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un \ V f ^
H(k,x):= L

n \2

then

13)

(0.14) H(k,x)H(k, [X]) o(l)
a(k)

and

Lemma 0. We have

(0.15) Sk sup H{k,n).
n g Z

Proof. In view of (0.13), (0.14), and the definition of H(k,x), it is

sufficient to show that

(0.16) lim sup H(k, N) sup H(k, n)
N -> oo,/Ve N BgZ

When k 1 this is easily verified; when k ^ 2 and We Z we define for each

positive integer / the positive integer Nt : (| W | + l)/:/ + TV and we see,

since

Jk(m)
(0.17) £ HLJ-o(/-oo),

m fit' W

and since for every divisor m of k' we have {N/m}, that

(0.18) lim H(k,Ni)

1. Proof of Theorem 1

We first set some terminology. Let g:[1,°o] -* R be a measurable function,

and consider as in [PI]

(1.1) D0(u)D0,g(u):=lim -\ie[0,x],g(0
X -» oo X

and

(1.2) D0(u+) :lim D0(v),D0(u~):= lim
U U V U

u e E u e E
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where p denotes the Lebesgue measure and E the set of values for which Dq

exists. In case D0 exists almost everywhere we say, following A. Wintner

[W, p. 537], that g possesses an asymptotic distribution function. If (and only

if) this is so we define an associated function D Dg: R -+ [0,1] by

(1.3) D(u) : - (D0(u+) + D0(u-))
2

And it is this function D we call the asymptotic distribution function
of g. The convention is of course abusive2); we point out however that D0

exists and coincides with D at least wherever D is continuous (which, since D
is a distribution function, is the case almost everywhere).

The first two statements of Theorem 1, D Dh exists and is continuous,
are proved through a straightforward application of two theorems from [PI].

Indeed, it is easy to see that

(1.4) £ yk(n) 0((logv)w(/:)) 0 • x + o(x)
n ^ x

holds, and that for any function z z(x) oo (x~> oo) (and in particular for
a slowly increasing function), we have

(1.5) H{k,x)=I ^ (-v|/(-)) + o(l)
n^z n \ \nff

where \j/(y) denotes the function {y} which satisfies
2

0-6) I \\f(t)dt 0

In the notation of [PI] the properties (1.4) through (1.6) are expressed by
writing h e Cz(\yk, - \j/), Thus from Theorem 4 of that paper we have the
existence of Dh. And since \j/ is odd almost everywhere Theorem 5 of [PI]
tells us that Dh is symmetric.

We pass now to the third assertion of the theorem, namely that
h - Sk. We denote by S the bounded support of Dh and by - <> and 5 its

2) Its purpose is to ensure that D be normalized, i.e. that the relation

1

D(u) - - (Diu +) + D{u -))
2

hold for every real number u.
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greatest lower bound and least upper bound: we have Ik ^ - s < s < Sk.

We show that

(1.7) Ik= - $= -Sk

holds by ensuring that

(1.8) 0 < Dh(a) < 1 for every a e (Ik,Sk)

We prove here that Dh(Sk — e) < 1 for every s > 0; the rest of the proof is

similar. There is an increasing sequence of natural numbers /?/ with
H(k, ni) - Sk (/ - oo), and thus we may select some natural number N
satisfying

(1.9) H(k,N) > Sk — -
4

and

1 I yk(n) I s
(1.10) - X

2 n > N 1Î 4

Hence if we define

(1.11)

we have

H*(k,N,M) : S— l|" {-}) •

n \2 { n J /

(1.12) H*(k,N,N) > Sk - -
2

Also, if L is the least common multiple of the integers 1,2, .,m§N, then

(1.13) H* (k, N, mL + N) H* (k, N, N)

for every integer m, and it follows from (1.12) and (1.10) that

3s
(1.14) H(k, mL + N) > Sk - —

for every integer m. Now since D0th exists and coincides with Dh almost

everywhere we can find two numbers ß and y satisfying

(1.15) +

and
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(1.16) A(8) A>,ä(8) (8 P or y).

In view of (0.14) this implies that

1 - Dh(Sk - s) ^ Dh Sk - -) ~ Dh(Sk - 8)

(1.17)
1 4>

1 s a(k) „^ D„(y) - ZMß) A,*(y) - A,*(ß) > 7 •
7

• "T^ • D
L 5 k

Remark. I studied in [P2] an error term associated with the £-th Jordan
totient function (for k ^ 2), that can be expressed in terms of the function

(1.18) gk(x):=- L ^v|*)
n 1 nk \nj

where p denotes the Moebius function, and I proved by a direct method that

(1.19) liminf gk(x) — lim sup gk(v)
X 00 X ^ 00

This can also be obtained by an argument similar to the above proof.

2. The case co (A:) 2

In this section we obtain an estimate more general than (0.10) of
Theorem 2.

Theorem 2'. Let k pq where p < q and p and q are prime
numbers., and let d q - ps with 1 ^ d < p - 1 be the remainder of the
Euclidean division of q by p. Then we have

(2.1) s(S7_ + _! +
(/>+ 0 (p- 2) (a - l)

a(k) (p +1) 0? + 1) (g + 1)
'

The right side of (2.1) is easily seen to exceed k/a(k) for any p and q. And

in the special case where p2 it reduces to /( + 1).

Proof. Let Nbea positive integer. We define, modulo pNqN, the integer
x xN by the system of congruences

(2.2)
A — — 1 {pN)

x - d - l(ç")
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