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210 V. BERGELSON ET AL.

In general this result does not hold for infinite semigroups. We invite
the reader to find a counterexample for S = (Z, +). However it does hold for
compact semigroups as we will show implicitly in the proof of Theorem 3.3.
(Of course the finite version is then a special case.)

We intend to apply this theorem to the natural numbers N by compac-
tifying N in such a way so as to obtain a compact semigroup; this is the
role of the Stone-Cech compactification PN of N. We obtain a theorem
about PN which when unraveled becomes exactly van der Waerden’s
Theorem.

We warn the reader that in the compactification of N the operation of
addition will be extended with the usual notation +. However the semigroup
will not be commutative and so one has to accustom oneself to non-
commutative addition.

1. SEMIGROUP PROPERTIES OF BN

Any completely regular Hausdorff space has a maximal compactification,
the Stone-Cech compactification. In particular the discrete space N of
positive integers has a Stone-Cech compactification BN which is characterized
by: (1) BN is a compact Hausdorff space; (2) N is a dense subset of BN;
and (3) given any compact Hausdorff space Y and any f: N — Y there is a
continuous extension fP: BN — Y, (thatis [P |y = f).

Our proof of van der Waerden’s Theorem is based on the fact that the
operation of ordin4ry addition extends to BN as an operation which we
denote by +. BN under this operation will be a semigroup in which the
operation of addition is continuous in a restricted way. Namely let (S, +)
be a semigroup with S a topological space and define functions p, and A,
for each xe S by p,(y) = y + x and A (y) = x + y. If one requires only
that p, be continuous, S is called a right topological semigroup.

1.1 LeMMA. There is an operation + on PN such that BN is a
compact right topological semigroup, + extends ordinary addition on N,
and N\, is continuous for each ne N.

Proof. We extend + in stages, starting with 4 defined on N x N.
Given n e N, consider f,: N — BN defined by f,(m) = n + m. Then each f,
~ has a continuous extension fP:BN — BN. For ne N and p € BN\N define
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n+p= fP(p). (Then for ne N and any peBN, n + p = f(p) since if
peN, f¥p) = fip) = n+ p) Now + is defined on N x BN. Given
p € BN define g,: N — BN by g,(n) = n + p. Then each g, has a continuous
extension g?: BN — BN. Then for p € BN and g € PN\N define g + p = g9%q).
(Again if p, g are any points in BN we have ¢ + p = 9%9).)

Since for any neN, A, = f? and for any pe BN, p, = g5, the con-
tinuity assumptions are immediate. Thus we need only check that the
operation is associative. To this end let p, g, r € BN. Observe that p + (g+7)
= p,+.p) while (p+¢q) + 7 = (p, ° py) (p) so by continuity it suffices to show
py+r and p,op, agree on the dense subset N of BN. Let ne N. Then

Pgirn) = n 4+ (g+1r) = (X, p,) (@)
and  (p,op)(n) = (n+q) + 1 = (p,°A)(q)-

Again by continuity, it suffices to show XA,op, and p,o A, agree on N.
Let m € N. Then

(hyop)(m) = n+ (m+r) = (A, oLy, (F)
while

(py o M) (m) = (n4m) + 1 = A1)

Thus it finally suffices to show A, A, and A,., agree on N. Let te N.
Then (A, o X,)(t) = n+ (m+t) = (n+m) +t = A, ,(t) as required. [

The main fact about BN making it useful for van der Waerden’s
Theorem and similar results is the content of the following lemma.

1.2 Lemma. If {A,,A,,.,A,} is a finite partition of N,
then {cl Ay,cl A,,..,clA,} is a partition of BN such that for each
ie{l,2,..,m}, cl A; is open.

Proof. Let Y = {1,2,..,m} with the discrete topology and define
fi:N =Y by f(n) =i if and only if ne 4;. For each ie{1,2,..,m}, let
B, = {peBN: f¥p) = i}. Then immediately {B,, B,, ..., B,,} is a partition of
BN. Further, given i€ {1,2,..,m}, B; = (f®)7'[{i}]. Since {i} is open and
closed in Y and fP is continuous, B; is open and closed. Since A, = B,
one has cl A; = B;. To see that B; = ¢l 4;, let xe B; and let U be a

neighborhood of x. Since X is dense in BN, pick ye N n (UnB,). Since
yeB;, f(y) =isoyeA;. Thus U n 4; # @ as required. []
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