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THE FIXED POINT SET OF A FINITE GROUP ACTION
ON A HOMOLOGY FOUR SPHERE

by Stefano Demichelis

1. Introduction

It is a classical result of P. A. Smith that a finite p-group acting on a

finite dimensional complex with the Zjp homology of a sphere Sk has fixed

point set Z/p homologically equivalent to some Sk with k < n.

This theorem cannot, in general, be extended to groups of more general

type, even if one assumes much more restrictive hypotheses such as a smooth
action on a manifold homeomorphic or diffeomorphic to a sphere.

In particular, for every odd n ^ 5, it is possible to use Brieskorn
varieties to produce finite group actions with fixed point set not a homology
sphere. Even if the fixed point set is a sphere it can be embedded in a non
standard way; for an elementary discussion of this phenomenon see [18]
and [15]. For other "strange" actions of groups on higher dimensional
spheres and disks the reader is referred to [16].

In low dimensions it is harder to construct such examples, and it may be

conjectured that finite group actions on spheres are equivalent or somewhat
"close" to linear ones.

On S2 the situation is the best possible, indeed according to [6], [13]
and [8], every finite group of homeomorphisms of S2 is topologically
conjugate to a linear action.

On S3 it is necessary to assume local linearity, otherwise pathologies
such as horned spheres may arise, see [2].

A deep and difficult theorem, conjectured by Smith and proved by
combining results of Thurston, Meeks and Yau and Bass, states that every
smooth cyclic action on S3 is conjugate to the linear one; a detailed
account can be found in [15].

The first example of a smooth cyclic action on S4 with fixed point set
a knotted S2 is in [12], for more information see [9] and [17], these
actions are obviously not linear.
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The aim of this paper is to prove that any locally linear orientation
preserving action of a finite group on an homology four sphere has fixed

point set homeomorphic to a sphere. In particular there are no one fixed

point actions. Besides, if the fixed point set is 5°, it is proved that the local
representations are conjugate.1) For a large class of actions, the proof is an
elementary application of Smith's theory, using the fact that in dimensions

^ 2 homology spheres are topological spheres. In one remaining case, an
action of the icosahedral group, a slightly more complicated argument is

needed. This type of argument cannot be extended to dimension 3, as the

example in [11] proves.
The motivation for this work came from the paper of Peter Braam and

Gordana Matic [3] on group actions and instantons spaces. They prove
that a smooth orientation preserving action of a group on a homology
sphere whose fundamental group has no nontrivial representations in 517(2)

admits an even number of isolated fixed points and that they come in pair
such that the representations around them are conjugate. Also, Furuta proved
that there are no actions with one fixed point.

The author wishes to thank Professor William Browder for his patience
in listening to him and for his advice, and also Gordana Matic for having
explained her work to him.

2. Statement of the result

In the following "R-homology Sn" will mean a compact topological
manifold whose homology with coefficients in the ring R is the same as

that of Sn. (Of course in dimensions 0, 1, 2 such a manifold is

homeomorphic to a sphere.) To unify some notation, the empty set will be

considered a sphere of dimension —1, all actions will be assumed effective.

Theorem 2.1. Let G be a finite group acting locally linearly and

preserving the orientation on a Z-homology 4-sphere 2. Then the fixed point
set of G is homeomorphic to a sphere; in particular it never consists of
one point.

Local linearity is assumed to avoid pathologies, every smooth action is

locally linear (see e.g. [5]).

*) The author has been informed that this has been proved independently by
S. Cappell.
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Observation 2.2. There is a non-locally linear action of a finite group on a

homology four sphere with exactly one fixed point.

Proof. Take the one fixed point action of A5 on the Poincaré's sphere

constructed in [11], remove the fixed point and multiply the remaining

homology disk by the unit interval to obtain a four homology disk on

which the product action has no fixed points. One can extend this action

to the one point compactification to obtain a homology S4 on which A5

acts fixing only the point at infinity.
The main tool in the proof of Theorem 2.1. will be the classical result

due to Smith (see [19]);

Theorem 2.3. Let Z/p, p a prime, act on a Z/p homology Sn,

then the fixed point set is a Z/p homology Sk; if p is odd, n — k

is even.

