1. The groups $\$$ G_s $\$$ and their representations

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 35 (1989)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
25.07.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.
computed; they turn out to be isomorphic to $\pi_{s}(U)$ and $\pi_{s}(O)$ respectively. Moreover a product is defined in the direct sum of the $E_{s}^{U}\left(E_{s}^{O}\right)$ turning it into a graded ring $E_{*}^{U}\left(E_{*}^{O}\right)$. The claim of Theorem A is proved in Section 3; we show that the maps $\phi: E_{s}^{U} \rightarrow \pi_{s}(U), \psi: E_{s}^{O} \rightarrow \pi_{s}(O)$ given by the f_{s} of 0.1 are isomorphisms. Using the product structure in $\pi_{*}(U)$ and $\pi_{*}(O)$ known from K-theory the proof reduces to simple verifications in low dimensions. The symplectic case is dealt with in Section 4. In Section 5 we make a remark concerning the "linearization phenomenon" for the homotopy groups of U, O and $S p$.

1. The groups G_{s} and their representations

1.1. We will denote throughout by G_{s} the group given by the presentation $G_{s}=<\varepsilon, a_{1}, \ldots, a_{s} \mid \varepsilon^{2}=1, a_{j}^{2}=\varepsilon, a_{j} a_{k}=\varepsilon a_{k} a_{j}, j, k=1,2, \ldots, s, j \neq k>$.

Clearly any set A_{1}, \ldots, A_{s} of HR-matrices yields a (unitary or orthogonal) representation of G_{s} of degree n by $\varepsilon \mapsto-E, a_{j} \mapsto A_{j}, j=1,2, \ldots, s$. Conversely a representation of G_{s} with $\varepsilon \mapsto-E$, in short an ε-representation, yields a set of s HR-matrices. For the elementary properties of G_{s} and its representations we refer to [E]. We just recall that the order of G_{s} is 2^{s+1}, that ε is central, and that the irreducible unitary ε-representations of G_{s} are of degree $2^{s / 2}$ if s is even (one equivalence class), of degree $2^{(s-1) / 2}$ if s is odd (two equivalence classes). These degrees are the minimal values n_{0} in case U. As for the case O, one has to recall that a representation is equivalent to an orthogonal one if and only if it is equivalent to a real (and orthogonal) one. Thus, unless an irreducible unitary ε-representation is already real, one has to add its conjugate-complex representation, and the discussion of the various cases depending on s yields the minimal values n_{0} (case O) mentioned in the introduction; in other words, the degrees of the irreducible orthogonal ε-representations of G_{s}.
1.2. A very simple and useful scheme for studying the groups G_{s} and their ε-representations (and many other things) has been deviced by T. Y. Lam and T. Smith [LS]. They have expressed the G_{s} as products of very small and well-known groups. Namely $C=G_{1}$, the cyclic group of order 4; $Q=G_{2}$, the quaternionic group of order $8 ; K$, the Klein 4-group; and D, the dihedral group of order 8 . Although K and D do not belong to the family G_{s}, they are of a similar nature and contain a distinguished central element ε of order 2 (distinguished arbitrarily in K). "Product" here means the central product obtained from the direct product by identifying the
two ε 's. The expression for the G_{s} then is as follows, displaying a fundamental periodicity modulo 8 :

s	0	1	2	3	4	5	6	7	8	9	\ldots
G_{s}	$\mathbf{Z} / 2$	C	Q	$Q K$	$Q D$	$D^{2} C$	D^{3}	$D^{3} K$	D^{4}	$D^{4} C$	\ldots

and $G_{s+8}=D^{4} G_{s}$.
The tensor product of ε-representations of two of the groups G_{s}, K, D is an ε-representation of their product above, and all ε-representations of the G_{s} can be obtained in that explicit way from those of C, Q, K, D, which are well-known. This yields, in particular, the characters χ and the Schur indices I of the irreducible unitary ε-representation (the Schur index $I=1$ if the representation is equivalent to a real one; if it is not, $I=-1$ if it is equivalent to the conjugate-complex one, $I=0$ otherwise). Both χ and I behave multiplicatively with respect to the central product.
1.3. The Schur indices of the irreducible ε-representations are: 0 for $C=G_{1},-1$ for $Q=G_{2}$, and 1 for K and D (two equivalence classes for K, one for D). This yields the Schur indices I_{s} of the irreducible ε-representations of the G_{s}, as listed in (2) below; we further list the numbers v_{s}^{U} of inequivalent unitary, and v_{s}^{O} of inequivalent orthogonal irreducible ε-representations, and the respective degrees d_{s}^{U}, d_{s}^{O}. Note that I_{s} is periodic with period 8 , and d_{s}^{O} is periodic with period 8 in the sense that $d_{s+8}^{o}=16 d_{s}^{o}$. Finally we include in the same table the Grothendieck groups D_{s}^{U} and D_{s}^{o} of (equivalence classes of) irreducible ε-representations of G_{s}, with respect to the direct sum of representations.
(3)

