Zeitschrift:	L'Enseignement Mathématique
Band:	38 (1992)
Heft:	3-4: L'ENSEIGNEMENT MATHÉMATIQUE
Artikel:	NOTES SUR L'INVARIANT DE CASSON DES SPHÈRES D'HOMOLOGIE DE DIMENSION TROIS
Autor:	Guillou, L. / Marin, A.
DOI:	https://doi.org/10.5169/seals-59492

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 07.10.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

NOTES SUR L'INVARIANT DE CASSON DES SPHÈRES D'HOMOLOGIE DE DIMENSION TROIS

par L. GUILLOU et A. MARIN avec un appendice de Christine LESCOP

En 1985 A. Casson construisit un nouvel invariant pour les sphères d'homologie entière de dimension trois orientées. Cet invariant lui a permis de résoudre de vieux problèmes liés à l'Hauptvermutung (cf. [M]), par exemple il en déduit que l'invariant de Rohlin d'une sphère d'homotopie est nul. Taubes ([T]) a donné peu après une définition analytique de l'invariant de Casson, ouvrant ainsi le chemin à Floer ([F1]) qui, avec «l'homologie de Floer», a offert une généralisation pleine de promesses de l'invariant de Casson. Contrairement aux derniers développements qui utilisent une lourde artillerie d'analyse, la construction originelle de Casson décrite ici est très élémentaire. Ceci a peut-être été occulté par le fait que, dans un deuxième temps, Casson utilise un résultat bien moins élémentaire de Newstead pour établir la formule de chirurgie¹).

Le point de vue original de Casson a eu un regain d'actualité quand, fin 1988, K. Walker ([W]) a défini un invariant de Casson pour les sphères d'homologie rationnelle, puis tout récemment quand S. Cappell, R. Lee et Y. Miller ([CLM]) ont annoncé d'une part une extension de l'invariant de Casson à toutes les variétés compactes orientées de dimension trois et d'autre part la possibilité de définir (pour les sphères d'homologie rationnelle) toute une famille d'invariants du même type en considérant les représentations du groupe fondamental de la variété, non plus seulement dans SU(2) comme le fait Casson mais dans n'importe quel groupe de Lie compact semi-simple.

Remarquons d'ailleurs que bien que l'invariant de Walker admette sans doute lui aussi une définition analytique, c'est là aussi la définition à travers les espaces de représentations qui est apparue la première et surtout les «formules de chirurgie» vérifiées par ces invariants n'ont toujours pas de

¹) Formule qui n'est pas nécessaire pour les applications les plus spectaculaires de l'invariant de Casson!

démonstration dans le cadre analytique (bien que le «triangle exact» de Floer ([F2]) s'en approche).

Casson a exposé ses résultats au printemps 1985 dans trois conférences célèbres au MRSI de Berkeley qui ont traversé l'Atlantique sous la forme des notes prises par S. Akbulut, K. Millett, R. Edwards. A l'automne 1985 un manuscrit de A. Marin décrivant l'approche de Casson a circulé. Au printemps 1990, le Séminaire suisse du troisième cycle romand de mathématique fut consacré en grande partie aux travaux de Casson et de Walker. Le présent article est donc une version remaniée et étendue du manuscrit de 1985 qui a bénéficié des exigences des participants du Séminaire suisse. Nous remercions chaleureusement C. Lescop pour son aide à propos des points les plus délicats et C. Danthony pour l'aide qu'il a apporté à la confection des figures.

Ce texte n'existerait certainement pas si A. Haefliger et C. Weber n'avaient pas invité L. Guillou et C. Lescop à participer au Séminaire suisse. C'est avec plaisir que nous les remercions ici.

Signalons enfin qu'une autre rédaction détaillée due à S. Akbulut et J. M. Mc Carthy est parue récemment ([AMcC]) et que le Bourbaki d'A. Marin ([M]) peut servir de première introduction à ce sujet.

Note. Sauf mention explicite du contraire, toutes les sphères d'homologie M considérées ici seront des sphères d'homologie entière, c'est-à-dire que $H_*(M; \mathbb{Z}) = H_*(S^3; \mathbb{Z}).$

1. ENONCÉ DES RÉSULTATS

Soit K un nœud (non orienté) dans une sphère d'homologie orientée M de dimension trois; quand il peut y avoir ambiguité sur la sphère d'homologie ambiante on note un tel nœud par $(K \in M)$. Pour $n \in \mathbb{Z}$ on désigne par (M, K_n) , ou seulement K_n s'il n'y a pas de risque de confusion, la sphère d'homologie obtenue par chirurgie de Dehn de coefficient 1/n sur le nœud K. Rappelons la définition de cette chirurgie de Dehn. Si V est un voisinage régulier fermé de K, notons $T = \partial V$ et soient m et l (méridien et longitude) des flèches $H_1(T; \mathbb{Z}) \rightarrow H_1(V; \mathbb{Z})$ des générateurs noyaux des et $H_1(T; \mathbb{Z}) \to H_1(M \setminus \tilde{V}; \mathbb{Z})$ respectivement. On peut représenter m et l par des courbes fermées simples sur T (encore notées m et l) qui se coupent transversalement en un point. On les oriente de sorte que le nombre d'intersection de l et m soit + 1 si T est orienté comme bord de $M \setminus \breve{V}$ (voir le §3.A pour nos conventions d'orientation). Alors $(M, K_n) = K_n$ est obtenue en choisissant un difféomorphisme $\varphi: \partial(S^1 \times D^2) \to T$ tel que $\varphi(1 \times \partial D^2)$ soit homologue à

m + nl et en recollant selon $\varphi: K_n = S^1 \times D^2 \bigcup_{\varphi} (M \setminus V)$. On vérifie que le résultat ne dépend pas des différents choix effectués et que K_n est une sphère d'homologie. Il est aussi facile de voir que $K_0 = M$ et que si K borde un disque dans M alors $K_n = M$ pour tout $n \in \mathbb{Z}$ (cf. [Rf] Ch. 9). On désigne par S l'ensemble des classes de difféomorphisme orienté des sphères d'homologie orientées de dimension trois.

1.1. Définition. Un nombre de Casson est une application $\lambda: \mathcal{S} \to \mathbb{Z}$ telle que $0 \mid \lambda(S^3) = 0$,

1) $\lambda(K_{n+1}) - \lambda(K_n)$ est indépendant de *n*: c'est donc un invariant du nœud K noté $\lambda'(K)$ ou plus précisément $\lambda'(K \subset M)$ s'il y a risque de confusion.

Si (K, L, ..., Z) est un entrelacs dans une sphère d'homologie M et $k, l, ..., z \in \mathbb{Z}$ on note $(K_k, L_l, ..., Z_z)$ la sphère d'homologie obtenue en faisant successivement une chirurgie de Dehn de coefficient 1/k sur le nœud K dans M puis une chirurgie de Dehn de coefficient 1/l sur le nœud L dans K_k (et non dans M) etc... Cependant dans le cas où tous les nombres d'enlacements entre les composantes de l'entrelacs sont nuls, la sphère d'homologie obtenue est indépendante de l'ordre dans lequel les chirurgies ont été faites (cf. l'argument au début de la démonstration du lemme 2.1).

Soit alors (K, L) un entrelacs à nombre d'enlacement zéro dans une sphère d'homologie M. Si λ est un nombre de Casson la propriété 1) exigée dans la définition donne que

$$\begin{split} \lambda(K_{k+1},L_{l+1}) &- \lambda(K_k,L_{l+1}) - \lambda(K_{k+1},L_l) + \lambda(K_k,L_l) \\ &= \lambda'(K \subset L_{l+1}) - \lambda'(K \subset L_l) \\ &= \lambda'(L \subset K_{k+1}) - \lambda'(L \subset K_k) \end{split}$$

est indépendant de k et de l; c'est un invariant de l'entrelacs (K, L) noté $\lambda''(K, L)$.

1.2. Définition. Un nombre de Casson est bon si:

2) Pour tout entrelacs bord (K, L) (i.e. K et L bordent des surfaces de Seifert disjointes) on a: $\lambda''(K, L) = 0$.

1.3. PROPOSITION. S'il existe un bon nombre de Casson il est unique au coefficient $\lambda'(T)$ près, où T désigne le nœud de trèfle. De plus on a:

3) (Formule de chirurgie) Pour tout nœud K on a

$$\lambda'(K) = \frac{1}{2} \Delta_K''(1) \cdot \lambda'(T).$$

4) λ change de signe avec l'orientation: $\lambda(-M) = -\lambda(M)$.

5) λ est additif pour la somme connexe: $\lambda(M \# N) = \lambda(M) + \lambda(N)$.

6) $\lambda(M) = \rho(M)\lambda'(T) \mod 2\lambda'(T)$ où $\rho(M)$ est l'invariant de Rohlin de M.

1.4. *Remarque*. Dans la formule 3):

a) $\Delta_K(t)$ est le polynôme d'Alexander normalisé de $K: \Delta_K(1) = +1$ et

$$\Delta_{K}(t^{-1}) = \Delta_{K}(t). \quad \text{Si} \quad \Delta_{K}(t) = \sum_{i=1}^{n} a_{i}(t^{i} + t^{-i}) \quad \text{on} \quad \text{a} \quad \frac{1}{2}\Delta_{K}^{\prime\prime}(1) = \sum_{i=1}^{n} i^{2}a_{i}$$

(cf. appendice A).

b) Il est indifférent que ce soit T^g le trèfle gauche ou T^d le trèfle droit. En effet $\lambda'(T^d) = \lambda(S^3, T_1^d) = \lambda(-S^3, T_{-1}^g) = -\lambda(S^3, T_{-1}^g) = \lambda(S^3, T_1^g) = \lambda'(T^g).$

1.5. THÉORÈME. Il y a un bon nombre de Casson qui, outre les propriétés (0) à (6) vérifie:

7) Si $\lambda(M)$ est non nul alors le groupe fondamental de M a des représentations non triviales dans SU(2).

8) $\lambda'(T) = 1$.

1.6. Définition. C'est ce nombre que l'on appelle l'invariant de Casson de la sphère d'homologie M. L'invariant de Casson d'un nœud $K \in M$ sera le $\lambda'(K)$ associé.

1.7. COROLLAIRE. a) L'invariant de Rohlin d'une sphère d'homotopie ou d'une sphère d'homologie amphichérale est nul.

b) Un nœud K de S³ avec $\frac{1}{2}\Delta_{K}^{\prime\prime}(1)$ non nul vérifie la propriété P. (Autrement dit $K_{n} = S^{3}$ seulement si n = 0.)

1.8. Remarque. La démonstration du fait que l'invariant de Casson que l'on construit est bon utilise un théorème de Newstead difficile. On verra cependant facilement que $\lambda''(K, L)$ est pair pour tout entrelacs bord.

Cela implique que $\lambda'(K)$ est congru modulo deux à $\frac{1}{2}\Delta''_{K}(1)$ (il suffit de remplacer dans la démonstration de 3) les égalités par des congruences modulo 2).

Les propriétés 4) et 5) ont des démonstrations directes qui sont signalées par un astérisque * (qui admet le théorème de Newstead se passera donc de ces démonstrations). Comme 6) est une conséquence directe de $\lambda'(K) \equiv \frac{1}{2} \Delta_K''(1)$ modulo 2, la

première partie du corollaire 1.7 est indépendante du théorème de Newstead, dans la deuxième partie il faut supposer $\lambda'(K)$ non nul, ce qui est certainement le cas si est non nul l'invariant de Rohlin-Robertello de K qui est la réduction modulo 2 de $\frac{1}{2}\Delta''_{K}(1)$ (cf. appendice A).

1.9. Remarque. On pourrait vouloir définir l'invariant de Casson par $\lambda(S^3) = 0$ et les propriétés 1) et 3) en arguant du fait que toute sphère d'homologie est obtenue à partir de S^3 par une suite de chirurgies de Dehn de coefficients ± 1 (cf. le lemme 2.1 ci-dessous). Il faut alors montrer que $\lambda(M)$ ne dépend pas de la suite de chirurgies effectuées. Cela ne semble pas possible dans le cadre des sphères d'homologie entière bien que K. Walker ait réussi une telle approche dans le cadre plus large des sphères d'homologie rationnelle ([W, ch. 5]). Casson construit donc plus conceptuellement son invariant à partir d'espaces de représentations (cf. paragraphe 3).

