{c}$ is at least homotopic to the embedding $c$. All our computations will take place in the total space $\widetilde{S}_{2}$ because we gain a facility in picturing isotopies of curves. However, to get around the problem that $\bar{c}$ is not in general embedded requires a great deal of hard combinatorial work which we will suppress in this exposition. One is required to consider one-manifolds immersed in surfaces.

The cover $\pi_{2}: \tilde{S}_{2} \rightarrow S_{2}$ can be described as follows. Let $\Lambda_{2}$ be the group generated by rotations-by- $\pi$ about the integral points $\mathbf{Z}^{2}$ in $\mathbf{R}^{2}$. The action of $\Lambda_{2}$ on $\mathbf{R}^{2} \backslash \mathbf{Z}^{2}$ describes a cover of the four-times punctured sphere by $\mathbf{R}^{2} \backslash \mathbf{Z}^{2}$. Let $N$ be a small, $\pi_{2}$-invariant, diamond-shaped open neighborhood of $\mathbf{Z}^{2}$ in $\mathbf{R}^{2}$, as indicated in Figure $9 a$. The action of $\Lambda_{2}$ on $\mathbf{R}^{2} \backslash N$
gives a cover of $S_{2}$ by $\mathbf{R}^{2} \backslash N$, denoted $\tilde{S}_{2}$. Cutting $S_{2}$ along the arcs $a_{1}, \ldots, a_{4}$ in $S_{2}$ indicated in Figure $9 b$ decomposes $S_{2}$ into two octagons, labeled $f$ and $b$ in Figure $9 b$. The lifts to $\tilde{S}_{2}$ of these octagons give a tiling of $\tilde{S}_{2}$; if we are careful in the choice of the arcs $a_{i}$, then we can guarantee that the associated tiling is regular. This regular tiling of $\tilde{S}_{2}$ by octagons is indicated in Figure $9 c$; the corresponding tiling of the plane by squares and octagons is a popular architectural motif and can be seen, for instance, in the Park Street Subway Station in Boston. We number the boundary components of $S_{2}$ as indicated in Figure $9 b$; we put a number inside each component $C$ of $\partial N$ to indicate the boundary component of $S_{2}$ twice covered by $\partial C$, assindicated in Figure $9 c$.


b

c

Figure 9

Example 3: In this example, we compute the action on the curve $(3,1,2) \times(2,-1,0)$ in example 1 of a right twist along the curve $K_{2}$ in Figure $5 b$. At each stage of the computation, we illustrate the curve on $F_{2}$, the associated multiple arc on $S_{2}$ and the lift to $\tilde{S}_{2}$. In Figure 10a, we

a

b

c


illustrate the curve $(3,1,2) \times(2,-1,0)$, and in Figure $10 b$, we illustrate the isotopic curve with coordinates $(3,6,2) \times(1,0,0)$ for the choice of pants decomposition in Figure 5b. In Figure 10c, we illustrate the curve $(3,6,2)$ $\times(1,6,0)$, which is the image of $(3,6,2) \times(1,0,0)$ under the Dehn twist along the pants curve $K_{2}$ in Figure $5 b$. In Figure $10 d$, we illustrate the curve with coordinates $(3,13,2) \times(4,-7,2)$ relative to the first pants decomposition and isotopic to $(3,6,2) \times(1,6,0)$. This example indicates some typical phenomena of the second elementary transformation.

We have introduced this example for several reasons. It indicates the general technique of lifting our computation to the total space $\tilde{S}_{2}$ and shows the facility gained in visualizing the second elementary transformation as an isotopy in $\tilde{S}_{2}$. The example also shows that our computation has content, for even this relatively simple case of the action of a single Dehn twist on a connected multiple arc is reasonably complicated. Finally, in any specific example such as this, it is easy to guarantee that our curves are embedded in $S_{2}$ at each stage of the computation; however, to prove that our techniques work in general requires a lot more work.

We will introduce a bit of notation and then give the formulas for the elementary transformations; in fact, we will introduce a new parametrization for multiple arcs. Given a pants decomposition as before, we will keep track of the Dehn-Thurston twisting parameters exactly as before. However, instead of keeping track of the Dehn-Thurston intersection numbers, we will record the number of arcs in each embedded pair of pants that are $\varepsilon$-translates of the various arcs $l_{i j}$ in Figure 5. It is obvious how one can pass back and forth between the Dehn-Thurston parameter values and our new parameter values.

