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42 J. BRINKHUIS

2. The prime factorization of p in Q(pm)

The next thing to do is to recall the prime factorization of the prime
number p in the field Q{pm) and to introduce a notation for the primes of
Q(pm) above p which is convenient for bookkeeping purposes. The prime
number p ramifies completely in Q(p), in fact p ~ (Çp — 1 )p_1 where ~ denotes

equality up to a factor which is an algebraic unit. The prime number p
splits completely in Q(m), as p 1 mod m. These two facts determine by
ramification theory the prime factorization of p in Q(pm) : the prime number p
splits completely in the extension Q(m)/Q and each prime in Q(m) above p
ramifies completely in the extension Q(pm)/Q(m). This implies moreover that
for each prime D. in Q(pm) above p its residue field is ~ Fp and that the

group Gal (Q(pra)/Q(ra)), which we have identified with Gal(Q(p)/Q), is the
inertia group of D. in the extension Q(pm)/Q, that is, it consists of the

automorphisms of the field Q(pm) which leave Q fixed and which moreover
induce the trivial automorphism on the residue class field of Q (this last

property is automatically satisfied as the residue class field is ~ Fp and

so it has no non-trivial automorphisms).
Now we are going to give a more precise description of the primes in Q(pm)

above p. Let 0 be the Euler phi function defined on the natural numbers in

one of the following, equivalent, ways:

(i) 0(«) is the number of positive integers < n which are relatively prime
to n.

(ii) <|,(n) #(Z/nZ)*.
(iii) <t>(") CQ(w) : Q] •

(iv) 4>(n) is the number of isomorphisms between two cyclic groups of
order n.

For each field F and each ne N let p„(F) be the group of n-th roots
of unity in F ; this is in general a cyclic group of order dividing n. As

m I p — 1 the order of |im(Fp) is precisely m. The set of primes q in Q(m)

above p and the set of isomorphisms \|/ from pm(Q) to pm(Fp) have both
0(m) elements. In fact there is a canonical bijection between these two sets:

let q correspond to \|/ iff Ç \|/(Q mod q for all Ç g pm(Q). Among those

isomorphisms \J/ we will now single one out. Let z be a generator of

F*, then %(z) is a generator of pm(Q) and zip~1)/m is a generator of pw(Fp).

Therefore there is a unique isomorphism from pm(Q) to pm(Fp) which sends

%(z) to z(p~1)lm. It clearly sends %(x) to xip~1)/m for all xe F*. This is the

isomorphism which we single out. Let p be the prime in Q(m) above p
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corresponding to this isomorphism and let ^ be the prime in Qipm)

above p, so ^3P_1 p, if we identify the prime ideal p of Q(m) with its

extension to a fractional ideal of Qipm). Thus we have the following congruence

(2.1) %(x) mod ^3 for all x e F*

Let vy be the valuation on Qipm) corresponding to The number ^ - 1

is a uniformizing element of in the sense that 1) L Moreover

one has v^ip) p — 1. From the prime ^3 we get the other primes in

Q{pm) above p by Galois action: each prime in Q{pm) above p is equal

to S$\ the image of ^3 under the Galois action of x, for a unique

X e Gal (Q(m)/Q).

(2.2) In the same way we get from the prime p all the primes in Q(m)

above p. However, in the last section of this paper, it will be more convenient

to use a slightly different description of the primes in Q(m) above p.

There we will not fix x> as we do in the rest of the paper, but we will
let it run over the <\>(m) multiplicative characters on Fp of order m. For each

such x we let p p(x) be the prime in Q(m) above p associated to %

in the way described above. Then p p(x) runs over the cj>(m) primes

in Q(m) above p.

3. The prime factorization of the Gauss sum:

STATEMENT OF THE RESULT

Before we state the outcome of the prime factorization of G we introduce

some more notation. For each i e Z with 0 < i < m and (/, m) 1 we

define the integer kt to be the exponent of the prime ^T'~' in the prime
factorization of G in Qipm) (it turns out that an inverse has to appear
somewhere and this is a convenient place). Equivalently, kt is the exponent
of the prime ^ in the prime factorization of GTl, that is,

(3.1) kt v^).
Any given action of a group T on an algebraic number field F induces

an action of the group T on 7(F), the group of fractional ideals in F.
Now we proceed with it just as we did above with the action of T on
the multiplicative group F* : we denote the action of T on 7(F) by the
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