

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. [Siehe Rechtliche Hinweise.](https://www.e-periodica.ch/digbib/about3?lang=de)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. [Voir Informations légales.](https://www.e-periodica.ch/digbib/about3?lang=fr)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. [See Legal notice.](https://www.e-periodica.ch/digbib/about3?lang=en)

Download PDF: 04.10.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

5. R-MATRICES AND INTERTWINING OPERATORS

In this section we shall prove that, after ^a trivial twisting, the intertwining operators between certain representations of Yangians provide rational solutions of the quantum Yang-Baxter equation. Recall that, if V is any representation of $Y = Y(\mathfrak{gl}_2)$, then, for any $a \in \mathbb{C}$, we denote by $V(a)$ its pull-back by the automorphism τ_a of Y defined in Proposition 2.5.

PROPOSITION 5.1. Let V, W be irreducible finite-dimensional representations of Y with highest weight vectors Ω_V , Ω_W and let a, $b \in \mathbb{C}$. Then: (a) the tensor products $V(a) \otimes W(b)$ and $W(b) \otimes V(a)$ are irreducible and isomorphic except for a finite set of values $S(V, W)$ of $a - b$; (b) the unique intertwining operator

 $I(V, a; W, b)$: $W(b) \otimes V(a) \rightarrow V(a) \otimes W(b)$

which maps $\Omega_W\otimes\Omega_V$ to $\Omega_V\otimes\Omega_W$ is a rational function of $a-b$ with values in $\text{Hom}(W \otimes V, V \otimes W)$.

Proof. Part (a) follows immediately from Proposition 4.2 and Corollary 4.7. For part (b), we need the following lemma.

LEMMA 5.2. Let V, W be representations of Y and let $a \in \mathbb{C}$. (a) If V is irreducible, so is $V(a)$. (b) If $I: V \rightarrow W$ is an isomorphism of representations of Y, so is $I: V(a) \rightarrow W(a)$.

Proof of lemma. Part (a) follows from the definition of $V(a)$. For part (b), we must show that I commutes with the action of x and $J(x)$ on $V(a)$ and $W(a)$, for all $x \in \mathfrak{gl}_2$. But this is clear, since the action of x is the same as that on V and W, and that of $J(x)$ is the same as that of $J(x) + ax$ on V and W.

Returning to the proof of Proposition 5.1, it follows from the lemma that $I(V, a; W, b)$ is a function of $a - b$, so it suffices to consider the case $b = 0$. For any $a \in \mathbb{C}$ which does not belong to the finite set $S(V, W)$, there is a unique isomorphism

$$
I(V, a; W, 0) \equiv I(a) : W \otimes V(a) \rightarrow V(a) \otimes W
$$

of representations of Y such that

(5.3) $I(a)$ $(\Omega_W \otimes \Omega_V) = \Omega_V \otimes \Omega_W$.

Choose bases of $V \otimes W$ and $W \otimes V$ and let $\{I_{\lambda}\}\$ be a basis of \mathfrak{sl}_2 ; write $I(a)$ also for the matrix of $I(a)$ with respect to these bases. Let A_{λ}, B_{λ} be the matrices of I_{λ} and $J(I_{\lambda})$ acting on $W \otimes V(a)$; and let A'_{λ} and B'_{λ} refer similarly to $V(a) \otimes W$. Then, $I(a)$ commutes with the action of Y if and only if $I(a)$ satisfies the following system of homogeneous linear equations:

$$
A_{\lambda}I(a) = I(a)A'_{\lambda}, \quad B_{\lambda}I(a) = I(a)B'_{\lambda}, \quad \text{for all} \quad \lambda
$$

We know that, if $a \notin S(V, W)$, these equations have a unique solution satisfying equation (5.3). By elementary linear algebra, the solution is a rational function of the entries of the matrices A_λ , A'_λ , B_λ , B'_λ . Since A_λ , A'_λ are independent of a and B_{λ} , B_{λ} are linear in a, the result follows.

Definition 5.4. Let V be a finite-dimensional irreducible representation of Y. Then, the R-matrix associated to V is the function $R(a-b)$ with values in End($V \otimes V$) given by

$$
R(a-b)=I(V, a; V, b)\sigma
$$

where $\sigma \in$ End($V \otimes V$) is the switch of the two factors.