s	0	1	2	3	4	5	6	7	8	9	\ldots
I_{s}	1	0	-1	-1	-1	0	1	1	1	0	\ldots
v_{s}^{U}	1	2	1	2	1	2	1	2	1	2	
v_{s}^{O}	1	1	1	2	1	1	1	2	1	1	
d_{s}^{U}	1	1	2	2	4	4	8	8	16	16	
d_{s}^{O}	1	2	4	4	8	8	8	8	16	32	
D_{s}^{U}	\mathbf{Z}	$\mathbf{Z} \oplus \mathbf{Z}$									
D_{s}^{O}	\mathbf{Z}	\mathbf{Z}	\mathbf{Z}	$\mathbf{Z} \oplus \mathbf{Z}$	\mathbf{Z}	\mathbf{Z}	\mathbf{Z}	$\mathbf{Z} \oplus \mathbf{Z}$	\mathbf{Z}	\mathbf{Z}	

The values of d_{s}^{o} follow immediately from the I_{s} and the d_{s}^{U}. The values n_{0} for the case O, as given in the Introduction, are the d_{s}^{O}.

2. The Reduced ε-Representation Ring

2.1. For all $s \geqslant 0$ the group G_{s} is the subgroup of G_{s+1} obtained by omitting the generator a_{s+1}; let $h_{s}: G_{s} \rightarrow G_{s+1}$ be the embedding homomorphism. Via h_{s} we can restrict an ε-representation of G_{s+1} to G_{s}, which in terms of HR-matrices means omitting A_{s+1}.

Let $h_{s}^{*}: D_{s+1}^{U} \rightarrow D_{s}^{U}$ be the corresponding homomorphism of Grothendieck groups, and $E_{s}^{U}=D_{s}^{U} / h_{s}^{*} D_{s+1}^{U}$ the "reduced" groups; similarly $E_{s}^{O}=D_{s}^{o} / h_{s}^{*} D_{s+1}^{O}$. They can easily be computed by means of the characters of ε-representations, as follows.

For Q and D the character of an irreducible unitary ε-representation is 0 except on 1 and ε. For C and K it is $\neq 0$ on all 4 elements; on the essential generator $(\neq \varepsilon)$ of C it is $+i$ or $-i$ for the two inequivalent representations, and +1 or -1 in the case of K. For G_{s}, s even, we infer from the table (2) that the character is 0 except on $1, \varepsilon$. For G_{s}, s odd, the character is 0 except on $1, \varepsilon$ and two further elements $z, \varepsilon z$; on these the two inequivalent ε-representations differ just by the sign of the character.

If s is even, $d_{s+1}^{U}=d_{s}^{U}=2^{s / 2}$; thus the restriction of an irreducible ε-representation must be irreducible, whence $h_{s}^{*} D_{s+1}^{U}=D_{s}^{U}, E_{s}^{U}=0$. If s is odd, $d_{s+1}^{U}=2 d_{s}^{U}=2^{(s+1) / 2}$; thus the restriction is the sum of two irreducible ε-representations, and since the character is 0 (except on $1, \varepsilon$) these two must be inequivalent. Therefore $h_{s}^{*} D_{s+1}^{U}$ is the "diagonal" of $D_{s}^{U}=\mathbf{Z} \oplus \mathbf{Z}$, and $E_{s}^{U}=\mathbf{Z}$; its generator ρ_{s} is represented by either of the two inequivalent irreducible ε-representations of $G_{s},-\rho_{s}$ by the other one.

In the orthogonal case the E_{s}^{O} are computed similarly from (3). Since $d_{1}^{O}=2$ and $d_{0}^{O}=1$, the restriction from D_{1}^{O} to D_{0}^{O} yields twice the generator, and $E_{0}^{O}=\mathbf{Z} / 2$; the same argument holds for $s \equiv 0 \bmod 8$, $d_{s+1}^{o}=2 d_{s}^{o}$. Since $d_{2}^{O}=4$ and $d_{1}^{o}=2$, we get $E_{1}^{o}=\mathbf{Z} / 2$. From $d_{3}^{O}=d_{2}^{O}=4$ we get $E_{2}^{O}=0$. As for $s=3$, the character argument shows that $h_{3}^{*} D_{4}^{O}=$ diagonal of $D_{3}^{O}(=\mathbf{Z} \oplus \mathbf{Z})$, and $E_{3}^{O}=\mathbf{Z}$. For $s=4,5,6$ the dimensions $d_{s+1}^{O}=d_{s}^{O}$ show that $E_{4}^{O}=E_{5}^{O}=E_{6}^{O}=0$. For $s=7$, the character argument yields $h_{7}^{*} D_{8}^{o}=$ diagonal of $D_{7}^{o}(=\mathbf{Z} \oplus \mathbf{Z})$, and $E_{7}^{o}=\mathbf{Z}$. Finally one has, for all $s, E_{s+8}^{o} \cong E_{s}^{O}$.