3. Solvable groups

In the four dimensional case it is easy to deduce from Theorem 2.3.

the Corollary :

Corollary 3.1. Let G be a solvable group acting locally linearly and

orientation preserving on Z, then the fixed point set is a sphere.

Proof of the Corollary. Let { I } if0 c iî1 c iî2 c G be a composition

series such that every Hi + 1 is normal in Ht and the quotients are

cyclic of prime order pt. By Smith theorem X Fix(Hf) is a Z/p homology
sphere, the action is not trivial so X cannot be the whole Z; nor can it be

3-dimensional, for otherwise some element of Hl would interchange the two
components of Z — X and so reverse the orientation. Hence X has to be of
dimension less than or equal to 2 and so a topological sphere.

For i > 1, Fix is invariant under Ht and the latter's action factorizes
through Hi/Hi_1, so Fix(Hf) Fix(Hi_1/Hi\Fix(Hi_1)); applying repeatedly

the argument above and using the fact that now all the spaces
involved are spheres, the statement follows.

If x0 g ZG, the fixed set of G on Z, the assumption of local linearity
gives a representation G 50(4), faithful since G acts effectively, this allows
us to think of G as a finite subgroup of 50(4) and to study it we look
at the central extension :
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3.2 0 C2 -> 50(4) -* SO(3) x 50(3) -> 0

where 7u (7c+,7c_) is given by the representation onto the self-dual and
anti-self-dual forms in R4, and C2 is {+ 1} the center of SO(4).

Observe that n~1(A), where À is the diagonal in 50(3) x 50(3), is

the image of the "suspension" map from 0(3) into 50(4) :

M
det M 0

0 M

We state now two elementary facts which will become useful in the

following ;

Lemma 3.3. If a g 50(4) has at least one eigenvalue 1 then its

image 7u(a) (a+,a_) in SO(3) x SO(3) is conjugate to an element of
A, i.e., v~1cl+v a_ for some v g SO(3).

Lemma 3.4. The fixed space of an element of 50(4) always has even

dimension.

Consider the diagram

50(4) A 50(3) x 50(3)

u u u
3.5 G'C2 G ^ G0 a G1 x G2

j ^
G

where the Gts (z l, 2) are the images of the projections of G0

into the two 50(3)s; j is either the identity or the inclusion of a subgroup
of index 2 in G tu_1(7t(G)) in the latter case n ° j appear as Gt. Luckily,
finite subgroups of 50(3) are well known (see e.g. [20]) : they can be divided

into four types :

i. cyclic groups Cn,

ii. dihedral groups D2m,

iii. the tetrahedral group,

iv. the octahedral group,

v. the icosahedral group.

All the first four types consist of solvable groups. It is easy to show

that the class of solvable groups is closed under the operations of taking
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products, subgroups and central extensions, so G falls in the hypothesis of

Corollary 3.1. in all cases, except the one in which at least one Gt is the

icosahedral group. This is isomorphic to A5, the alternating group on five

letters and this identification will be fixed from now on.

4. Non solvable groups

We will prove Theorem 2.1 case by case. We start with the Lemma:

Lemma 4.1. If G contains C2, then Fix(G) is 5°.

Proof Fix(G) Fix (G/C2Fix (C2)). Fix(C2) is a homology sphere by
Smith's theorem and is zero dimensional since around the chosen fixed

point the non trivial element of C2 acts like the matrix —7, which has an
isolated fixed point. The action of G/C2 on 5° has to be trivial since the
fixed point set is required not to be empty.

By renumbering the factors and changing basis if necessary, we may
assume G2 equal to A5, with G2 50(3) the standard representation of
A5. Then G0 is a subgroup of G1 x A5 mapping onto both factors and
to study it in more detail we look at the kernel of the second projection:
G0 A5. This subgroup consists of elements of the form (k, I) with
k g Gx ; we denote it by K1.

For convenience we distinguish three cases:

Case 1. K1 is a non-trivial subgroup of 50(3), not isomorphic to A5,
Case 2. K1 is isomorphic to A5,

Case 3. Kx is trivial.