THEOREM 5.5. Let V be a finite-dimensional irreducible representation of Y. Then the R-matrix associated to V is a rational solution of the quantum Yang-Baxter equation:

$$
(5.6) \quad R^{12}(a-b)R^{13}(a-c)R^{23}(b-c) = R^{23}(b-c)R^{13}(a-c)R^{12}(a-b) \; .
$$

Proof. We note first some simple commutation relations between the intertwining operator $I(a-b) \equiv I(V, a; V, b)$ and the switch map σ . For example, we have

$$
\sigma^{12} I^{13}(a-c) \sigma^{12} = I^{23}(a-c) .
$$

by an easy computation. Similarly,

$$
\sigma^{12}\sigma^{13}I^{23}(b-c)\sigma^{13}\sigma^{12}=I^{12}(b-c).
$$

Hence,

$$
R^{12}(a-b)R^{13}(a-c)R^{23}(b-c) = I^{12}(a-b)\sigma^{12}I^{13}(a-c)\sigma^{13}I^{23}(b-c)\sigma^{23}
$$

= $I^{12}(a-b)I^{23}(a-c)\sigma^{12}\sigma^{13}I^{23}(b-c)\sigma^{23}$
= $I^{12}(a-b)I^{23}(a-c)I^{12}(b-c)\sigma^{12}\sigma^{13}\sigma^{23}$.

Similarly,

$$
R^{23}(b-c)R^{13}(a-c)R^{12}(a-b) = I^{23}(b-c)I^{12}(a-c)I^{23}(a-b)\sigma^{23}\sigma^{13}\sigma^{12}.
$$

Hence, in view of the relation

$$
\sigma^{12}\sigma^{13}\sigma^{23} = \sigma^{23}\sigma^{13}\sigma^{12}
$$

in the symmetric group on three letters, the equation to be proved is

$$
(5.7) \tI12(a - b)I23(a - c)I12(b - c) = I23(b - c)I12(a - c)I23(a - b).
$$

Note that both sides of equation (5.7) define intertwining operators

 $V(c) \otimes V(b) \otimes V(a) \rightarrow V(a) \otimes V(b) \otimes V(c)$

which fix the tensor product of the highest weight vectors in V . Hence, regarded as functions on \mathbb{C}^3 with values in End($V \otimes V \otimes V$), they agree on the complement of the set S of $(a, b, c) \in \mathbb{C}^3$ where $V(c) \otimes V(b) \otimes V(a)$ or $V(a) \otimes V(b) \otimes V(c)$ is reducible. It follows from part (a) of Proposition 5.1 that S intersects each complex line parallel to one of the axes in \mathbb{C}^3 in at most finitely many points. It is easy to see that the complement of such ^a set is Zariski dense in \mathbb{C}^3 . Since the two sides of equation (5.7) are rational functions which agree on ^a Zariski dense set, they are equal.

Remark. We have used the following simple fact about intertwining operators. Let U, V and W be representations of a Yangian $Y(\hat{\mathfrak{g}})_2$ and let $I: U \otimes V \rightarrow V \otimes U$ be an intertwining operator. Then

$$
I^{12}: U \otimes V \otimes W \to V \otimes U \otimes W
$$

and

$$
I^{23}\colon W\otimes U\otimes V\to W\otimes V\otimes U
$$

are intertwining operators. While this is obvious enough, it should be noted that

$$
I^{13}\colon U\otimes W\otimes V\to V\otimes W\otimes U
$$

is *not* an intertwining operator in general.

We conclude this general discussion by showing that, up to a sign change in the parameter, the R-matrix $R(u)$ we have associated to a representation of Y is the same as that constructed using the "universal R -matrix" (see Theorem ³ of [4]). Set

$$
R(u) = R(-u) .
$$

Then, by Theorem ⁴ of [4], it suffices to prove that

(5.8)
$$
P_{\lambda}^{+}(a, b)R(b-a) = R(b-a)P_{\lambda}^{-}(a, b)
$$

where

$$
P_{\lambda}^{\pm}(a, b) = (\rho \otimes \rho) \left(\left(J(I_{\lambda}) + aI_{\lambda} \right) \otimes 1 + 1 \otimes \left(J(I_{\lambda}) + bI_{\lambda} \right) + \frac{1}{2} \left[I_{\lambda} \otimes 1, \Omega \right] \right),
$$

 $p: Y \to End(V)$ is the action of Y on V and $\{I_{\lambda}\}\$ is an orthonormal basis of \mathfrak{sl}_2 . In terms of intertwining operators, equation (5.8) asserts that

$$
P_{\lambda}^{+}(a, b)I(a - b) = I(a - b) \sigma P_{\lambda}^{-}(a, b) \sigma.
$$

But it is easy to see that

$$
\sigma P_{\lambda}^-(a, b) \sigma = P_{\lambda}^+(b, a) .
$$

Hence, we must prove that

$$
P_{\lambda}^{+}(a, b)I(a - b) = I(a - b)P_{\lambda}^{+}(b, a) .
$$

But this is simply the statement that

$$
I(a-b): V(b) \otimes V(a) \to V(a) \otimes V(b)
$$

commutes with the action of $J(I_{\lambda})$.