In the surface $S_{2}$ with the horizontal pants decomposition shown in Figure $8 b$, top, we will denote the number of arcs parallel to the various $l_{i j} .1 \leqslant i \leqslant j \leqslant 3$, by $1_{i j}$ in the top pair of pants and by $\mathrm{k}_{i j}$ in the bottom pair of pants. Similarly, for the vertical pants decomposition shown in Figure $8 b$, bottom, we will denote the number of arcs parallel to the various $l_{i j}$ by $1_{i j}^{\prime}$ in the left-most pair of pants, and by $\mathrm{k}_{i j}^{\prime}$ in the right-most pair of pants. The twisting numbers will be denoted by $t_{i}$ for the horizontal pants decomposition, and by $t_{i}^{\prime}$ for the vertical pants decomposition, with the pants curves numbered as in Figure 8. Let $\wedge$ denote the infimum, $V$ the supremum, and let $K=\mathrm{k}_{11}+t_{1}$ and $L=1_{11}+t_{1}$.

Theorem. The second elementary transformation is given by the following formulas.

$$
\begin{aligned}
& \mathrm{k}_{11}^{\prime}=\mathrm{k}_{22}+\mathrm{l}_{33}+\left(L-\mathrm{k}_{13}\right) \vee 0+\left(-L-\mathrm{l}_{12}\right) \vee 0 \\
& \mathrm{k}_{22}^{\prime}=\left(L \wedge \mathrm{l}_{11} \wedge\left(\mathrm{k}_{13}-\mathrm{l}_{12}-L\right)\right) \vee 0 \\
& \mathrm{k}_{33}^{\prime}=\left(-L \wedge \mathrm{k}_{11} \wedge\left(\mathrm{l}_{12}-\mathrm{k}_{13}+L\right)\right) \vee 0 \\
& \mathrm{k}_{23}^{\prime}=\left(\mathrm{k}_{13} \wedge \mathrm{l}_{12} \wedge\left(\mathrm{k}_{13}-L\right) \wedge\left(\mathrm{l}_{12}+L\right)\right) \vee 0 \\
& \mathrm{k}_{12}^{\prime}=-2 \mathrm{k}_{22}^{\prime}-\mathrm{k}_{23}^{\prime}+\mathrm{k}_{13}+\mathrm{k}_{23}+2 \mathrm{k}_{33} \\
& \mathrm{k}_{13}^{\prime}=-2 \mathrm{k}_{33}^{\prime}-\mathrm{k}_{23}^{\prime}+\mathrm{l}_{12}+1_{23}+2 \mathrm{l}_{22} \\
& 1_{11}^{\prime}=\mathrm{k}_{33}+\mathrm{l}_{22}+\left(K-\mathrm{l}_{13}\right) \vee 0+\left(-K-\mathrm{k}_{12}\right) \vee 0 \\
& 1_{22}^{\prime}=\left(K \wedge \mathrm{k}_{11} \wedge\left(1_{13}-\mathrm{k}_{12}-K\right)\right) \vee 0 \\
& 1_{33}^{\prime}=\left(-K \wedge 1_{11} \wedge\left(\mathrm{k}_{12}-1_{13}+K\right)\right) \vee 0 \\
& 1_{23}^{\prime}=\left(1_{13} \wedge \mathrm{k}_{12} \wedge\left(1_{13}-K\right) \wedge\left(K+\mathrm{k}_{12}\right)\right) \vee 0 \\
& 1_{12}^{\prime}=-21_{22}^{\prime}-1_{23}^{\prime}+l_{13}+1_{23}+21_{33} \\
& 1_{13}^{\prime}=-21_{33}^{\prime}-1_{23}^{\prime}+\mathrm{k}_{12}+\mathrm{k}_{23}+2 \mathrm{k}_{22} \\
& t_{2}^{\prime}=1_{33}+\left(\left(1_{13}-1_{23}^{\prime}-21_{22}^{\prime}\right) \wedge\left(K+1_{33}^{\prime}-1_{22}^{\prime}\right)\right) \vee 0+t_{2} \\
& t_{3}^{\prime}=-\mathrm{k}_{33}^{\prime}+\left(\left(L+\mathrm{k}_{33}^{\prime}-\mathrm{k}_{22}^{\prime}\right) \vee-\left(\mathrm{l}_{12}-\mathrm{k}_{23}^{\prime}-2 \mathrm{k}_{33}^{\prime}\right)\right) \wedge 0+t_{3} \\
& t_{4}^{\prime}=-1_{33}^{\prime}+\left(\left(K+1_{33}^{\prime}-1_{22}^{\prime}\right) \vee-\left(\mathrm{k}_{12}-1_{23}^{\prime}-21_{33}^{\prime}\right)\right) \wedge 0+t_{4} \\
& t_{5}^{\prime}=\mathrm{k}_{33}+\left(\left(\mathrm{k}_{13}-\mathrm{k}_{23}^{\prime}-2 \mathrm{k}_{22}^{\prime}\right) \wedge\left(L+\mathrm{k}_{33}^{\prime}-\mathrm{k}_{22}^{\prime}\right)\right) \vee 0+t_{5} \\
& t_{1}^{\prime}=\mathrm{k}_{22}+\mathrm{l}_{22}+\mathrm{k}_{33}+\mathrm{l}_{33}-\left(\mathrm{l}_{11}^{\prime}+\mathrm{k}_{11}^{\prime}+\left(t_{2}^{\prime}-t_{2}\right)+\left(t_{5}^{\prime}-t_{5}\right)\right) \\
& +\operatorname{sgn}\left(L+K+1_{33}^{\prime}-1_{22}^{\prime}+\mathrm{k}_{33}^{\prime}-\mathrm{k}_{22}^{\prime}\right)\left(t_{1}+\mathrm{l}_{33}^{\prime}+\mathrm{k}_{33}^{\prime}\right)
\end{aligned}
$$