Proof in case 1. The surjection G -> A5 has non trivial kernel
K 1(t^~ 1(FC1)) c= G, this group is solvable since Kx is, n is a central
extension and j is an injection. By Corollary 3.1., Fix(K) is a sphere of
dimension 2 and Fix (G) is the fixed point set of an As acting on it,
so it is easy to see that the only actions admitting some fixed points are
the trivial ones.

Proof in case 2. Since A5 is not properly contained in any finite
subgroup of 50(3), K1 has to be equal to the whole G1.

So G0 c As x A5 c= 50(3) x 50(3) and contains K1 A5 x {/}, it
follows that G0 is the whole A5 x As. Observe that the two inclusions of
A5 in 50(3) do not necessarily agree.
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We claim that G in the diagram 3.5 must contain C2, for if not

j o 7i would be an isomorphism G -> A5 x A5 and its inverse would split the
extension

0 —> C2 —* G —> A5 —> A5 —> 0

This is not possible (see the appendix). Now apply Lemma 4.1. to end

the proof.

Proof in case 3. If is trivial the projection G0 A5 is an
isomorphism and the composition § n1 ° n2

1
: A5 G1 is a map onto,

with graph G0. The homomorphic images of A5 are only the trivial group
and A 5 itself, since A5 is simple.

If G1 ct>(^5) is trivial, G0 is equal to {/} x A5. As in case 2 the

extension

0 -> C2 G {/} x A5

is not split, so G contains C2 and Fix(G) S by 4.1. If cj>(A5) is

isomorphic to A5, G0 cz G1 x G2 is a copy of A5 too, mapped into 50(3)
x 50(3) according to d(x) (h(x);i(x)), where h(x) is some irreducible

representation and i(x) is the standard one specified before. The arguments
in [22] can be used to prove that there are exactly two equivalence classes

of representations of A 5 into S0(3).
So there are two subcases :

a. h is x —> u~1i(x)u, with u e S0(3),

b. h is conjugate to the composition i : A5 A5 S0(3) and a is con¬

jugation by the cycle (i2)S5 on A5.

a. If the coordinate system around the fixed point chosen at the beginning
is linearly changed according to some u e S0(4), the representation

p: G -> 50(4) becomes up(x)u_1.

If n(u) (u; 1); i is left unchanged and h is replaced by i. So G0 is

contained in the diagonal and G e G e Im (0(3)).
Recall that when G contains C2, Fix(G) S° by Lemma 4.1.

Lemma 4.2. If G ^ C2, Fix (G) S1.

Proof G is isomorphic to A5 and has to be contained in Im(SO(3))

so its representation has a one dimensional fixed space, which implies

Fix(G) 1-dimensional at x0. Now A5 contains A4 (named tetrahedral group
when sitting in S0(3)), so Fix (A5) g Fix (A4), A4 is solvable and hence
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Fix (Afj is a sphere. It cannot be S2 since the representation of A4 in

S0(3) is irreducible, so it is 51. The only closed 1-dimensional submanifold of

51 is 51 itself, so Fix(G) 51.

b. As in subcase a., a linear change in coordinates allows us to assume

that h is actually i, and as before if G2eG the proposition is proved

applying 4.1.

If it is not the case, let a correspond to the cycle (12345) g A5,ß
to (123) and y to (345). We observe that ß and y generate A5 and so:

1. Fix (A5) Fix (ß) n Fix(y),
2. Fix(T5) c Fix (a).

We claim that Fix (a) is 5°. According to Smith's theorem it is enough

to prove that the representation of a around x0 has an isolated fixed point,
i.e. is the sum of two irreducible complex ones.

If not by Lemma 3.3 (i(a);i(a)) would be conjugate in 50(3) x S0(3)

to an element on the diagonal. From the explicit description of i and i

(see the end of section 7.1 of [22]), it follows that they send all the five

cycles to non conjugate elements in 50(3), so this is impossible, and

Fix (a) 5°.

As for ß and y, their images under (i,i) are conjugate to elements on
the diagonal, by 3.3 and 3.4 their fixed point sets have two-dimensional

components, and so by Smith's theorem they are copies of 52.

