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418 R. F. COLEMAN

in Suppose X is an Abelian scheme over S and R is the subgroup of
A(S) consisting of constant sections of X/S. Let s e X(S). Then the set s + R

is a set of bounded height.

Lemma 3.1.1 (Manin). Suppose E is a finite dimensional K vector
subspace of K(C). Then the set

T {s e C(S): 3k 0 e E such that s*k 0}

has bounded height.

Proof. Without loss of generality we may increase E to suppose that the

rational map g: C ¥k(E) given on points by x (eeE^ e(xj) is birational
onto its image (note : g is actually a morphism on the compliment of the polar
locus of E). It follows that g induces an embedding of the generic fiber of C/S
into Pk(S)(E ®K(S)). Let h denote the logarithmic height with respect to this

embedding. It follows that if s e C(S),gos is constant or g os has degree

one. In the former case h(s) is zero and the degree of the Zariski closure of
gos(S) in PCE) in the latter.

Now if 5 e T, and g os is not constant, it follows that the Zariski closure

of g°s(S) is a component of a hyperplane section of the Zariski closure of
g(C). Hence, h(s) is less than or equal to the degree of the Zariski closure of
g(C). This proves the lemma.

The key property about heights we will need is:

Theorem 3.1.2. Suppose C-> S is as in the above theorem. If C{S)
contains an infinite set of bounded height then C is a constant family.

(See Corollary 2.2, Chapter 8 of [L-FD].)
Hence all we need prove is that the elements of C(S) have bounded height.

2. Lang-Siegel towers

Suppose the genus of Cis at least 1. Suppose Tis an infinite subset of C(S).

Proposition 3.2.1. There exists a projective system of curves

({Cn}fhm>n}),m,n e Z>0 and n ^ m, over K such that

(i) Q C,

(ii) hm>n: Cm - Cn is étale,
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(iii) (hm>i) T)n Cm(S) is infinite,

(iv) There exists a finite covering Sm> n of S such that the fiber product
of hm>n with Sm>n is Galois, Abelian and of positive degree.

Let / denote the Jacobian scheme of C over S. Let a: C -> / be an Albanese

morphism. Let p be a prime. Let T denote the closure of a(T) in J(S) (x) Zp.
Since a(T) is infinite it follow from the Mordell-Weil Theorem that there exists

a t e T - a(T). Let tn e T such that t - a(tn) e pnJ{S). Let Cn denote the

normalization of the fiber-product of C and / via the map Hn:x pnx -f tn

and hn> 2 the natural map from Cn to C. It follows that Cn is defined over S

and since Hm(J(S)) D {tn:m\n} that hntl(Cm(S)) contains an infinite subset

of T.

All that remains is to exhibit the maps hm>n. Clearly, tm — tn — pnrm>n for
some rm>n e J(S). Let Hm>n denote the map x:pm~nx + rm>n. Then Hm,k

Hn koHm n. It follows that Hm>n pulls back to a morphism hm>n: Cm-^ Cn.

It is easy to see that this morphism becomes Abelian after adjoining the
pm~"-torsion points on /. This proves the proposition.

Remark. One can also prove the above proposition with the condition
n ^ m replaced by n | m.

3. Corollaries of the Theorem of the Kernel

Lemma 3.3.1. Suppose g:Xr -* X is a morphism of smooth proper
schemes with geometrically connected fibers over S. Then if\ie PF(X7S)
and s,t e X($$,(g*u)(s9t)

Proof. This follows easily from Lemma 1.3.2.
Suppose / is the Jacobian of C over S and g is an Albanese morphism,

then since g*:HlDR(J/S)- HlDR(C/S)isan isomorphism g*:PF(J/S)
PF(C/S) is an isomorphism.

Lemma 3.3.2. Let p be a fixed Picard-Fuchs differential equation on
C/S. Then {p {s, t) : s, t e C(S)} lies in a finite dimensional subspace of
K[S] over K.

Proof. Suppose p e PF(J/S) such that g*p p. The lemma follows
from the Mordell-Weil theorem which together with the Theorem of the kernel
implies that J(S) modulo the kernel of the homomorphism s p^s1) is a
finitely generated Abelian group.
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