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20 H. W. LENSTRA AND P. STEVENHAGEN

2. The separable case

In this section we will prove the theorems 1 and 2. The proof will depend

on the fact that the extension of fields under consideration is separable. In
section 3 we will construct examples of inseparable extensions for which the

conclusion of theorem 1 does not hold.
Suppose that we are in the situation of theorem 1. As we assume L/K to

be separable, there is an element aeB such that L K(a). Moreover, there
exists d ^ 0 in A such that the subring A [a] of B satisfies dB C A [a] C B. For
instance, one can take for d the discriminant of the irreducible polynomial of
a over K. One has £p Ap[a] for the localizations at all primes pJfdA, and

for a prime q in B that lies over such a p, the element a mod q generates the
residue class field B/q over A/p.

Both theorem 1 and 2 are easy consequences of the following lemma.

Lemma. Choose d^O in A suchthat dB C A [a], and let q be

a prime of B that does not divide dB. If deg^q f > 1, then there

exists a non-zero element xeB satisfying

(a) x 1 mod dB

(b) Bx m q • Yl $ml hi, where bi are primes of B of degree

< f that are coprime to dB.

If\ in addition, a finite number of embeddings § of B into the field of
real numbers are given, then the element xeB can be chosen such that

(p(x) > 0 for each of these embeddings.

Proof. Let p q n A, and set ß da. As q)fdBy one has Bp Ap[ß]
and Kummer's theorem [12, Ch. I §8] implies that there exist

u0,U\,..., uf-1 eA such that

(1) q pB + (ß-^ + Uf_ i ß-^-1 + + U\ß T- Uq)B

We may assume that

(2) x' ßr + M/-iß/_1 + + »iß + M06q - P2 •

This follows from (1) if p C q2, and can otherwise be achieved by adding an

element of p - q2 to u0, if necessary. We shall obtain the required element

X + Vf- iß-^ 1 + Uf-2& 2 + Uf- 3ß^ 3 + + ^ß3
+ W2ß2 F Wiß + Vq
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by modifying the "coefficients" uf-1 and u0 of x'. Our first condition

(4) ^o—l mod dA

will guarantee that xeßS + o0 C daB+ +1 C dB +1, as required in (a).

The second condition

u0 ^om°dp2
(5) ^ 9

Vf_l Uf-i modp2

implies that xeq - q2, so x ± 0 and we have

t

xBq • I] 6'
i= 1

for certain prime ideals br# q that do not divide dB. Note also that we

cannot have b;-1 pB, since this would imply that b/ D p£ + xB » q.

We will impose an extra condition on each of vQ and vf- x to ensure that

deg^b/ < / (/= 1, t)

Let gGy4[^] be the irreducible polynomial of ß over K, and M the splitting

field of g over K. Denote by C the integral closure of A in M. Then g splits

completely as a product ü % i (X - ßy) in C[X]. Let the finite set WCC
consist of all sums of / distinct terms from ßi, ß2,ß«:

W {1,2> ,#/«/}.
Our condition on ry_j reads

(6)

The ring v4 is infinite, so we can find uf-1 satisfying (5) and (6). Given such

an element Vf-1, we define a non-zero element

y II (wi),
weW

which lies in A as it is a symmetric expression in the roots of g, and require that

(7) vo 0 mod a for each prime a | yA of A that does not divide dp

There are only finitely many prime divisors of yA, so there exists u0 satisfying
(4), (5) and (7) by the Chinese remainder theorem.