1.10. *Remarque*. L'invariant de Casson n'est pas un invariant de cobordisme homologique:

a) Si un nœud L dans S^3 borde un disque lisse D dans B^4 , la sphère d'homologie L_1 borde un disque d'homologie Δ^4 . (L'union P^4 de B^4 et de l'anse h^2 qui crée L_1 a pour générateur de son second groupe d'homologie l'union Σ^2 du disque D et de l'âme de l'anse h^2 . Cette surface Σ^2 est une sphère lisse d'auto intersection + 1, il suffit de «contracter» Σ^2 pour obtenir le disque d'homologie Δ^4 .)

b) Pour tout nœud K la somme connexe K # - K de K et de son image dans un miroir borde un disque lisse dans D^4 et $\lambda'(K \# - K) = \frac{1}{2} \Delta_{K\#-K}^{\prime\prime}(1)$ $= \frac{1}{2} \Delta_K^{\prime\prime}(1) + \frac{1}{2} \Delta_{-K}^{\prime\prime}(1) = \Delta_K^{\prime\prime}(1)$. En prenant pour K le nœud de trèfle on obtient le nœud carré L = K # - K qui borde un disque lisse et dont l'invariant de Casson vaut 2, donc $\lambda(L_1) = \lambda'(L)$ est non nul.

b*) Si l'on veut éviter le théorème de Newstead on peut se reporter à l'appendice B, où l'on montre directement $\lambda'(K) = \frac{1}{2}\Delta''_{K}(1)$ pour les nœuds ayant une surface de Seifert de genre 1 dénouée. Le nœud du docker (cf. figure 1) est un tel nœud et il borde un disque dans D^{4} ; comme son polynôme d'Alexander est $5 - 2(t + t^{-1})$ son invariant de Casson λ' vaut -2 donc est non nul.

FIGURE 1 Le nœud du docker

La démonstration de la proposition 1.3 est donnée au paragraphe 2. Elle n'utilise que des méthodes classiques et peut être sautée en première lecture. L'invariant de Casson est construit au paragraphe 3. La vérification des propriétés 1) et 2) sera faite au paragraphe 4. Pour la propriété 8) on a besoin d'un calcul explicite sur un exemple. Cela est fait en suivant Casson au paragraphe 4 où (sans utiliser le théorème de Newstead!) l'on obtient une formule (pas très explicite) pour le λ' d'un quelconque nœud fibré (cf. 4.6). Un autre calcul est donné dans l'appendice B de A. Marin qui montre que $\lambda'(K) = \frac{1}{2} \Delta_K''(1)$ pour un nœud K admettant une surface de Seifert dénouée de genre 1. Enfin, dans l'appendice C, C. Lescop calcule directement, à partir de la définition du paragraphe 3, l'invariant de Casson des sphères d'homologie qui sont des fibrés de Seifert avec trois fibres exceptionnelles. L'appendice A est consacré au polynôme d'Alexander et à son rapport avec l'invariant

de Rohlin-Robertello.

2. DÉMONSTRATION DE LA PROPOSITION (1.3)

Elle se fait en deux étapes: dans un premier temps on montre que 0), 1) et 3) impliquent l'unicité de λ et les points 4), 5) et 6). Ensuite on montre que 2) implique 3).

A. UNICITÉ DE λ ET 4), 5), 6) SACHANT 0), 1) ET 3)

2.1. LEMME. Soit M une sphère d'homologie. Alors M est le dernier élément M_n d'une suite $M_0, ..., M_n$ de sphères d'homologie telles que: M_0 est la sphère S^3 et chaque M_{i+1} est obtenue à partir de la précédente M_i par une chirurgie de coefficient $\varepsilon_i = \pm 1$ sur un nœud K^i de M_i . Démonstration. Remarquons d'abord que si un entrelacs (K, L) dans une sphère d'homologie M a un nombre d'enlacement l(K, L) nul il y a une surface de Seifert pour L disjointe de K; ainsi une section du fibré normal à L est repérée par le même nombre entier, que L soit considéré comme nœud dans la sphère d'homologie M ou dans celle obtenue par une chirurgie de coefficient $\varepsilon = \pm 1$ sur le nœud K. Il suffit donc de montrer que M est obtenue par chirurgie sur un entrelacs $(K^1, ..., K^n)$ de S^3 avec tous les nombres d'enlacement $l(K^i, K^j)$ nuls et les coefficients ε_i valant ± 1 .

D'après un théorème classique M s'obtient par chirurgie entière sur un entrelacs de S^3 . Quitte à faire une somme connexe avec $\pm \mathbb{CP}^2$ on peut supposer que la forme d'intersection de la trace de la chirurgie est indéfinie et impaire. Comme M est une sphère d'homologie cette forme est de plus unimodulaire, elle est donc diagonalisable (cf. [Se] p. 92). Il suffit alors de réaliser la diagonalisation par glissement d'anses.

L'unicité suit alors de la formule 3) par récurrence sur la longueur n de la suite donnée en 2.1.

2.2. Démonstration de 4). Si une section du fibré normal à un nœud K dans une sphère d'homologie orientée M est repérée par $\varepsilon = \pm 1$, elle est repérée par $-\varepsilon$ si l'on considère K comme nœud dans la sphère d'homologie -Mobtenue en changeant l'orientation de M. La formule 4) découle alors de 3) par récurrence sur la longueur n de la suite de 2.1 puisque le polynôme d'Alexander de K ne dépend pas de l'orientation de M (cf. appendice A). La récurrence débute avec $\lambda(-S^3) = \lambda(S^3) = 0$ car S^3 est amphichérale.

2.3. Démonstration de 5). Elle s'obtient encore par récurrence sur la somme des longueurs m et n de suites produites par 2.1 pour M et N respectivement, une fois que l'on a remarqué que si K est un nœud dans M son polynôme d'Alexander est le même qu'on le considère comme nœud dans M ou dans la somme connexe M # N. \Box

2.4. Démonstration de 6). D'après 2.1 la propriété 6) découlera des propriétés 0), 1) et 3) et de la proposition 2.5 ci-dessous.

2.5. PROPOSITION. Soit K un nœud dans une sphère d'homologie M et $\varepsilon = \pm 1$; alors

$$\rho(M, K_{\varepsilon}) - \rho(M) = \frac{1}{2} \Delta_K^{\prime\prime}(1) \mod 2 .$$

Démonstration de 2.5. Soient V et V' des variétés spin de dimension quatre qui bordent M et $M' = (M, K_{\varepsilon})$ respectivement. Les formes quadratiques de V et V' sont unimodulaires paires et leurs signatures sont divisibles par 8 (cf. [HNK] Theorem 6.3); les invariants de Rohlin de M et de M' sont par définition les réductions modulo 2 des quotients $\sigma(V)/8$ et $\sigma(V')/8$.

Soit W' l'union de V et d'une anse d'indice 2 attachée le long de K au moyen de la trivialisation déterminée par le coefficient $\varepsilon = \pm 1$. Le bord de W' est M' et l'on peut former la variété fermée $W = W' \cup (-V')$. L'union F de l'âme de la chirurgie et d'une surface de Seifert F' du nœud K dans M est une surface caractéristique de W, donc son auto-intersection F. F est congrue modulo 8 à la signature $\sigma(W)$ de W. La formule de Rohlin (cf. [Rl] ou [GM]) détermine la classe de congruence modulo 16 de $\sigma(W)$:

$$\operatorname{Arf}(\psi) = \frac{\sigma(W) - F \cdot F}{8} \mod 2$$
.

Ici la forme de Rohlin ψ de la surface caractéristique F coïncide avec q_2 , la réduction modulo 2 de $\frac{1}{2}q$ où q est la forme quadratique du nœud¹) K; Arf (ψ) est donc R(K) l'invariant de Rohlin-Robertello du nœud K (cf. appendice A). On a $\sigma(W) = \sigma(W') - \sigma(V') = \sigma(V) + \varepsilon - \sigma(V')$. Comme l'autointersection F. F de la surface F dans W vaut ε la proposition 2.5 découlera du lemme A2 ci-dessous qui sera démontré dans l'appendice A.

A.2. LEMME. Soit K un nœud dans une sphère d'homologie M, alors l'invariant de Rohlin-Robertello de K est la réduction modulo 2 de $\frac{1}{2}\Delta_K''(1)$.

B. DÉMONSTRATION DE 3) SACHANT 2)

 1^{er} pas: Réduction au cas où K est un nœud dans S^3

Elle se fait par récurrence sur le nombre *n* donné par le lemme 2.1. Supposons 3) montrée pour les nœuds dans les sphères d'homologie *M* qui s'obtiennent à partir de S^3 par une suite de moins de *n* chirurgies de coefficient ± 1 (si n = 1 on suppose donc que 3) est vraie pour les nœuds dans S^3), et soit *L'* un nœud dans une sphère d'homologie $M' = (M, K_{\varepsilon})$ obtenue par chirurgie sur le nœud *K* de *M* avec le coefficient $\varepsilon = \pm 1$.

¹) Plus précisément de la forme quadratique de la surface de Seifert F' du nœud K (cf. Appendice A ou [G], pp. 30-33).

2.6. LEMME. Le nœud L' est isotope dans M' à un nœud L dans $M \cap M'$ formant avec K un entrelacs bord (K,L) dans M.

Démonstration de 2.6. Une longitude du tore $M \setminus int(M' \cap M)$ est encore un parallèle du tore $M' \setminus int(M \cap M')$ puisque son intersection avec un méridien de $M' \setminus int(M \cap M')$ est ± 1 . Donc à collier de bord près, une surface de Seifert F pour $K \subset M$ fournit une surface de Seifert F^* pour $K^* \subset M'$ âme du tore $M' \setminus int(M \cap M')$. Si G' est une surface de Seifert pour L' dans M', puisque toute surface de Seifert est voisinage régulier d'un bouquet de cercles, G' est isotope à une surface G telle que $F^* \cap G = \emptyset$ et donc si $L = \partial G$, on a $L \subset M$ et (K, L) est un entrelacs bord dans M. \Box

Comme λ' est un invariant des classes d'isotopie de nœud et d'après la propriété 2) on a

$$\lambda'(L' \subset M') = \lambda'(L \subset M') = \lambda'(L \subset M) + \varepsilon \cdot \lambda''(K,L) = \lambda'(L \subset M)$$

D'autre part, comme tout cycle *c* de *G* est disjoint de *F** le nombre d'enlacement $l(K^*, c)$ est nul et on peut pour calculer la matrice de Seifert de *G* faire border à une base de $H_1(G; \mathbb{Z})$ des surfaces disjointes de *K**, donc dans *M*, et les nœuds $(L' \subset M')$ et $(L \subset M)$ ont même matrice de Seifert donc même polynôme d'Alexander en particulier $\frac{1}{2}\Delta_{(L' \subset M')}^{\prime\prime}(1) = \frac{1}{2}\Delta_{(L \subset M)}^{\prime\prime}(1)$ et l'égalité $\lambda'(L' \subset M') = \frac{1}{2}\Delta_{(L' \subset M)}^{\prime\prime}(1) \cdot \lambda'(T)$ suit de l'hypothèse de récurrence $\lambda'(L \subset M) = \frac{1}{2}\Delta_{(L \subset M)}^{\prime\prime}(1) \cdot \lambda'(T)$.

2^e pas: Cas où K est un nœud dans S³

On sait qu'en changeant successivement certains croisements du nœud Kon peut le rendre trivial. Comme l'invariant de Casson λ' et $\frac{1}{2}\Delta''(1) \cdot \lambda'(T)$ coïncident pour le nœud trivial il suffit pour établir 3) de montrer que ces deux invariants varient de la même manière quand on change un croisement.

Soit K un nœud dans S^3 et C un cercle bord d'un disque D coupant K transversalement en deux points avec intersection algébrique nulle. La sphère d'homologie C_{ε} est difféomorphe à S^3 et le nœud ($K \subset C_{\varepsilon}$) s'identifie à un nœud dans S^3 que l'on peut voir comme le nœud K après que l'on ait changé de $-\varepsilon$ à ε le signe d'un croisement entre les deux brins de K perçant D (cf. fig. 2). Soit μ un invariant défini sur les nœuds dans S^3 et à valeurs dans Z (par exemple $\mu = \lambda'$ ou $\mu = \frac{1}{2}\Delta''(1) \cdot \lambda'(T)$).

