2. SOME FURTHER RESULTS

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 34 (1988)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
23.07.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Therefore, $f\left(\Psi_{n}\right)$ is the set Φ_{n} of mutually isoclinic n-planes in our Theorem 1.6.

2. Some further results

From now on we shall confine our attention to n-dimensional maximal sets of mutually isoclinic n-planes in $R^{2 n}$, and therefore, n has always the values 2,4 , or 8 unless stated otherwise.

In this section, we prove a few more theorems for use in §3. In these theorems, the indices a, b have the range of values $(0,1, \ldots, n-1) ; B_{0}=I$ is the identity matrix of order $n ; B_{1}, \ldots, B_{n-1}$ are the $n \times n$ matrices listed in Theorems 1.5 and $1.6 ; \lambda=\left(\lambda_{a}\right)$ is an ordered set of n real parameters; and

$$
B(\lambda) \equiv \sum_{a} \lambda_{a} B_{a}, \quad N(\lambda) \equiv \sum_{a} \lambda_{a}^{2} .
$$

Moreover, for any matrix M, we denote its transpose by M^{T}.

Theorem 2.1.
(i) $B(\lambda) B(\lambda)^{T}=N(\lambda) I$.
(ii) If $\lambda \neq 0$, then

$$
B(\lambda)^{-1}=B(\lambda)^{T} / N(\lambda)=\sum_{a} \lambda_{a} B_{a}^{T} / N(\lambda),
$$

so that if $\lambda \neq 0$, the equation $y=x B(\lambda)$ is equivalent to the equation $x=y B(\mu)^{T}$, where $\mu=\lambda / N(\lambda) \neq 0$.

$$
\begin{equation*}
\operatorname{det} B(\lambda)=+(N(\lambda))^{n / 2} . \tag{iii}
\end{equation*}
$$

(iv) If $N(\lambda)=1$, then $B(\lambda) \in \operatorname{SO}(n)$, where $S O(n)$ is the set of all orthogonal matrices of order n and determinant +1 .

$$
\text { Proof. } \begin{aligned}
B(\lambda) B(\lambda)^{T} & =\left(\sum_{a} \lambda_{a} B_{a}\right)\left(\sum_{b} \lambda_{b} B_{b}^{T}\right)=\sum_{a, b} \lambda_{a} \lambda_{b} B_{a} B_{b}^{T} \\
& =\sum_{a} \lambda_{a}^{2} B_{a} B_{a}^{T}+\sum_{a<b} \lambda_{a} \lambda_{b}\left(B_{a} B_{b}^{T}+B_{b} B_{a}^{T}\right),
\end{aligned}
$$

which, on account of the Hurwitz matrix equations (1.2), is equal to $\left(\sum_{a} \lambda_{a}^{2}\right) I=N(\lambda) I$. This proves (i), and also (ii). To prove (iii), we first note that since $B(\lambda)$ is a square matrix of order n, $\operatorname{det} B(\lambda)$ is a homogeneous polynomial of degree n in the λ_{a} 's, and it follows from (i) that

$$
(\operatorname{det} B(\lambda))^{2}=\operatorname{det}\left(B(\lambda) B(\lambda)^{T}\right)=(N(\lambda))^{n} .
$$

Therefore,

$$
\begin{align*}
\operatorname{det} B(\lambda) & = \pm(N(\lambda))^{n / 2}= \pm\left(\lambda_{0}^{2}+\lambda_{1}^{2}+\ldots+\lambda_{n-1}^{2}\right)^{n / 2} \tag{2.1}\\
& = \pm\left(\lambda_{0}^{n}+\text { other product terms in } \lambda_{a}\right) .
\end{align*}
$$

On the other hand, since $B_{0}=I$, and B_{1}, \ldots, B_{n-1} are all skew-symmetric matrices, the diagonal elements of $B(\lambda)$ are all equal to λ_{0}, and none of the other elements of $B(\lambda)$ is equal to λ_{0}. Therefore,

$$
\operatorname{det} B(\lambda)=\lambda_{0}^{n}+\text { other product terms in } \lambda_{a} .
$$

Comparison of this with (2.1) gives (iii). Finally, (iv) follows immediately from (i) and (iii).

