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Are there infinitely many, or only finitely many such primes ¢? If so,
what is the largest possible g ?

The same problem should be asked for polynomials of first degree
f(X) = aX + b, with a,b > 1. If f(0) is a prime g, then b = q. Then
flg) = aqg + q = (a+1)q is composite. So, at best, aX + g assumes prime
values for X equal to 0, 1, .., g — 1.

Can one find such polynomials? Equivalently, can one find arithmetic
progressions of ¢ prime numbers, of which the first number is equal
to q?

For small values of g this is not difficult.

If g = 3, take: 3,5,7,s0 f(X) = 2X + 3.
If g = 5, take: 5,11, 17,23,29,s0 f(X) = 6X + 5.
If ¢ = 7, take: 7, 157, 307, 457, 607, 757, 907, so f(X) = 150X + 7.

Quite recently, Keller communicated to me that for ¢ = 11, 13 the smallest
such arithmetic progressions are given by polynomials f(X) = d{; X + 11,
respectively f(X) = dy3X + 13 with

d;; = 1536160080 = 2x3x5x7x7315048,
di; = 9918821194590 = 2x3x5x7x11x4293861989 ;

this determination required a considerable amount of computation, done by
Keller & Loh.

It is not known whether for every prime g there exists an arithmetic
progression of g primes of which the first number i1s g. Even the problem
of finding arbitrarily large arithmetic progressions consisting only of prime
numbers (with no restriction on the initial term or the difference) is still
open. The largest known such arithmetic progression consists of 19 primes,
and was found by Pritchard (1985).

The determination of all polynomials f(X) = X2 + X + g such that
f(n) is a prime for n = 0, 1, .., ¢ — 2, is intimately related with the theory
of imaginary quadratic fields. In order to understand this relationship,
I shall indicate now the main results which will be required.

A) QUADRATIC EXTENSIONS

Let d be an integer which is not a square, and let K = Q(ﬁ) be the
field of all elements o = a + bﬁ, where a,be Q. There is no loss of
generality to assume that d is square-free, hence d # 0 (mod 4). K| Q
1S a quadratic extension, that is, K is a vector space of dimension 2 over Q.
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Conversely, if K is a field, which is a quadratic extension of Q, then it is

necessarily of the form K = Q(ﬁ), where d is a square-free integer.

If d >0 then K is a subfield of the field R of real numbers: it is
called a real quadratic field.

If d <0 then K is not a subfield of R, and it is called an imaginary
quadratic field.

If o =a+ bﬁeK, with a,be Q, its conjugate is o = a — b\/:i.
Clearly, « = o exactly when o € Q.

The norm of o is N(o) = ao’ = a*> — db*e Q. It is obvious that
N(o) # 0 exactly when o # 0. If o, B € K then N(af) = N(a) N(B); in par-
ticular, if o € Q then N(o) = o

The trace of o is Tr(a) = o + o' = 2ae Q. If o, B € K then Tr(a+p)
= Tr(o) + Tr(P); in particular, if o € Q then Tr(a) = 2o

It is clear that o, o are the roots of the quadratic equation X? — Tr (o)X
+ N(o) = 0.

B) RINGS OF INTEGERS

Let K = Q(\/;l), where d is a square-free integer.

o € K is an algebraic integer when there exist integers m, n e Z such
that o> + moa + n = 0.

Let A be the set of all algebraic integers of K. A is a subring of K,
which is the field of fractions of A, and AN Q = Z. If € A then the
conjugate o € 4. Clearly, o € 4 if and only if both N(o) and Tr (o) are in Z.

Here is a criterion for the element o = a + bﬂ (a, beQ) to be an
algebraic integer: o € A if and only if

2a =uel, 2b=vel
u?> — dv*> = 0(mod 4) .

Using this criterion, it may be shown:
If d = 2 or 3 (mod 4) then 4 = {a + b\/d_la,beZ}.

b/d
Ifd = 1 (mod 4) then 4 — {f’i—z—\[-

a,beZ,a = b (mod 2)}.

If o, o, € A are such that every element o € A is uniquely of the form
o = mo; + myo,, with m;, m, € Z, then {o;, a,} is called an integral basis
of A. In other words, A = Zo; @ Za,.

If d = 2 or 3 (mod 4) then {1, ﬁ} is an integral basis of A.
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