$\operatorname{sgn}(0)$ is defined by the following formula.

$$
\operatorname{sgn}(0)=\left\{\begin{array}{l}
+1, \mathrm{l}_{12}-2 \mathrm{k}_{33}^{\prime}-\mathrm{k}_{23}^{\prime} \neq 0 \\
-1, \text { else }
\end{array}\right.
$$

The inverse transformation, from primed to unprimed variables, can be computed by using a symmetry of the surface $S_{2}$.

For completeness, we include the formulas that describe the first elementary transformation. The unprimed variables $1_{i j}, t_{1}, t_{2}$ describe the parameter values relative to the meridinal pants decomposition of the torus-minus-
a-disc, (Figure $8 a$, top) and the primed variables $1_{i j}, t_{1}^{\prime}, t_{2}^{\prime}$ describe the parameter values relative to the longitudinal pants decomposition (Figure $8 a$, bottom). $r$ denotes the value of $1_{12}=1_{13}$.

Theorem. The first elementary transformation is given by the following formulas.

$$
\begin{aligned}
& 1_{11}^{\prime}=\left(r-\left|t_{1}\right|\right) \vee 0 \\
& r^{\prime}=1_{12}^{\prime}=1_{13}^{\prime}=\left(r-1_{11}^{\prime}\right)+l_{11} \\
& 1_{23}^{\prime}=\left(\left|t_{1}\right|-\left(r-1_{11}^{\prime}\right)\right) \\
& t_{2}^{\prime}=t_{2}+l_{11}+\left(\left(r-1_{11}^{\prime}\right) \wedge t_{1}\right) \vee 0 \\
& t_{1}^{\prime}=-\operatorname{sgn}\left(t_{1}\right)\left(l_{23}+\left(r-1_{11}^{\prime}\right)\right)
\end{aligned}
$$

In these formulas, $\operatorname{sgn}(0)=-1$. The inverse transformation can easily be solved for algebraically.

These theorems give explicit formulas for the action of Lickorish's generators of $M C\left(F_{g}\right)$ on $\mathscr{S}^{\prime}\left(F_{g}\right)$ as described previously. The PIL character of the action is directly implied by these theorems. Unfortunately, the formulas are rather cumbersome, insofar as several of the Lickorish generators act as linear maps conjugated by compositions of the elementary transformations.

One's first reaction to the complexity of the situation is panic, and an appropriate response is to write a computer code to perform the algebra of the computations. The formulas of the elementary transformations are particularly amenable to computerization, since they are essentially sums of infs and sups of linear maps. The notable exception to this is the sign that appears in the expression for the twisting number $t_{1}$ in either transformation.

A FORTRAN code has been written to compute the action of $M C\left(F_{g}\right)$ on the collection of multiple arcs as described in this paper. Roughly a million cases of the computation have been run, checking that a transformation followed by its inverse yields the identity in each case (as one would hope!). In a computation of this magnitude, there is a potential for algebraic mistakes, and the code was originally written to check that all the components of the computation were working properly; at this point, I am quite confident that the formulas above are error-free. Moreover, many trends predicted by Thurston's theory of surface automorphisms
[ $\left.\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{FLP}\right]$ are exhibited by experimenting with this code, so it is instructive to play with.