Returning to Theorems 1.2 and 1.6 , we now prove
Theorem 2.2. Let Φ_{n} be the maximal set of mutually isoclinic n-planes in $R^{2 n}$ described in Theorem 1.6, and let (u, v) be any vector in $R^{2 n}$. If $u \neq 0$, then the unique n-plane in Φ_{n} containing (u, v) is

$$
\begin{equation*}
y=x\left[v u^{T}-\left(v B_{1} u^{T}\right) B_{1}-\ldots-\left(v B_{n-1} u^{T}\right) B_{n-1}\right] /(u u)^{T} . \tag{2.2}
\end{equation*}
$$

If $v \neq 0$, then the unique n-plane in Φ_{n} containing (u, v) is

$$
\begin{equation*}
x=y\left[u v^{T}-\left(u B_{1}^{T} v^{T}\right) B_{1}^{T}-\ldots-\left(u B_{n-1}^{T} v^{T}\right) B_{n-1}^{T}\right] /(v v)^{T} . \tag{2.3}
\end{equation*}
$$

Here, B_{1}, \ldots, B_{n-1} are the matrices in (1.3), (1.4), or (1.5) according as $n=2,4$, or 8 .

Proof. We shall prove only (2.2) for the case $u \neq 0$, as (2.3) for the case $v \neq 0$ can be proved similarly. Suppose that $u \neq 0$ and

$$
\begin{equation*}
y=x\left(\lambda_{0}+\lambda_{1} B_{1}+\ldots+\lambda_{n-1} B_{n-1}\right) \tag{2.4}
\end{equation*}
$$

is an n-plane in Φ_{n} containing (u, v). Then we have

$$
v=u\left(\lambda_{0}+\lambda_{1} B_{1}+\ldots+\lambda_{n-1} B_{n-1}\right),
$$

which can be written as

$$
v=\left[\begin{array}{lll}
\left.\lambda_{0} \lambda_{1} \ldots \lambda_{n-1}\right]
\end{array} \begin{array}{c}
u \\
u B_{1} \\
\vdots \\
u B_{n-1}
\end{array}\right] .
$$

Multiplying the two sides of this equation on the right by

$$
\left[u^{T},-B_{1} u^{T}, \ldots,-B_{n-1} u^{T}\right]
$$

and making use of the Hurwitz matrix equations (1.2), we get

$$
v\left[u^{T},-B_{1} u^{T}, \ldots,-B_{n-1} u^{T}\right]=\left[\lambda_{0} \lambda_{1} \ldots \lambda_{n-1}\right]\left(u u^{T}\right) I .
$$

Since $u u^{T} \neq 0$, the above equation determines the λ_{a} 's uniquely in terms of u, v. Now with these values of λ_{a} 's, equation (2.4) becomes equation (2.2), as we wanted to prove. Incidentally, the above proof also confirms that there is exactly one n-plane in Φ_{n} containing the vector (u, v) (cf. Theorem 1.2).

Next, we give a direct proof of Theorem 1.3 for the special cases $n=2,4,8$, and state the result as

Theorem 2.3. The maximal set $\Phi_{n}=\{x=0, y=x B(\lambda)\}$ of mutually isoclinic n-planes in $R^{2 n}, \quad n=2,4$, or 8 , can be given a differentiable structure so that it is diffeomorphic with the n-sphere S^{n}.

Proof. Let us regard Φ_{n} as a point set whose elements are the n-planes in Φ_{n}. Then, the subset $\Phi_{n} \backslash \mathbf{O}^{\perp}=\{y=x B(\lambda)\}$ of Φ_{n} is an open subset in which we can define a coordinate system by assigning to the element $y=x B(\lambda)$ the coordinate $\lambda=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n-1}\right)$. The subset $\Phi_{n} \backslash \mathbf{O}=\{x=0$ and $y=x B(\lambda)$, where $\lambda \neq 0\}$ of Φ_{n} is also an open subset. By Theorem 2.1 (ii), this subset is the same as the subset $\left\{x=y B(\mu)^{T}\right\}$, and so, we can define in it a coordinate system by assigning to the element $x=y B(\mu)^{T}$ the coordinate $\mu=\left(\mu_{0}, \mu_{1}, \ldots, \mu_{n-1}\right)$. Thus Φ_{n} is covered by the two coordinate neighborhoods

$$
\begin{equation*}
\left(\Phi_{n} \backslash \mathbf{O}^{\perp}, \lambda\right), \quad\left(\Phi_{n} \backslash \mathbf{O}, \mu\right) . \tag{2.5}
\end{equation*}
$$