We will now show that our conditions on u0 and uf-\ imply degAbi< f
for each prime b/ occurring in the decomposition of xB. Fix such a prime,
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and put a, A n b/ and ß ß mod b,-. We have B/%t (A/a/)[ß] because

biJfdB. Reduction of (3) modulo b/ shows that ß satisfies an /-th degree

equation

0 ß-f + T- W/_2ß/-2 + W/_3^-3 + T- w3ß3
W -

+ w2ß2 + *hß + p0

so we certainly have deg^b, ^ /. In order to arrive at a contradiction,
suppose that equality occurs for our prime b/. Then the polynomial

h Xf + Vf_xXf~l + üf_2Xf-2 + üf.3Xf~3 +-. + ü3X3 + ü2X2

+ U\X +

is the irreducible polynomial of ß in (A/ad[X]. Since ß is also a zero of
g g mod <Xi[X\, h divides g in (A/ai)[X\, hence also in (C/cd[X|, where

c/ is a prime in C lying over b/. In (C/c/) [X|, the polynomial g splits
completely as a product ßy)» ßy ßy mod c/. It follows
that h= Y[jeJ(X-h)9 with J C {1,2,..., n) of cardinality /. Comparing
coefficients at Xf~\ we find that vf-\ - Eyeyßy- By definition of y, we

now have

yn (w + %_ j e c/ n ^4 a;
W6 PP

As (Xi^dp, we have v0 0 mod a; by (7). It follows that the irreducible

polynomial h e (A/af) [X] is divisible by X. This contradicts the fact that
deg h f > 1.

We finally have to show that the element xeB constructed above can be

made positive at a finite number of real embeddings B>-+ R. This follows
immediately from the fact that (4), (5) and (7) remain valid when we replace

x by x + k2, where k is a suitable element in yc/p. This finishes the proof of
the lemma.

Proof of theorem 1. By the approximation theorem, the class group of
B is generated by the primes outside S. Thus, let q be an ideal of B of degree

deg^q / that is not in S. We are done if we can show that [q] is in the

subgroup C of ClB that is generated by the classes of primes of degree one

that are not in S.

Use induction on /. For / 1 there is nothing to prove, so take / > 1.

If we choose the element d in the lemma divisible by all primes in S it follows
that there exist primes b/ outside S with deg^b/C/ such that [q]
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n/= 1 [ft/]-1 e C/5. By our induction hypothesis, all [b/] are in C. It

follows that [q] is in C.

By applying the first half of the proof of the lemma to a prime q of degree

f — 1, one can obtain an element x ß + £ B whose ideal factorization

reads xB q • Hr^i^ f°r certain primes b/ of degree one outside S. It
follows that the inverse class [q] _1 e ClB is a product of classes of primes of
degree one outside S. Thus the classes of the primes of degree one outside S

generate ClB already as a monoid, i.e. without using their inverse classes.

It is not true that every ideal class of B necessarily contains a prime of
degree one with respect to At. As a trivial counterexample, with A B, one

can a take a Dedekind domain that is not principal and invert all prime ideals

in the principal class. There are no prime ideals in the principal class of the

resulting Dedekind domain. Less trivial examples are found in [6, Ch. III § 15].

Proof of theorem 2. We now take A Z and B the ring of integers of
F. The possibility of choosing the element x in the lemma in such a way that
it is positive under certain embeddings in the field of real numbers and

congruent to 1 modulo any given ideal of A shows that the lemma can also be

used to generate relations in Cl-V The proof is further analogous to that of
theorem 1.

Remark. Theorem 2 can be generalized to the case that F is a function
field over a finite field. In that case, there is neither a canonical choice for
a ring of integers A C Fnor an absolute degree of the primes of A with respect
to a base ring Z. For each non-empty finite set of primes T of F, one can take
A to be the intersection of valuation rings ^ F- One defines a

conductor of A to be a pair consisting of an integral ideal f of A and an open
subgroup F[ of finite index in the product of the completions nperF* Of
The ray class group of A modulo such a conductor is defined as the group
of fractional A -ideals that is generated by all primes p^f of A modulo the
subgroup of principal ideals Aa for which a 1 mod*f and aeH under the
natural embedding. If k is the field of constants of F and x is an element of
F\k, one can consider the degree of primes of A with respect to k(x) and show
that ray class groups of A are generated by the classes of primes that are of
degree one in this sense. The details are left to the reader.

3. The inseparable case
In this section we will show that the separability assumption in theorem 1

cannot be omitted. As we need examples of Dedekind domains having a non-
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