2.7. Définition. Le nœud obtenu par le ε -changement de croisement (D, C) est par définition le nœud $(K \subset C_{\varepsilon})$.

Deux changements de croisement sont dits non enlacés si ils sont portés par deux disques D et D' disjoints tels que les deux paires de points $K \cap D$ et $K \cap D'$ sont non enlacées sur K.

La variation de μ par le changement de croisement (D, C) est:

$$\mu^*(C,K) = \mu(K \subset C_1) - \mu(K) .$$

Remarquons que si $\mu = \lambda'$, alors $\mu^*(C, K) = \lambda''(C, K)$. D'autre part on ne considère que le changement $\mu(K \in C_1) - \mu(K)$, car le changement $\mu(K \in C_{-1}) - \mu(K)$ vaut $-(\mu(K' \in C_1) - \mu(K'))$ où $K' \in S^3$ s'identifie à $K \in C_{-1}$.

2.8. LEMME. Si $\mu = \lambda'$ ou si $\mu = \frac{1}{2}\Delta''(1)$ alors $\mu^*(C, K)$ est invariant par changement de croisement non enlacé avec D.

Démonstration de 2.8. Soit D' le disque portant le changement de croisement disjoint de D.

a) cas $\mu = \lambda'$: Comme les deux changements de croisement sont disjoints les cercles C et C' bordent dans le complémentaire de K des surfaces de Seifert disjointes (cf. fig. 3). Donc (C, C') est un entrelacs bord dans K_1 et $\lambda_{K_1}''(C, C') = 0$ (où pour (L, M, N) un entrelacs dans une sphère d'homologie on a noté $\lambda_{L_i}''(M, N)$ la valeur de l'invariant λ'' sur l'entrelacs (M, N) vu comme entrelacs dans la sphère d'homologie L_i). Développons $\lambda_{C_1'}'(C, K) - \lambda_{C_0'}'(C, K)$:

$$\begin{split} \lambda_{C_1'}''(C,K) &- \lambda_{C_0'}''(C,K) = \lambda(C_1',C_1,K_1) - \lambda(C_1',C_0,K_1) - \lambda(C_1',C_1,K_0) \\ &+ \lambda(C_1',C_0,K_0) - \lambda(C_0',C_1,K_1) + \lambda(C_0',C_0,K_1) \\ &+ \lambda(C_0',C_1,K_0) - \lambda(C_0',C_0,K_0) \\ &= \lambda(C_1',C_1,K_1) - \lambda(C_1',C_0,K_1) - \lambda(C_0',C_1,K_1) \\ &+ \lambda(C_0',C_0,K_1) \\ &= \lambda_{K_1}''(C,C') = 0 \end{split}$$

car (C_i, C'_j, K_0) étant la sphère S^3 pour $i, j \in \{0, 1\}$ est d'invariant de Casson nul. On obtient de même $\lambda_{C'_{-1}}^{"}(C, K) - \lambda_{C'_0}^{"}(C, K) = 0$ ainsi $\lambda^{"}(C, K)$ est invariant par changement de croisement non enlacé avec D.

b) cas $\mu = \frac{1}{2} \Delta''(1) \cdot \lambda'(T)$: D'après la formule de Conway (Lemme A1 de l'appendice A) on a:

l'appendice A) on a:

$$\Delta_{(K \in C_1)}(t) - \Delta_K(t) = (t^{-1/2} - t^{1/2}) \Delta_{K_0}(t)$$

où K_0 est un entrelacs à deux composantes. En réappliquant la formule de Conway au deuxième changement de croisement on obtient:

$$\begin{aligned} \left(\Delta_{(K \subset (C_1, C_{\varepsilon}')}(t) - \Delta_{(K \subset C_{\varepsilon}')}(t) \right) &- \left(\Delta_{(K \subset C_1)}(t) - \Delta_{K}(t) \right) \\ &= \varepsilon \cdot (t^{-1/2} - t^{1/2}) \left(t^{-1/2} - t^{1/2} \right) \Delta_{K_{00}}(t) \end{aligned}$$

La dérivée seconde en 1 du membre de gauche est, à $\frac{1}{2}\lambda'(T)$ près, la variation

de $\mu^*(C, K)$ par le ε -changement de croisement porté par D'. Comme les deux changements de croisement sont disjoints l'entrelacs K_{00} a trois composantes et $\Delta_{K_{00}}(1) = 0$. Le membre de droite de l'égalité ci-dessus étant produit de trois fonctions qui s'annulent en t = 1 a une dérivée seconde nulle en t = 1. \Box

2.9. FIN DE LA DÉMONSTRATION DE LA PROPRIÉTÉ 3)

Soit K, C, D comme plus haut. Le disque D coupe le nœud K en deux arcs A et B. Par changement de croisements disjoints de D on peut éliminer les autocroisements de A puis, sans toucher à A, ceux de B. On peut donc, pour calculer $\mu^*(C, K)$, supposer que l'entrelacs (K, C) est celui dessiné sur la figure 4.

Le nœud K étant alors trivial on a pour les deux invariants $\mu(\mu = \lambda' \text{ ou} \mu = \frac{1}{2} \Delta''(1) \cdot \lambda'(T))$:

$$\mu^*(C, K) = \mu(K \subset C_1) = \mu(K^n)$$

où l'on a noté K^n le nœud $K \in C_1$ représenté sur la figure 5 (la bande verticale représente *n* tours complets). Soit C' un cercle dénoué enlaçant la bande verticale du nœud K^n (cf. fig. 6). On a:

$$\mu^*(C',K^n) = \mu(K^{n-1}) - \mu(K^n)$$

Un changement de croisement porté par un nœud parallèle à C' est disjoint du disque D' bordant C' et transforme aussi K^n en $K^{n\pm 1}$ donc le lemme 2.8 nous donne que $\mu^*(C', K^n)$ est indépendant de n. Or K^0 est le nœud trivial et K^{-1} est le nœud de trèfle T (cf. fig. 5), ainsi:

$$\mu^*(C', K^n) = \mu^*(C', K^0) = \mu(T)$$

et $\mu^*(C, K) = -n\mu(T)$.

Comme $\frac{1}{2}\Delta_T''(1) = 1$, les invariants λ' et $\frac{1}{2}\Delta''(1)\lambda'(T)$ ont même variation par changement de croisement. Alors les deux invariants λ' et $\frac{1}{2}\Delta''(1)\lambda'(T)$ sont égaux car ils coïncident sur le nœud trivial. \Box

3. CONSTRUCTION DE L'INVARIANT DE CASSON

A. REPRÉSENTATIONS DANS $S^3 = SU(2)$

On identifie le groupe de Lie SU(2) à la sphère S^3 des quaternions de norme un. L'algèbre de Lie de ce groupe est notée \mathcal{L} et s'identifie aux quaternions purs.

Pour tout groupe discret Γ on note $R(\Gamma)$ l'espace des représentations de Γ dans le groupe S^3 . Cet espace $R(\Gamma)$ est muni de la topologie compacte

ouverte, ainsi R est un foncteur contravariant de la catégorie des groupes dans celle des espaces topologiques. On désigne par $S(\Gamma)$ le fermé de $R(\Gamma)$ formé des représentations réductibles, c'est-à-dire ici des représentations d'image abélienne, et par $\tilde{R}(\Gamma)$ l'ouvert complémentaire (formé des représentations irréductibles).

Si *L* est un groupe libre de rang fini *k*, étant donné une base $(a_1, ..., a_k)$ de *L*, l'association à $\rho \in R(L)$ de $(\rho(a_1), ..., \rho(a_k)) \in (S^3)^k$ détermine un homéomorphisme entre R(L) et $(S^3)^k$.

Un changement de base se transcrit en une application à composantes polynômiales, donc C^{∞} , de $(S^3)^k$. On peut donc munir R(L) naturellement d'une structure algébrique lisse qui rend difféomorphisme l'homéomorphisme précédent.

Soit Γ un groupe de présentation finie isomorphe à $L/\langle N \rangle$ où L et Nsont des groupes libres munis de bases de rang k et r respectivement (et $\langle N \rangle$ est le sous-groupe normal dans L engendré par N). Le difféomorphisme précédent entre R(L) et $(S^3)^k$ identifie R(G) à la préimage de $(1, ..., 1) \in (S^3)^r$ par une application P à composantes polynômiales de $(S^3)^k$ vers $(S^3)^r$. Comme précédemment les changements de bases se traduisent par des applications polynômiales et on peut encore munir $R(\Gamma)$ d'une structure algébrique naturelle qui est lisse près de tout point régulier de P.

Le groupe S^3 agit à droite par conjugaison sur $R(\Gamma)$: si $\rho \in R(\Gamma)$ et $g \in S^3$, on définit $\rho . g$ par $\rho . g(\gamma) = g^{-1}\rho(\gamma)g$ pour tout $\gamma \in \Gamma$. Cette action est C^{∞} , se factorise à travers $SO(3) = S^3/\{\pm 1\}$ et est libre sur $\tilde{R}(\Gamma)$. Donc $\tilde{R}(\Gamma)$ est l'espace total d'un SO(3) fibré principal $\tilde{R}(\Gamma) \to \hat{R}(\Gamma)$.

GROUPES LIBRES

3.1. LEMME. L'espace tangent à R(L) en la représentation triviale s'identifie fonctoriellement à $H^1(L; \mathcal{L}) = \text{Hom}(L, \mathcal{L})$.

Démonstration de 3.1. Si $t \mapsto \rho_t$ est un chemin C^{∞} dans R(L) défini pour t proche de 0 avec ρ_0 la représentation triviale (qui vaut $1 \in S^3$ sur tout élément de L), pour chaque $\gamma \in L$ on peut écrire $\rho_t(\gamma) = \exp(tu(\gamma) + O(t^2))$ pour un unique $u(\gamma) \in \mathcal{L}$ et t proche de 0. La condition $\rho_t(\gamma\gamma') = \rho_t(\gamma)\rho_t(\gamma')$ entraîne $u(\gamma\gamma') = u(\gamma) + u(\gamma')$ et donc $u \in H^1(L; \mathcal{L})$.

3.2. Définition. Pour tout groupe Γ on a une transformation naturelle

 $\psi: H^1(\Gamma; \mathbb{Z}) \to H_3(R(\Gamma); \mathbb{Z})$

qui à $\alpha \in H^1(\Gamma; \mathbb{Z}) = \text{Hom}(\Gamma, \mathbb{Z})$ associe $\psi(\alpha) = R(\alpha)_*([R(\mathbb{Z})])$. On a noté $R(\alpha): R(\mathbb{Z}) \to R(\Gamma)$ l'application induite par l'homomorphisme α et $[R(\mathbb{Z})]$ la classe fondamentale¹) de $R(\mathbb{Z})$.

3.3. LEMME. Si L est un groupe libre de type fini, la transformation $\psi: H^1(L; \mathbb{Z}) \to H_3(R(L); \mathbb{Z})$ est un isomorphisme.

Démonstration de 3.3. Si on choisit une base $a_1, ..., a_k$ de L et si $\alpha_1, ..., \alpha_k$ est la base duale de $H^1(L; \mathbb{Z})$ définie par $\alpha_i(a_j) = \delta_{ij}$ alors $R(\alpha_i)$ est l'inclusion de $S^3 = R(\mathbb{Z})$ comme $i^{\text{ème}}$ facteur de $(S^3)^k = R(L)$ et donc $\psi(\alpha_i) = [1 \times ... \times S^3 \times ... \times 1]$. On conclut grâce au théorème de Künneth. \Box

3.4. COROLLAIRE. Dans la catégorie des groupes libres de types fini, on a un isomorphisme de foncteurs: $\Phi: H^{3*}(R(.); \mathbb{Z}) \to \Lambda^* H_1(.; \mathbb{Z})$.