We shall now apply these results to compute the *-matrices associated to* every finite-dimensional irreducible representation of Y. By Theorem 4.11, every such representation is of the form

$$
V=V_{m_1}(a_1)\otimes\cdots\otimes V_{m_k}(a_k).
$$

The intertwining operator

$$
I(a-b): V(b) \otimes V(a) \to V(a) \otimes V(b)
$$

can be computed as the product of k^2 intertwining operators of the form $I(V_m, a; V_n, b)$, each of which effects an interchange of nearest neighbours. Since such an operator commutes, in particular, with the action of \mathfrak{gl}_2 , it can be written in the form

(5.9)
$$
I(V_m, a; V_n, b) = \sum_{j=0}^{\min\{m, n\}} c_j P_{m+n-2j},
$$

where

$$
P_{m+n-2j}: V_n \otimes V_m \to V_m \otimes V_n
$$

is the projection onto the irreducible component of

$$
V_m \otimes V_n \cong \otimes_{j=0}^{\min\{m,n\}} V_{m+n-2j}
$$

of type V_{m+n-2i} . We have $c_0 = 1$ since $I(V_m, a; V_n, b)$ preserves the tensor products of the highest weight vectors.

To compute $I(V_m, a; V_n, b)$, let $\Omega_i, j = 0, 1, ..., \min\{m, n\}$, be a highest weight vector in $V_n \otimes V_m$ of weight $m + n - 2j$; then, the vector Ω'_j obtained by switching the order of the factors in Ω_i is a highest weight vector in $V_m \otimes V_n$ of the same weight, and we have

$$
I(V_m, a; V_n, b) (\Omega_j) = \Omega'_j.
$$

Further, it is easy to see that, for $j > 0$, $(x^+ \otimes 1) \cdot \Omega_j$ is an \mathcal{E}_1 -highest weight vector of weight $m + n - 2j + 2$; it is non-zero, since otherwise Ω_i would be annihilated by $x^+ \otimes 1$ and by $1 \otimes x^+$, contracting the assumption $j > 0$. Hence, we may assume that

$$
(x^+\otimes 1)\cdot \Omega_j=\Omega_{j-1}
$$

for $j > 0$. Switching the order of the factors, we have

$$
(x^+\otimes 1)\cdot\Omega'_j=-\Omega'_{j-1}\ .
$$

By Proposition 4.2 (and its proof), Ω_i is a Y-highest weight vector in $V_n(b) \otimes V_m(a)$ if

$$
b - a = \frac{1}{2} (m+n) - j + 1.
$$

It follows from the formula for the co-multiplication in Definition 1.1 that, in the representation $V_n(b) \otimes V_m(a)$,

$$
J(x^+)\,.\,\Omega_j=\,\left(\,b-a-\frac{1}{2}\,(m+n)+j-1\,\right)\,(x^+\otimes 1)\,.\,\Omega_j\;,
$$

and that in the representation $V_m(a) \otimes V_n(b)$,

$$
J(x^+)\cdot\Omega'_j = \left(a - b - \frac{1}{2}(m+n) + j - 1\right)(x^+ \otimes 1)\cdot\Omega'_j.
$$

The equation

$$
I(V_m, a; V_n, b) (J(x^+), \Omega_j) = J(x^+), (I(V_m, a; V_n, b) \Omega_j)
$$

now gives ^

$$
\frac{c_j}{c_{j-1}} = \frac{a-b+\frac{1}{2}(m+n)-j+1}{a-b-\frac{1}{2}(m+n)-j+1}.
$$

It follows that

(5.10)
$$
I(V_m, a; V_n, b) = \sum_{j=0}^{\min\{m, n\}} \prod_{i=0}^{j=1} \frac{a-b+\frac{1}{2}(m+n)-i}{a-b-\frac{1}{2}(m+n)+i} P_j.
$$

We summarize our results in the following theorem.

THEOREM 5.11. The R-matrix associated to the representation

$$
V = V_{m_1}(a_1) \otimes \cdots \otimes V_{m_k}(a_k)
$$

of Y is given by

$$
R(a-b) = \Big(\prod_{i,j=1}^k I(V_{m_i}, a + a_i; V_{m_j}, b + a_j) \Big) \sigma ,
$$

where the intertwining operators are given by equation (5.10) and σ is the switch map. The order of the factors in the product is such that the (i, j) -term appears to the left of the (i', j') -term iff

$$
i > i' \quad or \quad i = i' \quad and \quad j < j' \; .
$$

6. Concluding remarks

Since we have discussed only the Yangian associated to \mathfrak{gl}_2 in this paper, it may be worth-while to indicate the extent to which the results above can be generalized to the Yangian $Y(\alpha)$ associated to an arbitrary finite-dimensional complex simple Lie algebra a

The definition of $Y(\alpha)$ is precisely as in (1.1), except of course that $\{I_{\lambda}\}\$ should be an orthonormal basis of ^a with respect to some invariant inner product. The formulae

$$
\tau_a(x) = x , \quad \tau_a(J(x)) = J(x) + ax ,
$$

for $x \in \mathfrak{a}$, again define a one-parameter group of Hopf algebra automorphisms of $Y(a)$, and the relation, discussed in section 5, between solutions of the quantum Yang-Baxter equation and intertwining operators between tensor products of representations of $Y(a)$, which follows from the existence of the τ_a , is also valid in the general case.