Moreover, we can see from Theorem 2.1 (ii) that for any element in $\left(\Phi_{n} \backslash \mathbf{O}^{\perp}\right) \cap\left(\Phi_{n} \backslash \mathbf{O}\right)=\Phi_{n} \backslash\left\{\mathbf{O}^{\perp}, \mathbf{O}\right\}$, its two coordinates λ, μ, both nonzero, are related by

$$
\begin{equation*}
\mu=\lambda / N(\lambda) \text {, or equivalently, } \lambda=\mu / N(\mu) \tag{2.6}
\end{equation*}
$$

Hence, Φ_{n} is an n-dimensional manifold.
To show that Φ_{n} is diffeomorphic with the n-sphere S^{n}, we view S^{n} as the unit sphere $x_{1}^{2}+\ldots+x_{n+1}^{2}=1$ in R^{n+1}, and use stereographic projections. Let $q_{1}(0, \ldots, 0,1)$ and $q_{2}(0, \ldots, 0,-1)$ be respectively the north and south poles of S^{n}. Then S^{n} is the union of the two open subsets
$S^{n} \backslash q_{1}$ and $S^{n} \backslash q_{2}$. For an arbitrary point q in $S^{n} \backslash q_{1}$, let the line $q_{1} q$ meet the equator n-plane $x_{n+1}=0$ at the point $(\lambda, 0)$; and for an arbitrary point q in $S^{n} \backslash q_{2}$, let the line $q_{2} q$ meet the equator n-plane $x_{n+1}=0$ at the point $(\mu, 0)$. Then S^{n} is covered by the two coordinate neighborhoods

$$
\begin{equation*}
\left(S^{n} \backslash q_{1}, \lambda\right), \quad\left(S^{n} \backslash q_{2}, \mu\right) . \tag{2.7}
\end{equation*}
$$

Moreover, it is easy to verify that for a point in $S^{n} \backslash\left\{q_{1}, q_{2}\right\}$, its two coordinates λ and μ are also both nonzero and related by (2.6).

It now follows from (2.5), (2.6) and (2.7) that if f_{1} is the map from $\Phi_{n} \backslash \mathbf{O}^{\perp}$ to $S^{n} \backslash q_{1}$ sending an n-plane in $\Phi_{n} \backslash \mathbf{O}^{\perp}$ with coordinate λ to the point in $S^{n} \backslash q_{1}$ with the same coordinate λ, and f_{2} is the map from $\Phi_{n} \backslash \mathbf{O}$ to $S^{n} \backslash q_{2}$ sending an n-plane in $\Phi_{n} \backslash \mathbf{O}$ with coordinate μ to the point in $S^{n} \backslash q_{2}$ with the same coordinate μ, then f_{1}, f_{2} combined will give a diffeomorphism from Φ_{n} to S^{n}.

In the remainder of this section, we are concerned exclusively with the matrices $B(\lambda)$ with $N(\lambda)=1$. For convenience, we shall denote such matrices by $B\left(\lambda^{\prime}\right)$, with the understanding that λ^{\prime} always satisfies the condition $N\left(\lambda^{\prime}\right)=1$.

We know from Theorem 2.1 (iv) that every $B\left(\lambda^{\prime}\right)$ belongs to $S O(n)$. Let us now regard $S O(n)$ as the special orthogonal group. Then the set of elements $B\left(\lambda^{\prime}\right)$ of $S O(n)$ will generate a subgroup of $S O(n)$. We wish to know what this subgroup of $S O(n)$ is, and the next three theorems will give us the answer.

Theorem 2.4. For $n=2$, the set of elements $B\left(\lambda^{\prime}\right)$ forms the group $S O(2)$ which is isomorphic with S^{1}.

Proof. Since

$$
B\left(\lambda^{\prime}\right)=\left[\begin{array}{rr}
\lambda_{0}^{\prime} & \lambda_{1}^{\prime} \\
-\lambda_{1}^{\prime} & \lambda_{0}^{\prime}
\end{array}\right] \quad \text { and } \quad \operatorname{det} B\left(\lambda^{\prime}\right)=\left(\lambda_{0}^{\prime}\right)^{2}+\left(\lambda_{1}^{\prime}\right)^{2}=1,
$$

the elements of $S O(2)$ are the elements $B\left(\lambda^{\prime}\right)$ themselves.

Theorem 2.5. For $n=4$, the set of elements $B\left(\lambda^{\prime}\right)$ forms a 3-parameter subgroup of $S O(4)$, isomorphic with S^{3}.