Démonstration de 3.4. Si L est un groupe de cette catégorie par les théorèmes des coefficients universels $H^3(R(L); \mathbb{Z})$ est fonctoriellement isomorphe à Hom $(H_3(R(L); \mathbb{Z}), \mathbb{Z})$ et $H_1(L; \mathbb{Z})$ est fonctoriellement isomorphe à Hom $(H^1(L; \mathbb{Z}), \mathbb{Z})$. Donc la transformation naturelle ψ de 3.3 induit un isomorphisme fonctoriel de $H^3(R(L); \mathbb{Z})$ sur $H_1(L; \mathbb{Z})$. Cet isomorphisme s'étend en $\Phi: H^{3*}(R(L); \mathbb{Z}) \cong \Lambda^* H^3(R(L); \mathbb{Z})$ grâce à la formule de Künneth. \Box

GROUPES DE SURFACES

Soit F une surface compacte sans bord orientée de genre g et désignons par F_* la surface F privée d'un disque ouvert. Choisissons un point base dans le bord de F_* . L'inclusion de F_* dans F induit une surjection de $\pi_1(F_*)$ sur $\pi_1(F)$ à laquelle correspond une injection $R(\pi_1(F)) \to R(\pi_1(F_*))$ dont l'image est $\partial^{-1}(1)$ où $\partial: R(\pi_1(F_*)) \to S^3$ est l'évaluation: $\partial(\rho) = \rho(\delta), \delta = [\partial F_*] \in \pi_1(F_*)$. Rappelons que $\pi_1(F_*)$ est un groupe libre de rang 2g et que pour un choix convenable de la base $a_1, b_1, \dots, a_g, b_g$ on a $\delta = [a_1, b_1] \dots [a_g, b_g]$.

Conventions

1) les bords sont orientés de sorte que (normale extérieure \oplus orientation du bord) donne une orientation de la variété à bord.

2) $[a, b] = a^{-1}b^{-1}ab$.

¹) Celle qui va sur la classe fondamentale de S^3 par l'homéomorphisme $\rho \mapsto \rho(1)$ entre $R(\mathbb{Z})$ et S^3 .

3) On compose les lacets dans le même sens que les applications: parcourir le lacet $\alpha\beta$ c'est d'abord parcourir le lacet β puis le lacet α .

3.5. PROPOSITION. L'ensemble singulier de ∂ est l'espace $S(\pi_1(F_*))$ des représentations réductibles de $\pi_1(F_*)$ dans S^3 .

3.6. COROLLAIRE. Si g est supérieur à $1, \tilde{R}(\pi_1(F))$ est une sous-variété de dimension 6g - 3 de $R(\pi_1(F_*))$ et $\hat{R}(\pi_1(F))$ est une sous-variété de dimension 6g - 6 de $\hat{R}(\pi_1(F_*))$. Si $g = 1, \tilde{R}(\pi_1(F)) = \emptyset$.

Démonstration de 3.5. On choisit une base $a_1, b_1, ..., a_g, b_g$ de $\pi_1(F_*)$ comme ci-dessus et on identifie $R(\pi_1(F_*))$ à $(S^3)^{2g}$, on pose aussi $x_i = \rho(a_i)$ et $y_i = \rho(b_i), 1 \le i \le g$. Le fibré tangent à S^3 est trivialisé par des champs de vecteurs invariants à droite et on note exp: $\mathcal{L} = T_1S^3 \rightarrow S^3$ l'application exponentielle. Rappelons que la représentation adjointe¹) de S^3 dans \mathcal{L} se factorise par le revêtement double $S^3 \rightarrow SO(3) = SO(\mathcal{L})$ et que deux éléments de S^3 distincts de ± 1 commutent si et seulement si leurs images dans SO(3) ont même ensemble de points fixes. La proposition 3.5 découle alors du calcul de l'application tangente à l'application commutateur:

3.7. LEMME. L'application tangente en (x, y) à l'application commutateur $\mathcal{C}: S^3 \times S^3 \to S^3$ est l'application de $\mathcal{L} \times \mathcal{L}$ définie par:

 $(u, v) \mapsto \mathrm{Ad}_{yx}[(\mathrm{Id} - \mathrm{Ad}_{y^{-1}})(u) + (\mathrm{Ad}_{x^{-1}} - \mathrm{Id})(v)]$.

Démonstration de 3.7.

$$T\mathcal{O}_{|(x,y)}(u,o) = \frac{d}{dt} [x^{-1} \exp(-tu) y^{-1} \exp(tu) xyy^{-1} x^{-1} yx]_{|t=0}$$
$$= -x^{-1} ux + x^{-1} y^{-1} uyx = x^{-1} y^{-1} [u - yuy^{-1}] yx$$

Le calcul de $T \mathcal{O}_{|(x, y)}(0, v)$ est analogue.

Suite de la démonstration de 3.5. Il suit du lemme 3.7 que $T\mathcal{O}_{|(x,y)}$ est surjective sauf si $\operatorname{Ad}_{y^{-1}}$ et $\operatorname{Ad}_{x^{-1}}$ ont un axe en commun c'est-à-dire sauf si x et y commutent. (On convient que toute droite de \mathbb{R}^3 est un axe de l'identité de SO(3)).

L'application tangente à ϑ en $(x_1, y_1, ..., x_g, y_g), T\vartheta \colon \mathscr{L}^{2g} \to \mathscr{L}$ s'écrit $\sum_{i=1}^{g} \operatorname{Ad}_{c_i^{-1}} \circ T\mathscr{O}_i \quad \text{où} \quad c_0 = 1, c_i = \prod_{j=1}^{i} [x_j, y_j] \quad \text{pour} \quad 1 \leq i \leq g \quad \text{et} \quad \mathscr{O}_i \colon (S^3)^{2g}$ $\to S^3 \text{ vérifie} \quad \mathscr{O}_i(x_1, y_1, ..., x_g, y_g) = [x_i, y_i].$

¹) Si $v \in \mathcal{L}$ et $g \in S^3$, Ad_g $(v) = g^{-1}vg$.

Donc si tous les x_i et y_j commutent, l'image de $T\partial$ est contenue dans le plan orthogonal à un axe commun aux $\operatorname{Ad}_{x_i^{-1}}$ et $\operatorname{Ad}_{y_i^{-1}}$ et $T\partial$ n'est pas surjective. Inversement si les x_i et y_j ne commutent pas tous entre eux alors ou bien il existe un *i* tel que $[x_i, y_i] \neq 1$ et alors déjà $T\mathcal{O}_{i|(1, \dots, x_i, y_i, \dots, 1)}$ est surjective ou bien tous les commutateurs $[x_i, y_i]$ sont triviaux, $T\partial = \sum_{i=1}^{g} T\mathcal{O}_i$, et il existe un x_i et un x_j tels que $\operatorname{Ad}_{x_i^{-1}}$ et $\operatorname{Ad}_{x_j^{-1}}$ n'aient pas d'axe commun et donc $\operatorname{Im}(T\mathcal{O}_i) + \operatorname{Im}(T\mathcal{O}_j) = \mathcal{L}$ et $T\partial_{|(x_1, y_1, \dots, x_g, y_g)}$ est surjective. \Box

B. Définition de l'invariant de Casson d'une sphère d'homologie M

Soit $(M, F, W_1, W_2) = W_1 \bigcup_F W_2$ un scindement de Heegaard de genre g

d'une variété M de dimension trois orientée: la variété M est séparée par une surface F de genre g en deux bretzels W_1 et W_2 . Désignons par F_* la surface F privée d'un disque ouvert. On oriente F et F_* comme bord de W_1 qui porte l'orientation induite de celle de M. Choisissons un point base dans le bord de F_* .

Les groupes fondamentaux de la surface à bord F_* et des bretzels W_1 , W_2 sont libres, leurs espaces de représentations dans S^3 sont donc des produits de sphères de dimension trois.

Notons

 $R_* = R(\pi_1(F_*)), Q_1 = R(\pi_1(W_1)), Q_2 = R(\pi_1(W_2))$ et $R = R(\pi_1(F))$. Les ~ et les \wedge ont le même sens qu'au début de A: par exemple $\tilde{Q}_1 = \tilde{R}(\pi_1(W_1))$ est l'espace des représentations irréductibles de $\pi_1(W_1)$ et $\hat{Q}_1 = \hat{R}(\pi_1(W_1))$ est le quotient de \tilde{Q}_1 par l'action de SO(3).

Correspondant au diagramme de Van Kampen où toutes les flèches sont des surjections:

on a un diagramme d'injections d'espaces de représentations

$$\begin{array}{cccc}
Q_1 \\
2 & & \ddots \\
R_* \leftarrow R & & Q_1 \cap Q_2 = R(\pi_1(M)) \\
& & \ddots & & 2 \\
& & & Q_2
\end{array}$$

Remarquons que Q_1 est une sous-variété de R_* de dimension moitié car on peut choisir une base $a_1, b_1, ..., a_g, b_g$ de $\pi_1(F_*)$ telle que $a_1, ..., a_g$ soit une base de $\pi_1(W_1)$. Il en est de même pour Q_2 .

3.8. LEMME. i) M est une sphère d'homologie entière si et seulement si l'intersection homologique $(Q_1, Q_2)_{R_*}$ de Q_1 et de Q_2 dans R_* vaut ± 1 .

ii) M est une sphère d'homologie rationnelle si et seulement si Q_1 et Q_2 sont transverses dans R_* en la représentation triviale ρ_0 .

iii) Si M est une sphère d'homologie entière le signe de l'intersection en ρ_0 est $(Q_1, Q_2)_{R^*}$.

Démonstration de 3.8. Si M est une sphère d'homologie rationnelle on a un isomorphisme de Mayer-Vietoris $H^1(W_1; \mathcal{L}) \oplus H^1(W_2; \mathcal{L}) \to H^1(F; \mathcal{L})$ $= H^1(F_*; \mathcal{L})$, qui peut être interprété comme un isomorphisme

$$H^{1}(\pi_{1}(W_{1}); \mathscr{L}) \oplus H^{1}(\pi_{1}(W_{2}); \mathscr{L}) \to H^{1}(\pi_{1}(F_{*}); \mathscr{L})$$

et le lemme 3.1 montre que cela équivaut à $T_{\rho_0}Q_1 \oplus T_{\rho_0}Q_2 \cong T_{\rho_0}R_*$, ce qui établit ii).

Quant à i), identifions R_* au groupe $(S^3)^{2g}$ et soit $m: Q_1 \times Q_2 \to R_*$ l'application $(q_1, q_2) \to q_1 q_2$. D'après la fonctorialité de la formule de Künneth le degré de cette application est le nombre d'intersection $(Q_1, Q_2)_{R^*}$. (On peut aussi s'en convaincre en remarquant que le degré de m est égal au signe près à celui de l'application m' où $m'(q_1, q_2) = (q_1)^{-1}q_2$, il suffit alors d'isotoper Q_1 dans R_* de sorte que Q_1 devienne transverse à Q_2 , la préimage de 1 par m' est $Q_1 \cap Q_2$ et les contributions locales de chaque point de $Q_1 \cap Q_2$ au degré de l'application m' et à $(Q_1, Q_2)_{R^*}$ sont alors clairement égales).

Maintenant par l'isomorphisme du lemme 3.4 l'application

 $m^* \colon H^{6g}(R_*; \mathbb{Z}) \to H^{6g}(Q_1 \times Q_2; \mathbb{Z}) \cong H^{3g}(Q_1; \mathbb{Z}) \otimes H^{3g}(Q_2; \mathbb{Z})$

correspond à l'application

$$\Lambda^{2g}H_1(F_*; \mathbb{Z}) \rightarrow \Lambda^{2g}(H_1(W_1; \mathbb{Z}) \oplus H_1(W_2; \mathbb{Z}))$$

induite par les inclusions. D'après la suite de Mayer-Vietoris, M est une sphère d'homologie entière si et seulement si cette dernière application est un isomorphisme, donc, si et seulement si le degré de m qui est $(Q_1, Q_2)_{R_*}$ vaut ± 1 .

Enfin iii) vient de ce que les deux signes cherchés se lisent sur la même suite de Mayer-Vietoris comme on vient de voir.

3.9. COROLLAIRE. Si M est une sphère d'homologie entière $\tilde{Q}_1 \cap \tilde{Q}_2$ est compact.

Démonstration de 3.9. D'après ii) du lemme 3.8 si M est une sphère d'homologie rationnelle la représentation triviale est isolée dans le compact $Q_1 \cap Q_2$, donc $Q_1 \cap Q_2 - \{1\}$ est compact. Si de plus M est une sphère d'homologie entière, la représentation triviale est la seule représentation réductible de $Q_1 \cap Q_2 = R(\pi_1(M))$ ainsi $\tilde{Q}_1 \cap \tilde{Q}_2 = Q_1 \cap Q_2 - S(\pi_1(M))$ $= Q_1 \cap Q_2 - \{1\}$ est compact. \square

3.10. Remarque. Soit Γ un groupe se surjectant sur un produit libre $\Gamma_1 * \Gamma_2$ où $H_1(\Gamma_1)$ et $H_1(\Gamma_2)$ ont des éléments d'ordre supérieur à deux, alors l'espace des représentations irréductibles de Γ est non compact. En particulier si M est un fibré de Seifert dont la base est de caractéristique d'Euler inférieure à -1 ou si M est une somme connexe de deux variétés dont le H_1 a des éléments d'ordre supérieur à deux, $\tilde{Q}_1 \cap \tilde{Q}_2$ est non compact.

