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A smooth map f:X^Y will preserve the degree of a zero cycle

in the sense that

(1.9) dg(/*T) dgT, T e DC0(X, C),

as it follows from (1.5).

The reader is invited to replace C by R and change the meaning of

the symbol Q from complex to real differential forms.

2. Biduality

In this section we shall show that de Rham cohomology can be

calculated as the linear dual of de Rham homology in the same way
singular cohomology can be obtained from singular homology.

(2.1) Theorem. Let X denote a smooth manifold. Evaluation of a compact
p-chain against a p-form induces an isomorphism

HP{X, C) Horn (HCP(X, C), C)

for all integers p.

Proof The hart of the matter is of sheaf theoretic nature, so we start
with a brief review during which the reader is invited to change the

meaning of the letter X to denote a general locally compact space and
the letter C to denote an arbitrary field. For notation and details the reader

may consult [5] V.l, and the references given there.

To a soft C-sheaf F on A we can associate the sheaf Fv whose
sections over the open subset U of X are given by

(2.2) r(t/,Fv) Hom(rc([/,nC)
Restriction in the sheaf Fv from U to a smaller open subset V is the
C-linear dual of "extension by zero"

rc(F, F) - rC(U, F), V £ u.
The presheaf Fv we have described is actually a sheaf and indeed a soft
sheaf. This allows us to iterate the construction and form Fvv. We shall
construct a natural biduality morphism of C-sheaves on X

(2.3) F Fvv
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To this end consider the tautological evaluation

r(i/,Fv) x tc(u9f) ^ c.
This can be modified to yield a pairing

ev: TC(U, Fv) x T(U, F) C

namely, for T eTc(U, Fv) and co e F(U, F) choose v e Tc(£/, F), such that co

and v has the same restriction to Supp(T), and put ev(T, co) T(v).
The evaluation map may be interpreted as a transformation

(2.4) Tc((7, Fv) -> Horn(T(17, F), C).

An open subset V of U gives rise to a commutative diagram

rc(V,Fv) % Horn(r(F, C)

(2.5) I I

rc(U, Fv) H Horn (r(U, C)

where the first vertical arrow is "extension by zero" in the soft sheaf Fv
and the second vertical arrow is the linear dual of restriction in the sheaf

F. Let us return to the open subset U and consider the composite

*
r(U, F) Horn (Horn (T(U, C), C) ^ T{U, Fv v)

where the first arrow is the biduality map from linear algebra. By variation
of U we obtain the biduality morphism h:F-^Fvv announced in (2.3).

Let us now return to the situation at hand and consider the biduality
morphism for the de Rham complex.

(2.6) b:Q' ->Q*VV

which we shall prove to be a quasi-isomorphism. The question is local,
so it suffices to check the case X R", which can be done by the Poincaré
Lemma with and without compact support. Both complexes are made of soft

sheaves, so we lean on the fact, implicit in the definition of a manifold,
that X is countable at infinity to conclude that b induces isomorphisms,

compare [5] IV.2.2,

HP(X, C) ^ iFT(X,£Fv v), pe N.

In order to identify the right hand side notice first that

T(X, Q' v v) Horn (Te(X, Q* v), C)
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and second, that the map ax introduced in (2.4) induces an isomorphism

(2.7) a:Fc(X,Q^)^D%X, C).

Collect this together to conclude the proof. Q.E.D.
The de Rham homology as defined here agrees with the original theory

based on currents [6] : the inclusion of the complex of currents in Q.v is a

quasi-isomorphism as can be seen by the method used in the last third of
the proof above.

As a consequence of the isomorphism (2.7) we can of course redefine

de Rham homology as

(2.8) Hcp(X, C) HpTc(X, Q- v).

If the letter c is dropped we obtain Borel Moore homology, compare [5] IX
and the references given there.

The biduality theorem 2.1 is certainly related to that of Verdier [7], [1].
In fact most of the material presented here may be extended to a context
of similar generality. I hope to return to this point in the near future.

3. Smooth singular homology

Let us consider an n-dimensional smooth manifold X. Integration over
smooth singular simplexes defines a map

(3.1) Sf(X,C) ^ DcfX, C)

from the complex of smooth singular simplexes to the complex of compact
chains on X.

(3.2) Theorem. Integration induces an isomorphism

Hf(X, C) H%X, C)

from smooth singular homology to de Rham homology.

Proof Let us first discuss Mayer-Vietoris sequences in de Rham homology.

For open subsets U and V of X a Mayer-Vietoris sequence arises
from the following exact sequence of complexes

(3.3) o - rc([/nF, a-v) -i rc(u, o-v) © v) ^ re(uuv, v) -> o.
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