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18 L. H. KAUFFMAN

where

àC ?*0 + + +

K(X) D)^+ D£~( + D^+
and

V(><) a[ + D^r + 5^+ ]
+ a"1[D^ + + D^+ D^]

A state in this expansion is obtained by first splitting (in any way) the vertices

of the given unoriented four-valent plane graph G. The vertex weights are then
determined by the template, as illustrated below.

« » (-A)2(-B)

If < G | S > denotes the product of vertex weights for a given state S,

then the polynomial has the form

Dgy <G|S> p^"1, n 1 + (a-a~l)l(
S

Proof of these formulas from the extension axioms follows just as in the

Homfly case.

VI. The Conway Polynomial

The skein models give a very elegant formulation of the Conway
polynomial ([16], [41]) (compare [33])

VK(z)Rk(z, 1).

Specializing the formula for the skein model we have

V*(z) K-i )'-<L)zt<L)
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(summation over L g A(K. T\\L\ 1),

I vx z vx + vx

v* ="z VX " vx

(x«-»x v X)
(Notation of section 2.)

Note that each state in this model has a single crossing circuit. Hence the

template can be replaced by a single choice of base-point.

Writing

Vx(z) a0(K) + ai(K)z+ a2{K)z2 +

we have

an(K) E(-1)'"<L)

(summation over L e ^4(K, T),\L \ 1, £(L) n).

Note that the second coefficient, a^K), is the linking number of K
when K is a 2-component link. The coefficients are generalized (self-)linking
numbers.

It is worth comparing this model with the model for the Conway
polynomial given in Formal Knot Theory [42]. I shall refer to the latter
model as the FKT model. The FKT model sums over all Jordan Euler Trails
on the universe underlying the link diagram K. These trails result from
splicing the diagram K at each crossing in either oriented

or non-oriented

>\ «—» y—<c

fashion. A choice of basepoint determines the vertex weights via the rules :

1. The unoriented splice has weight one.

-1
<XI>~0 1
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2. Notation

Let

mean that the first passage through this site from the basepoint is in the

direction of the arrows.
Let

X
mean that the first passage through this site from the basepoint is opposite
to the direction of the arrows.

Then the weights are :

<X\X> w ,<XI
<XIÄ> ß <XI

These vertex weights give the state expansion formulas :

Vy» w - B Vj; *Vj—»

with z W — B, and WB 1 (for topological invariance). Note that

is a tautology, and hence the Conway exchange identity

~ - Z^ * —"i» «^—*

follows at once.

Definedness and properties of this model rest on a combinatorial result (the

Clock Theorem [42]) from which it is straightforward to verify invariance
under the Reidemeister moves. Furthermore, the model extends to a state

model for the multi-variable Alexander-Conway polynomial (one variable for
each component in a link). The FKT model is very closely related to
Alexander's original approach to the polynomial via the Dehn presentation of
the fundamental group of the link complement [6].
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The FKT model has a number of intriguing features. It calculates a

determinant of a generalized Alexander matrix. It is the low temperature limit

of a generalized Potts model [57].

Is the FKT model a reformulation of the skein model for the Conway

polynomial? There are a number of ways to try to generalize the FKT model

to obtain a model of the Homfly polynomial. An answer to this question would

shed light on the relationship of the FKT model and the Homfly polynomial.

(And consequently on the relationship of the Homfly polynomial and the

fundamental group of the link.)

VII. Yang-Baxter Models

I now turn to state models for specializations of the Homfly and Kauffman

polynomials that arise from solutions to the Yang-Baxter Equation [10]. These

models were devised by Vaughan Jones (Homfly) ([40]) and Volodja Turaev

(Kauffman) ([93]). (See also the series of papers ([1], [2], [3], [4], [5], [64])

by Akutsu, Wadati and collaborators.) The reformulation of these models as

given here is due to the author (compare [55], [58]).

The Yang-Baxter Equation arises in the study of two-dimensional statistical
mechanics models [10] and also in the study of 1 + 1 (1 space dimension,
1 time dimension) quantum field theory ([25], [100]). In the latter case, the

motivation and relationship with knot theory is easiest to explain.
Regard a crossing in a universe (shadow of a link diagram) as a

diagram for the interaction of two particles. Label the in-going and out-going
lines of an oriented crossing with the "spins" of these particles.
(Mathematically, spin is a generic term for a label chosen from an ordered index
set J. In applications it may denote the spin of a particle, or it may
denote charge or some other intrinsic quantity.) The angle between the

crossing segments can be regarded as an indicator of their relative momentum
(rapidity). For each assignment of spins and each angle 0 there will be a
matrix element that, in the physical context, measures the amplitude (complex
probability amplitude) for the process with these spins and rapidity.

The S matrix, S §(6), is said to be factorized if it satisfies the equations
shown in Figure 8. This matrix equation is the Yang-Baxter Equation.
Physically, it means that amplitudes for multi-particle interactions can be
calculated from the two-particle scattering amplitude.
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