So Fix(G) is the intersection of a couple of 52s and is contained in
Fix (a) which is 5°. If this set is empty or equal to 5°, the proposition
follows. If it were a single point, it would be a transverse intersection, by
local linearity, but it is not possible since a homology 54 does not contain

any two cycles with intersection number odd. This ends the proof.

5. Locally linear representation

Let's now consider the case of G acting on a homology 54 with two
fixed points, P0 and

Theorem 5.1. The unoriented representations of G around P0 and

P1 are linearly equivalent. *)

Proof It will suffice to show that the characters associated to the
representations around the Pt s agree on every cyclic subgroup Ck of G.

*) See the note in the introduction.
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Observe that by Lemma 3.4 and Smith's theorem the fixed point set of an
element of G different from the identity is either S° or S2.

Let g generate Ck, we distinguish three cases :

1. Fix(gr) — {P1 ; P2} for every r 0(mod k),

2. Fix (g) S2,

3. Fix(g) {Pi ; P2} but Fix(gn) S2 for some gn ^ id.

Case 1. The hypothesis means that the action is semifree and the claim
follows from the work of Atiyah and Bott, see [1] and [14].

Case 2. The action of Ck on the normal bundle of the fixed S2

defines an element N of KCk(S2). Since Ck acts trivially on S2 the two
inclusions Pt -» S2 are obviously Ck homotopic so that the diagram :

commutes. This means that the representation of Ck in the normal
component to S2 are conjugate, the tangential representations are of course
both the identity, so the statement is proved.

Case 3. We can assume, by [8], that the action on S2 Fix(gn) is

linear. S2 has zero intersection number in S so its normal bundle N can
be identified to S2 x jR2, and we fix a trivialization. Denote a point of
S2 — {P1;P2} by (x, t) with x e S1 and te (0,1). Let C0 be the space
{(j) : S1 50(2) I deg $ 0}, it is an abelian group by pointwise multiplication
and a Ck module with structure given by :

acted on by the obvious induced action.

By [5], chapter VI, prop. 11.1, the action is given by a 0, such that

1. 6, e Z1(Ck; C0) and depends continuously on te [0, 1].

2. 0;(/i)(x) is constant on x e S1 and equal to the representation of
h at Pt for i 0; 1.

A change in the trivialization adds to each Qt a coboundary so there is

a well defined continuous family 0t: [0, 1] -> H1(Ck ; C0).

A straightforward calculation shows that Jï1!Ck ; C0) H2(Ck ; Z) Ck.
Since 0, is continuous it has to be constant, so 00 0! and by 2. the

(h<$) (x) §(hx), he Ck and x e S1 c S2
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two normal representations are equal. In the topological case, by the results

of Cappel and Shaneson topological equivalence of matrices in dimension 4

implies linear equivalence, so the statement of Theorem 5.1 makes sense

also for a group of homeomorphism.
The proof given can be adapted to this more general case provided

that the followings are true :

1. the topological Atiyah-Singer signature formula holds,

2. a locally flat 5 2 in £ has a normal bundle,

3. the argument in case 3 works with Homeo^1) instead of 50(2).

Assertion 1 is proved, in the case of the semi-free action, in [21],
page 188; assertion 2 follows from the work of Freedman, see [10];
assertion 3 is proved using the retraction Homeo(51) into 50(2) given by
the Poincaré number, see [7].

Appendix

Lemma. The extensions :

0 C2 -> Ä5 A5 -> 0

1 i
0 -> C2 -> A5 x A5 -> A5 x A5 -> 0

I I <*•*'>

0 ^ C2 ^ 50(4) -» 50(3) X 50(3) -» 0

are not split, h and h' can he any nontrivial representations of A5
and f is either (Id x {I}) or ({/} x Id).

Proof Standard theory of group extensions and cohomology (see [4])
allows us to reduce to the :

Proposition. Any non trivial homomorphism A5 -4 50(3) induces an
isomorphism Z/2 - H2(BSO(3) ; Z/2) H2(BA5 ; Z/2) Z/2.

Proof of the Proposition. If the corresponding extension is split, then
Z/2 x As c= 53, but A5 60 so there exists a Z/2 c= A5 so Z/2 x Z/2
would act freely on 53, which cannot happen.
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