I should remark that though we have restricted attention to the action of $M C\left(F_{g}\right)$ on closed multiple arcs in $F_{g}$, the computations in this paper apply more generally to any surface of negative Euler characteristic. The surface may be bounded, non-compact, or even non-orientable, provided we require that multiple arcs be two-sided.

As a final remark, let me mention that Thurston introduced a space $\mathscr{P} \mathscr{F}(F)$ of "projective measured foliations" on $F$ which is central to his treatment of surface automorphisms. (See [FLP].) $\mathscr{P} \mathscr{F}(F)$ forms a boundary for a compactification of the Teichmuller space $\mathscr{T}(F)$ of $F$, and the (discrete) set $\mathscr{S}^{\prime}(F)$ which we treat here embeds in a natural way as a dense subset of the (connected) space $\mathscr{P} \mathscr{F}(F)$. The compactification of $\mathscr{T}(F)$ by $\mathscr{P} \mathscr{F}(F)$ is natural in the sense that the usual action of $M C(F)$ on $\mathscr{T}(F)$ extends continuously to the natural action of $M C(F)$ on $\mathscr{P} \mathscr{F}(F)$. (See [K].) Thurston generalized Dehn's parametrization of $\mathscr{S}^{\prime}(F)$ to a parametrization of $\mathscr{P} \mathscr{F}(F)$, and the formulas given in this paper apply to this setting to give the action of $M C(F)$ on Thurston's parametrization of $\mathscr{P} \mathscr{F}(F)$. Thus, the formulas derived here in fact describe the action of $M C(F)$ on Thurston's boundary for $\mathscr{T}(F)$. There are other formulations of the theory using "measured geodesic laminations" and "measured train tracks" (See [HP].) together with appropriate parametrizations, and our computations also apply to these settings.

## BIBLIOGRAPHY

[B] Birman, J. Braids, Links, and Mapping Class Groups. Ann. Math. Stud. 82, Princeton University Press (1975).
[BH] Birman, J. and H. Hilden. On mapping class groups of closed surfaces as covering spaces. In: Advances in the Theory of Riemann Surfaces, Ann. Math. Stud. 66, Princeton University Press (1971), 81-115.
[D1] Dehn, M. Lecture notes from Breslau, 1922. The Archives of the University of Texas at Austin. (J. Stillwell kindly supplied an English translation.)
[D2] - Die Gruppe der Abbildungsklassen. Acta Math. 69 (1938), 135-206.
[FLP] Fathi, A., F. Laudenbach, V. Poenaru, et al. Travaux de Thurston sur les Surfaces. Astérisques 66-67 (1979), Sém. Orsay, Soc. Math. de France.
[HP] Harer, J. and R. Penner. Combinatorics of Train Tracks (1983). Preprint.
[HT] Hatcher, A. and W. Thurston. A presentation for the mapping class group of a closed orientable surface. Topology 19 (1980), 221-237.
[K] Kerckнoff, S. The asymptotic geometry of Teichmuller space. Topology 19 (1980), 23-41.
[L] Lickorish, W. B. R. A finite set of generators for the homeotopy group of a two-manifold. Proc. Camb. Phil. Soc. 60 (1964), 769-778; Corrigendum, Proc. Camb. Phil. Soc. 62 (1966), 679-681.
[ N ] Nielsen, J. Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, I. Acta. Math. 50 (1927), 189-358.
[P] Penner, R. The Action of the Mapping Class Group on Isotopy Classes of Curves and Arcs in Surfaces. Thesis, Massachusetts Institute of Technology (1982).
[T1] Thurston, W. On the geometry and dynamics of diffeomorphisms of surfaces I. Preprint.
[T2] - Lecture notes from Boulder, Colorado, 1981, taken by W. Goldman.
[T3] - "Three Dimensional Manifolds, Kleinian Groups and Hyperbolic Geometry". Bulletin of the Amer. Math. Soc. 6 (1982), 357-381.
[W] Wajnryb, B. A simple presentation for the mapping class group of an orientable surface. Preprint.

Robert C. Penner
Institut Mittag-Leffler
Auravägen 17
S-18262 Djursholm (Sweden)


