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210 V. BERGELSON ET AL.

In general this result does not hold for infinite semigroups. We invite
the reader to find a counterexample for S (Z, + However it does hold for
compact semigroups as we will show implicitly in the proof of Theorem 3.3.

(Of course the finite version is then a special case.)

We intend to apply this theorem to the natural numbers N by compac-
tifying N in such a way so as to obtain a compact semigroup; this is the

role of the Stone-Cech compactification ßN of N. We obtain a theorem
about ßN which when unraveled becomes exactly van der Waerden's
Theorem.

We warn the reader that in the compactification of N the operation of
addition will be extended with the usual notation +. However the semigroup
will not be commutative and so one has to accustom oneself to non-
commutative addition.

1. Semigroup properties of ßN

Any completely regular Hausdorff space has a maximal compactification,
the Stone-Cech compactification. In particular the discrete space N of
positive integers has a Stone-Cech compactification ßN which is characterized

by: (1) ßN is a compact Hausdorff space; (2) N is a dense subset of ßN;
and (3) given any compact Hausdorff space Y and any / : N - Y there is a

continuous extension /ß : ßN -> Y, (that is /ß |

N — /).
Our proof of van der Waerden's Theorem is based on the fact that the

operation of ordinary addition extends to ßN as an operation which we

denote by +. ßN under this operation will be a semigroup in which the

operation of addition is continuous in a restricted way. Namely let (S, +)
be a semigroup with S a topological space and define functions px and Xx

for each x e S by px(j/) y + x and Xx(y) x + y. If one requires only
that px be continuous, S is called a right topological semigroup.

1.1 Lemma. There is an operation + on ßN such that ßN is a

compact right topological semigroup, + extends ordinary addition on N,
and Xn is continuous for each ne N.

Proof We extend + in stages, starting with + defined on N x N.

Given ne N, consider fn: N ßN defined by fn{m) n + m. Then each fn

has a continuous extension /ß: ßN -» ßN. For ne N and pe ßN\N define
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n + p f ß (p). (Then for ne N and any p e ßN, n + p — f J(p) since if

pe n, /ß(p) fn(p) n + p.) Now + is defined on N x ßN. Given

p g ßN define gp : N —> ßN by pp(n) n + p. Then each pp has a continuous

extension g\ : ßN -> ßN. Then for p g ßN and q e ßN\N define q + p pß(p).

(Again if p, p are any points in ßN we have q + p pß(p).)

Since for any n e N, Xn fl and for any p g ßN, pp g\> the

continuity assumptions are immediate. Thus we need only check that the

operation is associative. To this end let p, q, r e ßN. Observe that p + (q + r)

Pq + r(p) while (p + q) + r (Pr° pq)(p) so continuity it suffices to show

pq+r and pr ° pq agree on the dense subset N of ßN. Let ne N. Then

pq+r(n) n + (q + r) (Xn ° pr) (q)

and (pr o pq) (n) (n + q) + r (pr ° Xn) (q).

Again by continuity, it suffices to show Xn ° pr and pr ° Xn agree on N.

Let me N. Then

(Xn o pr) (m) n + (m + r) (Xn o X.J (r)

while

(p, o (m) (n + m) + r Xn + m(r)

Thus it finally suffices to show Xn°Xm and Xn + m agree on N. Let te N.

Then (X„ o Xm) (t) n + (m + t) (n + m) + t Xn+m(t) as required.

The main fact about ßN making it useful for van der Waerden's
Theorem and similar results is the content of the following lemma.

1.2 Lemma. If {A1, A2, -, Am} is a finite partition of N,
then [cl A1, cl A2, -, cl Am} is a partition of ßN such that for each

i e {1, 2,..., m}, cl At is open.

Proof Let Y {1,2,..., m} with the discrete topology and define

/: N -> Y by f(n) i if and only if ne At. For each i e {1, 2,..., m}, let
Bi {p g ßN: /ß(p) i}. Then immediately {B1, J32, -, Bm} is a partition of
ßN. Further, given i e {1, 2,..., m}, Bt (/ß)_1[{/}]- Since {i} is open and
closed in Y and /ß is continuous, Bt is open and closed. Since At ^ Bt,
one has cl At ç Bt. To see that Bt ^ cl At$ let x e Bt and let U be a

neighborhood of x. Since X is dense in ßN, pick yeNnCUnBfi. Since

y e Bt, f(y) i so y e At. Thus U n At ^ 0 as required.
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