
Zeitschrift: L'Enseignement Mathématique

Band: 34 (1988)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: EULER'S FAMOUS PRIME GENERATING POLYNOMIAL AND THE
CLASS NUMBER OF IMAGINARY QUADRATIC FIELDS

Kapitel: Introduction

Autor: Ribenboim, Paulo

DOI: https://doi.org/10.5169/seals-56587

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte
an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei
den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les

éditeurs ou les détenteurs de droits externes. Voir Informations légales.

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. See Legal notice.

Download PDF: 07.10.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-56587
https://www.e-periodica.ch/digbib/about3?lang=de
https://www.e-periodica.ch/digbib/about3?lang=fr
https://www.e-periodica.ch/digbib/about3?lang=en


L'Enseignement Mathématique, t. 34 (1988), p. 23-42

EULER'S FAMOUS PRIME

GENERATING POLYNOMIAL AND THE CLASS NUMBER

OF IMAGINARY QUADRATIC FIELDS •

by Paulo Ribenboim

This is the text of a lecture at the University of Rome, on May 8,

1986. The original notes disappeared when my luggage was stolen in

Toronto (!); however, I had given a copy to my friend Paolo Maroscia,

who did not have his luggage stolen in Rome and was very kind to

let me consult his copy. It is good to have friends.

Introduction

Can a non-constant polynomial, with integral coefficients, assume only

prime values?

No because of the following

Theorem. If f(X) e Z[X], deg(/) > 0, there exist infinitely many

natural numbers n such that f(n) is composite.

Proof. It is true if f(n) is composite for every n ^ 1. Assume that
there exists n0 ^ 1 such that f(n0) p is a prime. Since lim \ fin) \ go,

n-* oo

there exists n1 ^ n0 such that if n ^ n1 then \ f(n)\ > p. Take any h

such that n0 + ph ^ n1. Then \f(n0 + ph)\ > p, but f{n0 + ph) f(n0)
+ (multiple of p) multiple of p, so | f(n0 + ph) | is composite.

On the other hand, must a non-constant polynomial f(X) g Z[A] always

assume a prime value

The question is interesting if f(X) is irreducible, primitive (that is, the

greatest common divisor of its coefficients is equal to 1) and, even more,
there is no prime p dividing all values f(n) (for arbitrary integers n).

Bouniakowsky, and later Schinzel & Sierpinski (1958) conjectured that
any polynomial f(X) g Z\_X~] satisfying the above conditions assumes a prime
value. This has never been proved for arbitrary polynomials. For the specific
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polynomials f(X) aX + b, with gcd(a, b) 1, it is true — this is nothing
else than the famous theorem of Dirichlet: every arithmetic progression

{a + kb \k 0, 1, 2,...} with gcd(a, h) 1

contains infinitely many primes.
In my new book entitled "The Book of Prime Number Records"

(Springer Verlag, 1988), I indicated many astonishing consequences of the

hypothesis of Bouniakowsky, which were derived by Schinzel & Sierpinski.
But this is not the subject of the present lecture.

Despite the theorem and what I have just said, for many polynomials
it is easy to verify that they assume prime values, and it is even conceivable
that they assume prime values at many consecutive integers. For example,
Euler's famous polynomial f(X) X2 + X + 41 is such that f(n) is a prime
for n — 0,1,..., 39 (40 successive prime values) :

41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281,

313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971,

1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523, 1601.

However, /(40) 402 + 40 + 41 40 x 41 + 41 412.

Note that if n > 0 then — n)2 -f (~n) + 41 (n—l)2 + (n— 1) + 41, so

X2 + X + 41 assumes also prime values for all integers

n - 40, - 39,..., - 2, - 1

Which other polynomials are like the above

Some of these polynomials may be easily obtained from X2 + X + c

by just changing X into X — a, for some a > 1. For example, (X — a)2

+ (X — a) + 41 X2 — (2a—l)X + (a2 — a+ 41); taking a 1 gives X2

— X + 41, which assumes primes values for every integer n, — 39 ^ n ^ 40,

while taking a 40, gives X2 — 19X + 1601, which assumes primes values

for every integer n, 0 ^ n < 79, but these are the same values assumed by
X2 + X + 41, taken twice. In summary, it is interesting to concentrate the

attention on polynomials of the form X2 + X + c and their values at

consecutive integers n 0, 1,... If the value at 0 is a prime q then

c q. Since (q— l)2 + (q— 1) + q q2, then at best X2 + X + q assumes

prime values for 0, 1, 2,..., q — 2 (like when q 41). For example, if f(X)
X2 + X + q and q 2, 3, 5, 11, 17, 41 then f(n) is a prime for

n — 0,1,..., q — 2. However if q o 7, 13, 19, 23, 29, 31, 37 this is not true,
as it may be easily verified.

Can one find q > 41 such that X2 + X + q has prime value for

n 0,1,q — 21
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Are there infinitely many, or only finitely many such primes ql If so,

what is the largest possible q

The same problem should be asked for polynomials of first degree

f(X) aX + b, with a,b ^ 1. If /(0) is a prime q, then b q. Then

f(q) aq + q (a+l)q is composite. So, at best, aX + q assumes prime

values for X equal to 0, 1,q — 1.

Can one find such polynomials? Equivalently, can one find arithmetic

progressions of q prime numbers, of which the first number is equal

to ql
For small values of q this is not difficult.

If q 3, take: 3, 5, 7, so f{X) 2X + 3.

If q 5, take: 5, 11, 17, 23, 29, so f{X) 6X + 5.

If q 7, take: 7, 157, 307, 457, 607, 757, 907, so f(X) 150X + 7.

Quite recently, Keller communicated to me that for q 11, 13 the smallest

such arithmetic progressions are given by polynomials f(X) dnX + 11,

respectively f(X) d13X + 13 with

dti 1536160080 2x 3x 5x7x7315048,

d13 9918821194590 2x 3 x 5x7x 11 x4293861989;

this determination required a considerable amount of computation, done by
Keller & Löh.

It is not known whether for every prime q there exists an arithmetic
progression of q primes of which the first number is q. Even the problem
of finding arbitrarily large arithmetic progressions consisting only of prime
numbers (with no restriction on the initial term or the difference) is still
open. The largest known such arithmetic progression consists of 19 primes,
and was found by Pritchard (1985).

The determination of all polynomials f(X) X2 + X + q such that
f(n) is a prime for n 0,1,..., q — 2, is intimately related with the theory
of imaginary quadratic fields. In order to understand this relationship,
I shall indicate now the main results which will be required.

A) Quadratic extensions

Let d be an integer which is not a square, and let K Q(^/d) be the
field of all elements a a + by/d, where a,be Q. There is no loss of
generality to assume that d is square-free, hence d ^ 0 (mod 4). K | Q
is a quadratic extension, that is, K is a vector space of dimension 2 over Q.
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