Soient en effet $\rho_1: \Gamma_1 \to \mathbb{Z}/p\mathbb{Z}$ et $\rho_2: \Gamma_2 \to \mathbb{Z}/q\mathbb{Z}$ deux homomorphismes surjectifs avec p > 2 et q > 2. Soient x et y dans $\mathscr{L} = T_1S^3$ avec |x|= |y| = 1. Définissons $\rho_{x,y}: \Gamma \to S^3$ comme $\tilde{\rho}_{x,y} \circ \pi$ où $\pi: \Gamma \to \Gamma_1 * \Gamma_2$ est une surjection et si a est dans Γ_1 et b dans $\Gamma_2, \tilde{\rho}_{x,y}(a) = \exp\left(\frac{2\pi\rho_1(a)}{p}x\right)$,

 $\tilde{\rho}_{x,y}(b) = \exp\left(\frac{2\pi\rho_2(b)}{q}y\right)$. Cette représentation n'est irréductible que si x est différent de $\pm y$.

3.11. Orientations de $R_*, \tilde{R}, \hat{R}, \hat{Q}_1, \hat{Q}_2$

Dans ce qui suit S^3 , Q_1 , Q_2 et R_* seront orientés de manière arbitraire (mais fixée!). Ensuite SO(3) est orienté de sorte que le revêtement $S^3 \rightarrow SO(3)$ soit localement un difféomorphisme préservant l'orientation et toutes les submersions verront leur espace total orienté par la convention base \oplus fibre. Plus précisément, si $p: E \rightarrow B$ est une telle submersion, si $b_0 \in B$, si $e_0 \in p^{-1}(b_0)$ et si $\varphi: U \times V \rightarrow E$ est une carte locale autour de e_0 (où V est un voisinage de e_0 dans $p^{-1}(b_0)$ et U un voisinage de b_0 dans B) telle que $\varphi \mid_{b_0 \times V}$ soit l'inclusion de V dans E et $p \circ \varphi$ la projection $U \times V$ $\rightarrow U$ alors on demande que φ préserve l'orientation.

Ainsi \tilde{R} est orienté comme fibre de la submersion $\partial: \tilde{R}_* \to S^3$ et \hat{R} (resp. \hat{Q}_1, \hat{Q}_2) comme base du SO(3) fibré à droite $\tilde{R} \to \hat{R}$ (resp. $\tilde{Q}_1 \to \hat{Q}_1, \tilde{Q}_2 \to \hat{Q}_2$). Les ensembles \hat{Q}_1 et \hat{Q}_2 sont des sous-variétés fermées de dimension moitié de la variété non compacte \hat{R} . Comme d'après le corollaire 3.9 $\hat{Q}_1 \cap \hat{Q}_2$ est compact on peut définir un nombre d'intersection homologique $\langle \hat{Q}_1, \hat{Q}_2 \rangle_{\hat{R}}$ de \hat{Q}_1 et \hat{Q}_2 dans \hat{R} (cf. [D], VIII.13). Ce nombre admet aussi la définition géométrique suivante que nous utiliserons de préférence: on peut rendre \hat{Q}_1 transverse à \hat{Q}_2 par une isotopie à support compact, l'intersection $\hat{Q}_1 \cap \hat{Q}_2$ est alors un nombre fini de points munis chacun d'un signe selon la règle usuelle. La somme de ces signes définit $\langle \hat{Q}_1, \hat{Q}_2 \rangle_{\hat{R}}$ car on montre par des arguments classiques que cette somme ne dépend pas de l'isotopie choisie.

3.12. Remarque (C. Lescop). On peut montrer le iii) du lemme 3.8 sans utiliser l'isomorphisme de foncteurs du corollaire 3.4 de la façon suivante. Etendons l'isotopie précédente en une isotopie à support compact de \hat{R}_* . Puisque \hat{Q}_1 et \hat{Q}_2 sont inclus dans \hat{R} qui est de codimension trois dans \hat{R}_* , on peut près de l'ensemble fini $\hat{Q}_1 \cap \hat{Q}_2$, isotoper \hat{Q}_1 hors de \hat{R} dans \hat{R}_* . On relève ensuite la composition de ces deux isotopies à \tilde{R}_* pour obtenir (en prolongeant par l'identité sur $S(\pi_1(F_*))$) une isotopie de R_* , h_t , $0 \le t \le 1$, telle que $h_0 = id$ et $h_1(Q_1) \cap Q_2 = \{\rho_0\}$. Donc $(Q_1, Q_2)_{R_*}$ est égal au signe de l'intersection en ρ_0 laquelle est transverse d'après 3.8 ii). (On trouvera un argument semblable dans la démonstration de 3.17). Si l'on veut, on pourra se passer dans la suite de l'article du corollaire 3.4 en utilisant à sa place le lemme 3.1 et la présente remarque.

3.13. Définition. Soit (M, F, W_1, W_2) un scindement de Heegaard de genre g d'une sphère d'homologie M. L'invariant de Casson de (M, F, W_1, W_2) est:

$$\lambda(M, F, W_1, W_2) = \frac{1}{2} (-1)^g \frac{\langle \hat{Q}_1, \hat{Q}_2 \rangle_{\hat{R}}}{(Q_1, Q_2)_{R_*}} \,.$$

3.14. *Remarques.* a) Si g = 1 on a $\langle \emptyset, \emptyset \rangle_{\emptyset} = 0$. D'ailleurs la seule sphère d'homologie de genre ≤ 1 est S^3 .

b) Si l'on change l'orientation de Q_1 (ou de Q_2) l'orientation de \hat{Q}_1 (resp. \hat{Q}_2) change simultanément et $\lambda(M, F, W_1, W_2)$ est inchangé. Il découle aussi de 3.11 que $\lambda(M, F, W_1, W_2)$ ne dépend pas non plus de l'orientation de S^3 ni de celle de R_* .

c) Le signe $(-1)^g$ sera expliqué dans la proposition 3.16, il est nécessaire pour que l'invariant de Casson ne dépende pas du choix du scindement de Heegaard de M.

d) Nous verrons au paragraphe 4 que $\langle \hat{Q}_1, \hat{Q}_2 \rangle_{\hat{R}}$ est toujours pair (essentiellement car $S^3 \rightarrow SO(3)$ est un revêtement double). Ceci explique le facteur 1/2.

3.15*. Remarques. a) $\lambda(-M, F, W_1, W_2) = -\lambda(M, F, W_1, W_2)$

En effet si l'on change l'orientation de M on change simultanément celle de F_* donc δ devient δ^{-1} . Ainsi la nouvelle évaluation ϑ est le composé de l'ancien ϑ et de l'application inverse de S^3 qui renverse l'orientation de S^3 , il suit alors de 3.11 que l'orientation de \tilde{R} donc celle de \hat{R} est renversée et le numérateur de λ change de signe, tandis que le dénominateur est évidemment inchangé.

b) exercice: $\lambda(M, F, W_2, W_1) = \lambda(M, F, W_1, W_2)$

3.16. PROPOSITION ET DÉFINITION. L'invariant $\lambda(M, F, W_1, W_2)$ est indépendant du scindement de Heegaard $W_1 \cup W_2$ de M.

On le note $\lambda(M)$, c'est l'invariant de Casson de la sphère d'homologie M.

Démonstration de 3.16. D'après le théorème de Reidemeister-Singer (cf. [Si]) deux scindements de Heegaard de M sont stablement isomorphes. Il suffit donc de montrer que $\lambda(M, F, W_1, W_2)$ ne change pas dans une stabilisation élémentaire.

Dans une telle stabilisation la surface F devient F', la somme connexe d'un tore T avec F et W_i devient W'_i somme connexe le long du bord d'un tore solide T_i avec W_i . On peut choisir les générateurs a et b de $\pi_1(T)$ de sorte que $\pi_1(F'_*) \cong \langle a, b \rangle * \pi_1(F_*)$ et que a soit homotope à zéro dans $T_2 \subset W'_2$ et bhomotope à zéro dans $T_1 \subset W'_1$. Ainsi on peut identifier R'_* à $S^3 \times S^3 \times R_*$, Q'_1 à $S^3 \times 1 \times Q_1$ et Q'_2 à $1 \times S^3 \times Q_2$. On identifie R_* à $1 \times 1 \times R_*$ et Q_i à $1 \times 1 \times Q_i$ dans R'_* et une fois choisies les orientations de S^3 , R'_* , Q'_1 et Q'_2 on considère sur R_* , Q_1 et Q_2 les orientations naturelles induites. Ceci posé on a déjà:

$$(Q'_1, Q'_2)_{R'_*} = (-1)^{\dim(Q_1)\dim(S^3)} (S^3 \times 1, 1 \times S^3)_{S^3 \times S^3} (Q_1, Q_2)_{R_*}$$
$$= (-1)^g (Q_1, Q_2)_{R_*}$$

Pour calculer $\langle \hat{Q}'_1, \hat{Q}'_2 \rangle_{\hat{R}'}$ commençons par noter que $Q'_1 \cap Q'_2$ = $1 \times 1 \times (Q_1 \cap Q_2) \subset 1 \times 1 \times R$ et que si $\delta' = [\partial F'_*] \in \pi_1(F'_*)$ alors

 $\delta' = [a, b]\delta$. Donc la flèche d'évaluation $\partial': R'_* \to S^3$ est donnée par $\partial'(\rho') = \partial'(x, y, \rho) = [x, y]\partial(\rho)$ en posant $\rho'(a) = x, \rho'(b) = y$. Le calcul de l'application tangente à ∂' en ρ' donne (cf. 3.5) $T_{\rho'} \partial' = T_{\rho'} \mathcal{D} \circ p$ + $\operatorname{Ad}_{[x,y]^{-1}} \circ T_{\rho'}(\partial \circ q)$ où \mathcal{O} est l'application commutateur et où p et q sont les projections de $R'_* = S^3 \times S^3 \times R_*$ sur $S^3 \times S^3$ et R_* . En un point de $1 \times 1 \times R$, puisque $T_{(1,1)} \mathcal{D} = 0$ (cf. 3.7) on a $T_{\rho'} \partial' = T_{\rho'} (\partial \circ q)$ et les sous-variétés $\tilde{R}' = \partial'^{-1}(1)$ et $S^3 \times S^3 \times \tilde{R}$ sont tangentes le long de $1 \times 1 \times \tilde{R}$ (cf. fig. 7). Et donc \tilde{R}' et $S^3 \times S^3 \times \tilde{R}$ sont localement difféomorphes près de $1 \times 1 \times \tilde{R} \supset \tilde{Q}'_1 \cap \tilde{Q}'_2$. Enfin puisque $1 \times 1 \times \tilde{R}$ est préservé par l'action libre de SO(3) sur \tilde{R}' et que \hat{R} comme \hat{R}' s'identifient loca- $1 \times 1 \times \hat{\rho}$ à des variétés de transverses l'orbite près à lement $(1 \times 1 \times \rho)$. SO(3) de $1 \times 1 \times \rho$ on voit que près de $1 \times 1 \times \hat{R}$, \hat{R}' est difféomorphe à $\mathbf{R}^3 \times \mathbf{R}^3 \times \hat{\mathbf{R}}$ (cf. fig. 8). On peut bien sûr choisir les difféomorphismes précédents de sorte que $(\hat{R}', \hat{Q}'_1, \hat{Q}'_2)$ soit localement difféomorphe à $(\mathbf{R}^3 \times \mathbf{R}^3 \times \hat{R}, \mathbf{R}^3 \times 0 \times \hat{Q}_1, 0 \times \mathbf{R}^3 \times \hat{Q}_2)$ près de $\hat{Q}_1 \cap \hat{Q}_2$. Par conséquent, si \hat{Q}_1 et \hat{Q}_2 sont transverses dans \hat{R} (et donc \hat{Q}'_1 et \hat{Q}'_2 dans \hat{R}' d'après ce qui précède), on a

$$\langle \hat{Q}'_{1}, \hat{Q}'_{2} \rangle_{\hat{R}'} = (-1)^{\dim(\hat{Q}_{1})\dim(\mathbb{R}^{3})} \langle \mathbb{R}^{3} \times 0, 0 \times \mathbb{R}^{3} \rangle_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \langle \hat{Q}_{1}, \hat{Q}_{2} \rangle_{\hat{R}}^{\hat{R}}$$
$$= (-1)^{g-1} \langle \hat{Q}_{1}, \hat{Q}_{2} \rangle_{\hat{R}}^{\hat{R}}$$