Proof. First, since $N\left(\lambda^{\prime}\right)=\left(\lambda_{0}^{\prime}\right)^{2}+\ldots+\left(\lambda_{3}^{\prime}\right)^{2}=1$, the set $B\left(\lambda^{\prime}\right)$, with a natural topology, is homeomorphic with the unit 3-sphere S^{3} in R^{4}. Next, using (1.4), we can easily verify that

$$
B_{2} B_{3}=-B_{1}, \quad B_{3} B_{1}=-B_{2}, \quad B_{1} B_{2}=-B_{3} .
$$

With this and Theorem 2.1 (ii), straight forward computation will show that for any two elements $B\left(\lambda^{\prime}\right)$ and $B\left(\mu^{\prime}\right)$ of $S O(4)$, the product $B\left(\lambda^{\prime}\right) B\left(\mu^{\prime}\right)^{-1}$ is an element of $S O(4)$ of the form $B\left(v^{\prime}\right)$, where the components of v^{\prime} are analytic functions of the components of λ^{\prime} and μ^{\prime}. This proves our theorem.

For the case $n=8$, we first observe that the elements $B\left(\lambda^{\prime}\right)$ of $S O(8)$ do not, by themselves, form a subgroup of $S O(8)$. For example, although B_{1}, B_{2} are both of the form $B\left(\lambda^{\prime}\right)$, their product $B_{1} B_{2}$ is not. In fact, we have

Theorem 2.6. For $n=8$, the set of elements $B\left(\lambda^{\prime}\right)$ of $S O(8)$ generates the group $\operatorname{SO}(8)$ itself.

Proof. Our proof consists of two steps (i) and (ii). In (i), we prove that the 28 skew-symmetric 8×8 matrices $B_{i}, B_{i} B_{j}(i, j=1, \ldots, 7$, and $i<j)$ are linearly independent. In (ii), we prove that the Lie algebra of the subgroup of $S O(8)$ generated by the elements $B\left(\lambda^{\prime}\right)$ coincides with the Lie algebra $o(8)$ of $S O(8)$. The assertion in our theorem then follows from the wellknown fact in Lie groups that there is a one-one correspondence between the connected Lie subgroups of a Lie group G and the Lie subalgebras of the Lie algebra of G.
(i) From (1.5), we see that the 8×8 matrices $B_{i}(i=1, \ldots, 7)$ can be partitioned as

$$
B_{1}=\left[\begin{array}{llll}
J & & & \\
& J & & \\
& & J & \\
& & & -J
\end{array}\right], \quad B_{2}=\left[\right], \quad B_{3}=\left[\begin{array}{lll}
-L & L & \\
& & \\
& & \\
& & \\
& & J
\end{array}\right]
$$

$$
B_{4}=\left[\begin{array}{llll}
& & K & \\
& & & \\
-K & & & -I \\
& I & &
\end{array}\right], \quad B_{5}=\left[\begin{array}{llll}
& & & L \\
& & & \\
-L & & & \\
& & -J & \\
& & &
\end{array}\right],
$$

$$
B_{6}=\left[\begin{array}{llll}
& & & I \\
& & & K \\
& -K & &
\end{array}\right], \quad B_{7}=\left[\begin{array}{lll}
& & \\
& & \\
& -L & \\
J & &
\end{array}\right]
$$

where
$I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \quad J=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right], \quad K=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right], \quad L=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$,
are 2×2 submatrices and each empty space represents a 2×2 zero-matrix 0 .
Since the matrices I, J, K, L have the properties

$$
\begin{aligned}
I^{2} & =I, \quad J^{2}=-I, \quad K^{2}=I, \quad L^{2}=I \\
J K=-K J & =-L, \quad K L=-L K=J, \quad L J=-J L=-K
\end{aligned}
$$

we can easily verify that the products $B_{i} B_{j}(i, j=1, \ldots, 7$, and $i<j)$ are matrices of the same form as B_{i}, having some of $O, \pm I, \pm J, \pm K, \pm L$ as 2×2 submatrices.