En général on se ramène au cas où \hat{Q}_1 et \hat{Q}_2 sont transverses dans \hat{R} de la manière suivante. Soit *h* une isotopie à support compact de l'identité de \hat{R} qui rend \hat{Q}_1 transverse à \hat{Q}_2 . Puisque l'on a vu que le fibré normal à \hat{R} dans \hat{R}' est trivial cette isotopie s'étend aisément en une isotopie à suport compact de \hat{R}' . En définitive,

$$\lambda(M, F', W'_1, W'_2) = \frac{1}{2} (-1)^{g+1} \frac{(-1)^{g-1} < \hat{Q}_1, \hat{Q}_2 >_{\hat{R}}}{(-1)^g (Q_1, Q_2)_{R_*}}$$
$$= \frac{1}{2} (-1)^g \frac{<\hat{Q}_1, \hat{Q}_2 >_{\hat{R}}}{(Q_1, Q_2)_{R_*}} = \lambda(M, F, W_1, W_2) \qquad \Box$$

3.17*. PROPOSITION. L'invariant de Casson est additif pour la somme connexe des sphères d'homologie orientées:

$$\lambda(M' \# M'') = \lambda(M') + \lambda(M'') .$$

Démonstration de 3.17. Soient $W'_1 \bigcup_{F'} W'_2$ et $W''_1 \bigcup_{F''} W''_2$ des

scindements de Heegaard de M' et M''. La somme connexe M de M' et de M'' est munie du scindement de Heegaard somme connexe. On a $R_* = R'_* \times R''_*$ et $Q_i = Q'_i \times Q''_i$. Et donc:

$$(Q_1, Q_2)_{R_*} = (-1)^{g'g''} (Q'_1 \cdot Q'_2)_{R'_*} (Q''_1 \cdot Q''_2)_{R'_*}$$

où g' = genre(F'), g'' = genre(F'').

Reste à calculer $\langle \hat{Q}_1, \hat{Q}_2 \rangle_{\hat{R}}$. Notons d'abord que l'évaluation $\partial: R_* \to S^3$ s'écrit $\partial'\partial''$. Par conséquent R contient $R' \times 1$ et $1 \times R''$ et d'autre part (cf. 3.7) $T_{p' \times 1}(\partial) = T_{p' \times 1}(\partial' \circ p) + \operatorname{Ad}_{\partial'(p')^{-1}} \circ T_{p' \times 1}(\partial'' \circ q)$ où \dot{p} et q sont les projections de R_* sur R'_* et R''_* et $T_{1 \times p''}(\partial)$ $= T_{1 \times p''}(\partial' \circ p) + T_{1 \times p''}(\partial'' \circ q)$. Puisque $T_1\partial'$ et $T_1\partial''$ sont nulles (cf. 3.5) on déduit que $\tilde{R}' \times R''_*$ est tangent à $\tilde{R} = \partial^{-1}(1)$ le long de $\tilde{R}' \times 1$ et que $R'_* \times \tilde{R}''$ est tangent à \tilde{R} le long de $1 \times \tilde{R}''$.

Et, comme en 3.16, on voit que \hat{R} contient $\hat{R}' \times 1$ et $1 \times \hat{R}''$ comme sousvariétés admettant des fibrés normaux triviaux isomorphes au produit de \hat{R}' et de \hat{R}'' par des voisinages de la représentation triviale dans R''_* et R'_* respectivement. On a une situation analogue pour $\hat{Q}'_1 \times 1$ et $1 \times \hat{Q}''_1$ dans \hat{Q}_1 et pour $\hat{Q}'_2 \times 1$ et $1 \times \hat{Q}''_2$ dans \hat{Q}_2 , on a donc:

$$(\hat{R}, \hat{Q}_1, \hat{Q}_2) \cong (\hat{R}' \times R_*'', (-1)^{g''} \hat{Q}_1' \times Q_1'', (-1)^{g''} \hat{Q}_2' \times Q_2'')$$

près de $\hat{R}' \times 1$ et un isomorphisme similaire près de $1 \times \hat{R}''$.

Maintenant les éléments de $\hat{Q}_1 \cap \hat{Q}_2$, c'est-à-dire les classes de conjugaison de représentations irréductibles de $\pi_1(M) = \pi_1(M') * \pi_1(M'')$ se répartissent en trois groupes: (i) Celles triviales sur $\pi_1(M'')$, c'est-à-dire appartenant à

$$\hat{Q}'_1 imes 1 \cap \hat{Q}'_2 imes 1$$
.

(ii) Celles triviales sur $\pi_1(M')$, c'est-à-dire appartenant à

$$1\times \hat{Q}_1''\cap 1\times \hat{Q}_2''$$

iii) Celles qui ne sont triviales ni sur $\pi_1(M')$ ni sur $\pi_1(M'')$, c'est-à-dire appartenant à l'ensemble des classes des éléments de

$$(\tilde{Q}'_1 \cap \tilde{Q}'_2) \times (\tilde{Q}''_1 \cap \tilde{Q}''_2)$$
.

Comptons la contribution apportée à $\langle \hat{Q}_1, \hat{Q}_2 \rangle_{\hat{R}}$ par les points de $\hat{Q}_1 \cap \hat{Q}_2$ dans les trois cas précédents. On peut tout d'abord rendre \hat{Q}'_1 transverse à \hat{Q}'_2 par une isotopie à support compact de $\hat{R}' \times 1$ et \hat{Q}''_1 transverse à \hat{Q}''_2 par une isotopie à support compact de $1 \times \hat{R}''$. Puisque $\hat{R}' \times 1$ $\cap 1 \times \hat{R}'' = \emptyset$ on peut étendre ces isotopies en une isotopie à support compact de \hat{R} .

Si un point de $\hat{Q}_1 \cap \hat{Q}_2$ est dans le groupe (i) le difféomorphisme local autour de $\hat{R}' \times 1$ ci-dessus montre qu'il contribue pour

 $\langle \hat{Q}'_1 \times Q''_1, \hat{Q}'_2 \times Q''_2 \rangle_{\hat{R}' \times R''_*} = (-1)^{g''(g'-1)} \langle \hat{Q}'_1, \hat{Q}'_2 \rangle_{\hat{R}'} (Q''_1, Q''_2)_{R''_*}$ puisque d'après le lemme 3.8 iii), Q''_1 et Q''_2 sont transverses en la représentation triviale et le signe attribué à cette intersection est $(Q''_1, Q''_2)_{R''_*}$.

De même si un point de $\hat{Q}_1 \cap \hat{Q}_2$ est dans le groupe (ii) il contribue pour

$$(-1)^{(g''-1)g'}(Q'_1,Q'_2)_{R'_*} < \hat{Q}''_1, \hat{Q}''_2 >_{\hat{R}''}$$

Montrons enfin que les points de $\hat{Q}_1 \cap \hat{Q}_2$ dans le groupe (iii) ne contribuent pas à $\langle \hat{Q}_1, \hat{Q}_2 \rangle_{\hat{R}}$. Pour cela remarquons que $\tilde{R}' \times \tilde{R}''$, préimage de (1, 1) par la submersion $(\hat{\partial}', \hat{\partial}''): \tilde{R} \cap (\tilde{R}'_* \times \tilde{R}''_*) \to S^3 \times S^3$, est une sous-variété de $\tilde{R} \cap (\tilde{R}'_* \times \tilde{R}''_*)$ et que l'action à droite de $S^3 \times S^3$ sur $\tilde{R} \cap (\tilde{R}'_* \times \tilde{R}''_*)$ donnée par $(\rho', \rho'').(g', g'') = (\rho'.g', \rho''.g'')$ induit une action libre de $SO(3) \times SO(3)$ telle que le quotient \hat{R} obtenu contienne $\hat{R}' \times \hat{R}''$ comme sous-variété. De plus si $\hat{\mathscr{Q}}$ est l'ouvert de \hat{R} quotient de $\tilde{R} \cap (\tilde{R}'_* \times \tilde{R}''_*)$ par l'action de SO(3) (qui est diagonale sur $\tilde{R}'_* \times \tilde{R}''_*)$ on a une SO(3)-fibration $\hat{\mathscr{Q}} \to \hat{R}$. Soit aussi \hat{Q}_i le quotient de $\tilde{Q}_i \cap (\tilde{R}'_* \times \tilde{R}''_*)$ par la même action de $S^3 \times S^3$; c'est une sous-variété de \hat{R} . Les images des points du groupe iii) sont dans $\hat{R}' \times \hat{R}''$ donc en fait dans $\hat{Q}_1 \cap \hat{Q}_2$ $\subset \hat{R}' \times \hat{R}'' \subset \hat{R}$. Si on rend \hat{Q}_1 et \hat{Q}_2 transverses dans $\hat{R}' \times \hat{R}''$ par une isotopie à support compact alors $\hat{Q}_1 \cap \hat{Q}_2$ devient un nombre fini de points et $\hat{R}' \times \hat{R}''$ étant de codimension trois dans $\hat{\hat{R}}$ on peut pousser, près de $\hat{\hat{Q}}_1 \cap \hat{\hat{Q}}_2, \hat{\hat{Q}}_1$ hors de $\hat{R}' \times \hat{R}''$ et ainsi disjoindre $\hat{\hat{Q}}_1$ de $\hat{\hat{Q}}_2$ par une isotopie à support compact dans $\hat{\hat{R}}$. Cette isotopie se relève dans $\hat{\hat{\mathcal{U}}} \subset \hat{R}$ en une isotopie qui est l'identité sur $\hat{R}' \times 1 \cup 1 \times \hat{R}'' \subset \hat{R} - \hat{\hat{\mathcal{U}}}$ donc qui ne modifie pas les points des groupes i) et ii) mais qui fait disparaître les points du groupe iii). En définitive il vient pour $\lambda(M)$:

$$\begin{split} \lambda(M) &= \frac{1}{2} (-1)^{g'+g''} \left[\frac{(-1)^{g''(g'-1)} < \hat{Q}_1', \, \hat{Q}_2' > \hat{R}_1'(Q_1'', Q_2'')_{R_1''}}{(-1)^{g'g''}(Q_1', Q_2')_{R_1'} < \hat{Q}_1'', \hat{Q}_2'')_{R_1''}} \right] \\ &+ \frac{(-1)^{(g''-1)g'}(Q_1', Q_2')_{R_1'} < \hat{Q}_1'', \hat{Q}_2'' > \hat{R}_1''}{(-1)^{g'g''}(Q_1', Q_2')_{R_1''} < \hat{Q}_1'', Q_2'')_{R_1''}} \right] \\ &= \frac{1}{2} (-1)^{g'} \frac{< \hat{Q}_1', \, \hat{Q}_2' > \hat{R}_1'}{(Q_1', Q_2')_{R_1'}} + \frac{1}{2} (-1)^{g''} \frac{< \hat{Q}_1'', \, \hat{Q}_2'' > \hat{R}_1''}{(Q_1'', Q_2'')_{R_1''}} \\ &= \lambda(M') + \lambda(M'') . \quad \Box \end{split}$$

4. DÉMONSTRATION DES PROPRIÉTÉS 1) ET 2) DE L'INVARIANT DE CASSON

4.1. LEMME. (i) Soit K un nœud dans une sphère d'homologie M, alors il y a un scindement de Heegaard $W_1 \cup W_2$ de M tel que K soit une courbe séparante de la surface F.

(ii) On peut même demander à W_1 d'être un bicollier autour d'une surface de Seifert pour K.

(iii) Si (K, L) est un entrelacs bord dans M, on peut demander que K et L soient sur la surface F et la séparent en trois parties.

Démonstration de 4.1. Soit S une surface de Seifert pour le nœud K dans M et $S \times [-1, 1]$ un bicollier autour de S. Considérons M comme $S \times [-1, 1] \cup H^1 \cup H^2 \cup H^3$ où H^1 est une union disjointe d'anses d'indice 1 dont, par isotopie, on peut supposer toutes les sphères d'attachement dans $S \times 1$ et où H^2 et H^3 sont des unions disjointes d'anses d'indices 2 et 3 respectivement. Alors $W_1 = S \times [-1, 1] \cup H^1$, $W_2 = H^2 \cup H^3$ et $F = \partial W_1$ convient pour (i).

Pour (ii) écrivons $\partial^+ H^1$ pour l'adhérence de la partie de ∂H^1 qui ne rencontre pas $S \times 1$. Alors $S^+ = S \times 1 \cup \partial^+ H^1$ est la surface de Seifert

cherchée, W_2 étant le précédent W_2 union une anse d'indice 1 pour chaque anse de H^1 (cf. fig. 9).

Quant à (iii), on commence par considérer des surfaces de Seifert disjointes Σ_K et Σ_L pour K et L dans M. On joint ensuite Σ_K à $\Sigma_L \times 1 \subset \Sigma_L \times [-1, 1]$ par un tube $T = S^1 \times [0, 1]$ tel que

$$T \cap \Sigma_K = S^1 \times 0$$
 et $T \cap (\Sigma_L \times [-1, 1]) = S^1 \times 1 \subset \Sigma_L \times 1$.

On obtient ainsi une surface de Seifert S pour K que L sépare en connectant Σ_K et $\partial(\Sigma_L \times [-1, 1])$ avec le tube T.

On recopie ensuite la démonstration de (i) (et puis de (ii) si l'on veut) en isotopant les sphères d'attachement de H_1 dans $(S \cap \Sigma_K) \times 1$.

4.2. LEMME. Soit $W_1 \bigcup_F W_2$ une décomposition de Heegaard d'une variété M et K une courbe simple fermée de la surface F. Soit h le «twist» de Dehn à droite¹) de F autour de K. Alors

$$W_1 \cup W_2 = W_1 \amalg W_2 / \{ \partial W_1 = F \ni h^n(x) \sim x \in F = \partial W_2 \}$$

est une décomposition de Heegaard de la variété (M, K_n) obtenue par chirurgie de Dehn de coefficient 1/n sur le nœud K.

Démonstration de 4.2. Soit $\theta: \mathbb{R}/2\mathbb{Z} \times [-1, 1] \to F$ un plongement préservant l'orientation tel que $\theta(\mathbb{R}/2\mathbb{Z} \times 0)$ soit la courbe K. Le «twist» de Dehn autour de K est représenté par: $h_{\theta}: F \to F$ où $h_{\theta}(x) = x$ si x n'est pas dans l'image de θ et $h_{\theta}(\theta(u, v)) = \theta(u + v + 1, v)$.

Soient I_1 et I_2 deux exemplaires du segment orienté $\theta(0 \times [-1, 1])$ poussés relativement à leur bord dans W_1 et W_2 respectivement. Alors $m = I_1 \cup -I_2$ est un méridien pour le nœud K qui, si K est orienté par θ , a nombre d'enlacement + 1 avec K (cf. fig. 10).

¹) Il dévie une transversale au nœud K vers la droite si F est orientée comme bord de W_1 .

Il est clair que $W_1 \cup W_2$ est obtenu à partir de M par une chirurgie de Dehn sur le nœud K (hors du tore solide formé par un voisinage de l'image de θ les deux variétés sont identiques). Le nouveau méridien est $m' = h^n(I_1) \cup -I_2$ qui, dans le bord d'un tube autour de K est homologue à m + nK. Le coefficient de la chirurgie de Dehn est donc 1/n. \Box

A. DÉMONSTRATION DE LA PROPRIÉTÉ 1)

Soit $W_1 \cup W_2$ une décomposition de Heegaard de M donnée par le lemme 4.1. Le «twist» de Dehn h autour de la courbe K séparant F induit des difféomorphismes $h_*: R_* \to R_*$ et $\hat{h}: \hat{R} \to \hat{R}$ qui préservent l'orientation d'après le corollaire (3.4) puisque K séparant F, h induit l'identité dans l'homologie de F_* . Pour la même raison $h_*^n(Q_1)$ est homologue à Q_1 dans R_* et donc l'invariant de Casson de (M, K_n) calculé grâce au lemme (4.2) vaut:

$$\lambda(M,K_n) = \frac{1}{2}(-1)^g \frac{\langle \hat{h}^n(\hat{Q}_1), \hat{Q}_2 \rangle_{\hat{R}}}{(h_*^n(Q_1), Q_2)_{R_*}} = \frac{1}{2}(-1)^g \frac{\langle \hat{h}^n(\hat{Q}_1), \hat{Q}_2 \rangle_{\hat{R}}}{(Q_1, Q_2)_{R_*}}$$

Le but de ce paragraphe est alors:

4.3. PROPOSITION. Il y a une classe $\hat{\delta}$ dans $H_{3g-3}(\hat{R})$ telle que: (i) $\hat{h}(\hat{\delta}) = \hat{\delta}$. (ii) $\langle \hat{h}^{n+1}(\hat{Q}_1), \hat{Q}_2 \rangle_{\hat{R}} - \langle \hat{h}^n(\hat{Q}_1), \hat{Q}_2 \rangle_{\hat{R}} = 2(\hat{\delta}, \hat{Q}_2)_{\hat{R}}$.

En effet, donné cette proposition, on a imédiatement que

$$\lambda(M, K_{n+1}) - \lambda(M, K_n) = (-1)^g \frac{\langle \hat{\delta}, \hat{Q}_2 \rangle_{\hat{R}}}{(Q_1, Q_2)_{R_*}}$$

est indépendant de *n* et entier puisque, d'après 3.8 (i), $(Q_1, Q_2)_{R_*} = \pm 1$. D'où la propriété 1.

Ensuite, cette propriété 1 et le lemme 2.1 disent que pour toute sphère d'homologie M l'invariant de Casson $\lambda(M)$ est entier.

Démonstration de 4.3. Le nœud K sépare la surface F en deux surfaces trouées F'_* et F''_* . Orientons K comme bord de F'_* et choisissons un point base de F dans F'_* .

Soient $\partial': R'_* \to S^3$ et $\partial'': R''_* \to S^3$ les flèches d'évaluation sur le bord. Pour un choix cohérent des orientations arbitraires de R_*, R'_* et R''_* on a

$$R = \{(\rho', \rho'') \in R'_* \times R''_* \mid (\partial' \rho') (\partial'' \rho'') = 1\}$$

et

$$h_*(\rho',\rho'') = ((\rho',\rho'',\partial''\rho'') .$$

Notons $R'_{-} = \partial'^{-1}(-1)$ et $R''_{-} = \partial''^{-1}(-1)$. D'après 3.5, R'_{-} et R''_{-} sont des sous-variétés de \tilde{R}'_{*} et \tilde{R}''_{*} , et $R_{-} = \{\rho \in R \mid \rho(K) = -1\} = R'_{-} \times R''_{-}$ est une sous-variété compacte de codimension 3 de \tilde{R} qui est invariante sous l'action de SO(3) par conjugaison. Son quotient \hat{R}_{-} est une sous-variété compacte de codimension 3 de \hat{R} on remarque que h_{*} et \hat{h} sont l'identité sur R_{-} et \hat{R}_{-} respectivement.

Soit alors $H: [0, 1] \times (R \setminus R_{-}) \to R \setminus R_{-}$ l'homotopie donnée par $H((\rho', \rho''), t) = (\rho', \rho'' \cdot \exp(tz))$ où z est le vecteur de $\mathscr{L} = T_1 S^3$ qui vérifie $|z| < \pi$ et $\exp(z) = (\partial' \rho')^{-1} = \partial'' \rho''$. On a $H_0 = \operatorname{id}, H_1 = h_{*|R \setminus R_{-}}$ mais H_t , pour 0 < t < 1, ne s'étend pas à R_{-} . D'autre part H_t respecte \tilde{R} et commute à l'action de S^3 : si $\exp(z) = \partial'' \rho''$ alors $\exp(z) \cdot g = \partial'' (\rho'' \cdot g) = \exp(\operatorname{Ad}_g(z))$ et

$$(\rho^{\prime\prime}.g).\exp(t\mathrm{Ad}_g(z)) = (\rho^{\prime\prime}.g).(\exp(tz).g) = (\rho^{\prime\prime}.\exp(tz)).g$$

Ainsi H_t passe au quotient et donne \hat{H} : $[0, 1] \times (\hat{R} \setminus \hat{R}_-) \rightarrow \hat{R} \setminus \hat{R}_-$.

On va maintenant examiner ce qui se passe au voisinage de \hat{R}_- . Tout d'abord on peut se ramener au cas où \tilde{Q}_1 est transverse à \tilde{R}_- en isotopant \tilde{Q}_1 par une isotopie équivariante de \tilde{R} à support compact (obtenue en relevant une isotopie à support compact de \hat{R} rendant \hat{Q}_1 transverse à \hat{R}_-). Après quoi l'application d'évaluation $\rho \mapsto \rho(K)^{-1} = \partial'' \rho''$ est une submersion de \tilde{Q}_1 vers S^3 au voisinage de $\tilde{Q}_1 \cap \tilde{R}_-$. On oriente $\tilde{Q}_1 \cap \tilde{R}_-$ comme fibre de cette submersion.

Pour [a, b] un segment de $[0, \pi]$ posons $\tilde{Q}_1^{[a, b]} = \{ \rho \in \tilde{Q}_1 \mid d(1, \rho(K)) \in [a, b] \}$ pour d la distance usuelle sur la sphère S^3 . On écrit \tilde{Q}_1^a pour $\tilde{Q}_1^{[a, a]}$ et on note que $\tilde{Q}_1^{[0, \pi]} = \tilde{Q}_1$.

Ces ensembles sont pour *a*, *b* assez proches de π , des sous-variétés de \tilde{Q}_1 invariantes sous l'action de S^3 par conjugaison. Leurs quotients sont notés $\hat{Q}_1^{[a,b]}$ et, pour $a < \pi$, on oriente \tilde{Q}_1^a comme bord de la variété $\tilde{Q}_1^{[0,a]}$. Pour *u* proche de π , posons

$$\hat{\beta}_{u} = \hat{h}(\hat{Q}_{1}^{[u,\pi]}) - \hat{Q}_{1}^{[u,\pi]} + \hat{H}([0,1] \times \hat{Q}_{1}^{u})$$
: c'est un cycle de \hat{R} (cf. fig. 11).

Remarquons alors que bien que \hat{H} puisse ne pas être l'identité hors d'un compact de $\hat{R}, \hat{H}([0,1] \times \hat{Q}_1^{[0,u]}) \cap \hat{Q}_2$ est compact. En effet puisque H est l'identité sur les représentations réductibles et préserve les irréductibles, $H([0,1] \times (Q_1 \setminus R_-)) \cap Q_2 = \{\rho_0\} \cup H([0,1] \times (\tilde{Q}_1 \setminus R_-)) \cap \tilde{Q}_2$ où ρ_0 désigne la représentation triviale et puisque $T_{\rho_0}H_t = \text{id pour } 0 \leq t \leq 1$, ρ_0 est isolée (d'après théorème des le fonctions implicites) dans $H([0,1] \times Q_1^{[0,u]}) \cap Q_2$. Donc $H([0,1] \times \tilde{Q}_1^{[0,u]}) \cap \tilde{Q}_2$ est compact. En conséquence

$$<\hat{h}(\hat{Q}_{1}^{[0,u]}) - \hat{Q}_{1}^{[0,u]} - \hat{H}([0,1] \times \hat{Q}_{1}^{u}), \ \hat{Q}_{2} > \hat{R} = 0, \text{ et donc}$$

 $<\hat{h}(\hat{Q}_{1}), \ \hat{Q}_{2} > \hat{R} - <\hat{Q}_{1}, \ \hat{Q}_{2} > \hat{R} = <\hat{\beta}_{u}, \ \hat{Q}_{2} > \hat{R}.$

On peut conclure dès maintenant, puisque pour u assez proche de π , $\hat{\beta}_u$ est à support dans un voisinage régulier de \hat{R}_- qui se rétracte sur \hat{R}_- , que $\hat{\beta}_u$ est homologue à un cycle \hat{d} de \hat{R}_- . Puisque \hat{h} est l'identité sur \hat{R}_- , $\hat{h}(\hat{d}) = \hat{d}$ et on obtient la proposition 4.3 mais seulement au facteur 2 du second membre de ii) près. Pour obtenir ce facteur 2, et avoir une description explicite de $\hat{\delta}$ utile plus tard, on va préciser des coordonnées autour de R_- , paramétrer le cycle $\hat{\beta}_u$ et trouver $\hat{\delta}$ comme limite de $\hat{\beta}_u$ quand u tend vers π .