To prove that the 28 matrices $B_{i}, B_{i} B_{j}$ are linearly independent, we construct the 8×8 matrix

$$
M \equiv \sum_{i} \alpha_{i} B_{i}+\sum_{i<j} \alpha_{i j}\left(B_{i} B_{j}\right)
$$

where the α 's are some real numbers, and show that if $M=0$, then all the α 's are zero. Let $M=\left[M_{h k}\right]$, where $M_{h k}(h, k=1,2,3,4)$ are the 2×2 submatrices of M. Then by using the explicit forms of B_{i} and $B_{i} B_{j}$, we can write M as the sum of the following four matrices:

$$
\begin{aligned}
{\left[\begin{array}{llll}
M_{11} & & & \\
& M_{22} & & \\
& & M_{33} & \\
& & & M_{44}
\end{array}\right] } & =\alpha_{1}\left[\begin{array}{cccc}
J & & & \\
& J & & \\
& & J & \\
& & & -J
\end{array}\right]+\alpha_{23}\left[\begin{array}{llll}
-J & & \\
& -J & & \\
& & J & \\
& & & -J
\end{array}\right] \\
& +\alpha_{45}\left[\begin{array}{llll}
-J & & & \\
& J & & \\
& & & -J \\
& & & -J
\end{array}\right]+\alpha_{67}\left[\begin{array}{cccc}
J & & \\
& -J & \\
& & & -J \\
& & & -J
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{llll}
& M_{12} & & \\
M_{21} & & & \\
& & & M_{34}
\end{array}\right]=\alpha_{2}\left[\right]+\alpha_{13}\left[\begin{array}{lll}
-K & & \\
& & \\
& & I
\end{array}\right]} \\
& +\alpha_{3}\left[\begin{array}{llll}
& L & & \\
-L & & \\
& & & J
\end{array}\right]+\alpha_{12}\left[\begin{array}{llll}
& -L & & \\
& & & \\
& & & J
\end{array}\right] \\
& +\alpha_{46}\left[\begin{array}{cccc}
& -I & \\
I & & \\
& & & -K
\end{array}\right]+\alpha_{57}\left[\begin{array}{lll}
I^{-I} & \\
& & \\
& & \\
& & \\
& & \\
& &
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{llll}
& & M_{13} & \\
& & & M_{24} \\
M_{31} & & &
\end{array}\right]=\alpha_{4}\left[\begin{array}{llll}
& & K & \\
& & & \\
& & & \\
& & & \\
-K & & & \\
& I & &
\end{array}\right]+\alpha_{15}\left[\begin{array}{llll}
& & K & \\
& & & I \\
-K & & & \\
& & & \\
& & &
\end{array}\right]} \\
& +\alpha_{5}\left[\begin{array}{llll}
& & L & \\
& & & -J \\
-L & & & \\
& -J & &
\end{array}\right]+\alpha_{14}\left[\begin{array}{lll}
& & \\
& & \\
& & \\
& & \\
& & \\
& &
\end{array}\right] \\
& +\alpha_{26}\left[\begin{array}{llll}
& & I & \\
& & & -K \\
-I & & & \\
& K & &
\end{array}\right]+\alpha_{37}\left[\begin{array}{llll}
& & I & \\
& & & K \\
-I & & & \\
& & -K & \\
& &
\end{array}\right] \\
& +\alpha_{27}\left[\begin{array}{llll}
& & J & \\
& & & -L \\
& & & \\
& L & &
\end{array}\right]+\alpha_{36}\left[\begin{array}{lll}
& & -J \\
& & \\
-J & & \\
& L &
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& +\alpha_{7}\left[\begin{array}{lll}
& & \\
& & \\
& & \\
J & &
\end{array}\right]+\alpha_{16}\left[\begin{array}{lll}
& & \\
& & \\
& & \\
J & &
\end{array}\right] \\
& +\alpha_{24}\left[\right]+\alpha_{35}\left[\begin{array}{lll}
& & \\
& & \\
& & \\
-K &
\end{array}\right] \\
& +\alpha_{25}\left[\begin{array}{lll}
& -J^{-J} \\
& &
\end{array}\right]+\alpha_{34}\left[\begin{array}{lll}
& & \\
& & \\
& & \\
& & \\
& &
\end{array}\right]
\end{aligned}
$$

Now, $M=0$ means that all its submatrices $M_{h k}$ are zero. Since I, J, K, L are linearly independent, the equations $M_{h k}=0$ are equivalent to a number of linear equations in the α 's, and from these linear equations we can easily see that the α 's must all be zero. For example, it is obvious from the equations

$$
\begin{aligned}
& M_{12}=\left(\alpha_{2}+\alpha_{13}\right) K+\left(\alpha_{3}-\alpha_{12}\right) L-\left(\alpha_{46}+\alpha_{57}\right) I-\left(\alpha_{47}-\alpha_{56}\right) J=0, \\
& M_{34}=\left(\alpha_{2}-\alpha_{13}\right) I+\left(\alpha_{3}+\alpha_{12}\right) J+\left(-\alpha_{46}+\alpha_{57}\right) K-\left(\alpha_{47}+\alpha_{56}\right) L=0
\end{aligned}
$$

that

$$
\begin{array}{llllllll}
\alpha_{2}, & \alpha_{13} & \alpha_{3}, & \alpha_{12}, & \alpha_{46} & \alpha_{57}, & \alpha_{47}, & \alpha_{56}
\end{array}
$$

must all be zero. Thus we have proved that the 28 matrices $B_{i}, B_{i} B_{j}$ are linearly independent.
(ii) Let G be the Lie subgroup of $S O(8)$ generated by the elements $B\left(\lambda^{\prime}\right)$, and g its Lie algebra. Then g is a Lie subalgebra of the Lie algebra $o(8)$ of $S O(8)$. We now prove that in fact $g=o(8)$.

From the theory of Lie groups we know that if $t \rightarrow f(t)$, where $t \in R$ and $f(t) \in G$, is any curve in G passing through the identity element
$I=f(0)$ of G, then the velocity vector $f^{\prime}(0)$ of this curve at I is an element of g. Now

$$
t \rightarrow f_{i}(t) \equiv(\cos t) I+(\sin t) B_{i} \quad(i=1, \ldots, 7)
$$

are obviously curves in G such that $f_{i}(0)=I$ and $f_{i}^{\prime}(0)=B_{i}$. Therefore, B_{i} are all elements of g.

Since g is a Lie subalgebra of $o(8)$ and $B_{i} \in g$, the Lie products [B_{i}, B_{j}] $=B_{i} B_{j}-B_{j} B_{i}=2 B_{i} B_{j}$, where $i, j=1, \ldots, 7$, and $i<j$, are all in g.

We have thus proved that the 28 linearly independent skew-symmetric matrices, $B_{i}, B_{i} B_{j}$ all belong to $g \subset o(8)$. Since $o(8)$ is the Lie algebra of all skew-symmetric matrices of order 8 and is therefore of dimension 28, g coincides with $o(8)$. This completes the proof of Theorem 2.6.

> 3. The sphere bundles $S^{2 n-1} \rightarrow \Phi_{n}, n=2,4$, or 8 , WITH fibers on mutually isoclinic n-PLANES IN $R^{2 n}$

In $R^{2 n}, n=2,4$, or 8 , provided with rectangular coordinate system (x, y), let $S^{2 n-1}$ be the unit sphere and Φ_{n} the maximal set of mutually isoclinic n-planes $\{x=0, y=x B(\lambda)\}$ defined in Theorem 1.6. Then with the preparations we have made in $\delta 2$, we can now prove

Theorem 3.1. In $R^{2 n}, n=2,4$, or 8 , the n-planes in the maximal set Φ_{n} of mutually isoclinic n-planes slice the unit sphere $S^{2 n-1}$ into a fiber bundle

$$
\mathscr{I}_{n}=\left(S^{2 n-1}, \Phi_{n}, \pi, S^{n-1}, G_{n}\right),
$$

with base space Φ_{n}, projection π, fiber S^{n-1} and group G_{n}, where $G_{2}=S^{1}, G_{4}=S^{3}$, and $G_{8}=\operatorname{SO}(8)$.

Proof. We prove by exhibiting all the ingredients of a representative coordinate bundle.
(1) The bundle space $S^{2 n-1}$ has the equation $x x^{T}+y y^{T}=1$ in $R^{2 n}$.
(2) The base space Φ_{n} is covered by the two coordinate systems

$$
\begin{equation*}
\left(\Phi_{n} \backslash \mathbf{O}^{\perp}, \lambda\right), \quad\left(\Phi_{n} \backslash \mathbf{O}, \mu\right) \tag{2.5}
\end{equation*}
$$

as in the proof of Theorem 2.3, where \mathbf{O}^{\perp} is the n-plane $x=0, \mathbf{O}$ is the n-plane $y=0, \lambda$ is the parameter in the equation $y=x B(\lambda)$ of an n-plane in $\Phi_{n} \backslash \mathbf{O}^{\perp}$, and μ is the parameter in the equation $x=y B(\mu)^{T}$ of