Les submersions $\partial': R'_* \to S^3$ et $\partial'': R''_* \to S^3$ conduisent à des plongements équivariants préservant l'orientation $\varphi': V \times R'_- \to R'_*$ et $\varphi'': V \times R''_- \to R''_*$ où V est un voisinage de -1 dans S^3 et où S^3 agit diagonalement par conjugaison sur $V \times R'_-$ et $V \times R''_-$. De plus $\varphi' = \text{id sur } -1 \times R'_-, \varphi''$ $= \text{id sur } -1 \times R''_-, \text{ et } \partial' \circ \varphi' = p', \partial'' \circ \varphi'' = p'' \text{ où } p'$ et p'' sont les projections de $V \times R'_-$ et $V \times R''_-$ sur V.

Notons $\tilde{Q}_1^{\pi} = \tilde{Q}_1 \cap \tilde{R}_-$.

On en déduit un plongement $\theta: V \times R_{-} = V \times R'_{-} \times R''_{-} \to R$ tel que:

(i)
$$\theta(-1,\rho) = \rho$$
.

(ii) $\theta(g, \rho)(K) = g^{-1}$.

(iii) θ est équivariant relativement aux actions par conjugaison de S³ (qui agit diagonalement sur $V \times R_{-}$).

(iv) Si $g \neq -1, H_t(\theta(g, \rho', \rho'')) = \theta(g, \rho', \rho'') \exp(tz))$ où $\exp(z) = g$. (v) $\theta(V \times \tilde{Q}_1^{\pi}) \subset \tilde{Q}_1$ (quitte à modifier le plongement de \tilde{Q}_1 le long de $R_$ par une isotopie équivariante qui préserve R_- de sorte que les fibres du fibré normal à R_- définies par θ coïncident avec les fibres du fibré normal à \tilde{Q}_1^{π} dans \tilde{Q}_1 .) On peut alors définir $\Phi_u: S^3 \times \tilde{Q}_1^{\pi} \to \tilde{R}$ pour *u* assez proche de π :

$$\Phi_{u}(g,\rho) = \begin{cases} \theta(g^{-1},\rho) & \text{si } |z| \ge u, \text{ où } \exp(z) = g \\ H_{\alpha_{u}(|z|)}\left(\theta(\exp\left(\frac{-uz}{|z|}\right),\rho\right) & \text{si } \pi - u \le |z| \le u \\ h_{*}(\theta(-\exp(z)),\rho) = h_{*}(\theta(-g,\rho)) & \text{si } 0 \le |z| \le \pi - u \end{cases}$$

où $\alpha_u: [\pi - u, u] \rightarrow [0, 1]$ est la bijection linéaire renversant l'orientation $[\alpha_u(t) = \frac{1}{\pi - 2u}(t - u)].$

Cette application Φ_u est équivariante par rapport aux actions par conjugaison de S^3 (diagonalement sur $S^3 \times \tilde{Q}_1^{\pi}$) et induit une application $\hat{\Phi}_u: S^3 \times \tilde{Q}_1^{\pi}/S^3 \to \hat{R}$. Comme l'application antipodale $g \mapsto -g$ conserve l'orientation de S^3 et l'inverse $g \mapsto g^{-1}$ la renverse, l'application $\hat{\Phi}_u$ paramètre le cycle $\hat{\beta}_u$.

Si *u* tend vers π alors Φ_u tend vers $\Phi_{\pi}: S^3 \times \tilde{Q}_1^{\pi} \to \tilde{R}_-$ donnée par

$$\Phi_{\pi}(g,\rho',\rho'') = \left(\rho',\rho'' \cdot \exp\left(-\alpha_{\pi}(|z|)\pi\frac{z}{|z|}\right)\right)$$
$$= \left(\rho',\rho'' \cdot -\exp(z)\right) = \left(\rho',\rho'' \cdot g\right)$$

Cette application passe aussi au quotient pour donner une application $\hat{\Phi}_{\pi}: S^3 \times \tilde{Q}_1^{\pi}/S^3 \rightarrow \hat{R}_-$ qui se factorise à travers le revêtement double

 $S^3 \times \tilde{Q}_1^{\pi}/S^3 \to SO(3) \times \tilde{Q}_1^{\pi}/S^3$ donc $\hat{\Phi}_{\pi}$ représente le double d'un cycle $\hat{\delta}$ de \hat{R}_- et est homologue par construction à $\hat{\beta}_u$ pour tout $u < \pi$. Donc

$$<\hat{h}(\hat{Q}_1),\,\hat{Q}_2>_{\hat{R}}-<\hat{Q}_1,\,\hat{Q}_2>_{\hat{R}}=2<\hat{\delta},\,\hat{Q}_2>_{\hat{R}}.$$

Puisque $\hat{\delta}$ est à support dans \hat{R}_{-} , $\hat{h}(\hat{\delta}) = \hat{\delta}$ et donc, pour tout *n*,

$$<\hat{h}^{n+1}(\hat{Q}_1), (\hat{Q}_2>_{\hat{R}} - <\hat{h}^n(\hat{Q}_1), \hat{Q}_2>_{\hat{R}} = 2<\hat{h}^n (\hat{\delta}), \hat{Q}_2>_{\hat{R}} = 2<\hat{\delta}, \hat{Q}_2>_{\hat{R}} = 2<\hat{\delta}, \hat{Q}_2>_{\hat{R}}$$

4.4. Remarque (C. Lescop). On peut penser à la démonstration précédente d'une manière un peu différente. On va utiliser le voisinage tubulaire $\theta: V \times R_- \rightarrow R$ pour modifier H_t dans ce voisinage en une homotopie équivariante qui s'étend par l'identité sur R_- .

So ttel que V contienne $V_{\varepsilon} = \{g \in S^3 \mid d(1,g) \ge \pi - \varepsilon\}$. So t $g \in V_{\varepsilon}, g \neq -1$ et $z \in \mathcal{L} = T_1 S^3$ tel que $g = \exp(z)$.

Si
$$\pi - t\varepsilon \leq |z| < \pi - t\frac{\varepsilon}{2}$$
 on pose

$$K_t(\theta(g, \rho)) = H_t\left(\theta\left(\exp\left(\alpha_t(|z|)\frac{z}{|z|}\right), \rho\right)\right),$$

où $\alpha_t: \left[\pi - t\varepsilon, \pi - t\frac{\varepsilon}{2}\right] \to [\pi - t\varepsilon, \pi]$ est la bijection linéaire croissante. Si $\pi - t\frac{\varepsilon}{2} \leq |z| < \pi$ on pose

$$K_t(\theta(g,\rho)) = \theta\left(-1,\rho',\rho''.\exp\left(\beta_t(|z|)\frac{z}{|z|}\right)\right),$$

où $\beta_t: \left[\pi - t\frac{\varepsilon}{2}, \pi\right] \rightarrow [0, t\pi]$ est la bijection linéaire décroissante.

Alors $K_1(\tilde{Q}_1) = H_1(\tilde{Q}_1) \cup \Phi_{\pi} \circ i(S^3 \times \tilde{Q}_1^{\pi})$ où $i: S^3 \times \tilde{Q}_1^{\pi} \to S^3 \times \tilde{Q}_1^{\pi}, i(g, \rho) = (g^{-1}, \rho)$ est un difféomorphisme renversant l'orientation.

Donc après passage au quotient, les égalités

$$<\hat{K}_{1}(\hat{Q}_{1}), \hat{Q}_{2} >_{\hat{R}} = <\hat{Q}_{1}, \hat{Q}_{2} >_{\hat{R}}$$

et $<\hat{K}_{1}(\hat{Q}_{1}), \hat{Q}_{2} >_{\hat{R}} = <\hat{h}(\hat{Q}_{1}) - 2\hat{\delta}, \hat{Q}_{2} >_{\hat{R}}$

entrainent

$$<\hat{h}(\hat{Q}_1),\,\hat{Q}_2>_{\hat{R}}-<\hat{Q}_1,\,\hat{Q}_2>_{\hat{R}}=2<\hat{\delta},\,\hat{Q}_2>_{\hat{R}}$$
.

4.5. Remarque. Dans le cas où W_1 est un collier autour d'une composante de $F \setminus K$ (et on peut toujours supposer que c'est le cas d'après le lemme 4.1 ii)) la classe $\hat{\delta}$ admet une présentation plus géométrique. En effet, on peut alors identifier R'_* et R''_*, Q_1 devient la diagonale de $R'_* \times R''_*$ et \tilde{Q}_1^{π} est celle de $R'_- \times R''_- = R_-$. Dans ce cas l'application $[g, \rho', \rho'] \mapsto [\rho', \rho', g]$ de $SO(3) \times \tilde{Q}_1^{\pi}/SO(3)$ vers \hat{R}_- qui définit $\hat{\delta}$ est injective. D'autre part l'action $(\rho'_1, \rho'_2) \cdot (g, h) = (\rho'_1, g, \rho'_2, h)$ de $SO(3) \times SO(3)$ sur $R'_- \times R''_-$ de quotient $\hat{R}'_- \times \hat{R}''_-$ induit une SO(3) fibration $p: \hat{R}_- \to \hat{R}'_- \times \hat{R}''_-$. Soit alors $\hat{\Delta}$ la diagonale de $\hat{R}'_- \times \hat{R}''_-$. Clairement $\hat{\delta} = p^{-1}(\hat{\Delta})$ comme ensemble de points et même comme cycle orienté au signe près. Lorsque $p^{-1}(\hat{\Delta})$ sera utilisé comme cycle il sera toujours orienté comme $\hat{\delta}$.

Considérons maintenant K un nœud fibré dans la sphère d'homologie M. C'est-à-dire qu'il existe une fibration $p: M^3 \setminus K \to S^1 = [0, 2\pi]/(0 \sim 2\pi)$ qui sur un voisinage tubulaire $\varphi: S^1 \times D^2 \to M^3$ de $K(\varphi(S^1 \times 0) = K)$ vérifie $p \circ \varphi(x, y) = \frac{y}{|y|}$. Alors $\Sigma = p^{-1}(0) \cup K$ est une surface de Seifert pour K et M est difféomorphe à $\Sigma \times [0, 2\pi]/(x, 0) \sim (f(x), 2\pi) \cup \varphi(S^1 \times D^2)$ pour un difféomorphisme $f: \Sigma \to \Sigma$ qui est l'identité près de $\partial \Sigma$.

On définit alors $R^{\Sigma} = R(\pi_1(\Sigma)), R^{\Sigma}_{-} = \{\rho \in R(\pi_1(\Sigma)) \mid \rho(\partial \Sigma) = \rho(K) = -1\}$ et \hat{R}^{Σ}_{-} le quotient de R^{Σ}_{-} par l'action de conjugaison de S^3 . On note $f^*: R^{\Sigma} \to R^{\Sigma}$ et $\hat{f}: \hat{R}^{\Sigma} \to \hat{R}^{\Sigma}$ les difféomorphismes induits par f et $f_{\#}: H_1(\Sigma; \mathbb{Z}) \to H_1(\Sigma; \mathbb{Z})$ le morphisme induit par f.

4.6. PROPOSITION. Dans la situation ci-dessus, si Lef (\hat{f}_{-}) désigne le nombre de Lefschetz de $\hat{f}_{-} = \hat{f}_{|\hat{R}} \stackrel{\Sigma}{=} : \hat{R}_{-}^{\Sigma} \to \hat{R}_{-}^{\Sigma}$ on a:

$$\lambda'(K) = \operatorname{Lef}(\hat{f}_{-}) \operatorname{det}(\operatorname{Id} - f_{\#}) .$$

Notons que M est une sphère d'homologie si et seulement si det $(Id - f_{\#}) = \pm 1$.

Démonstration de 4.6. Si

$$W_1 = p^{-1}([0,\pi]) \cup K, W_2 = p^{-1}([\pi,2\pi]) \cup K, F = p^{-1}(\{0,\pi\}) \cup K$$

alors (M, F, W_1, W_2) est un scindement de Heegaard pour M. On identifie $F = \partial W_1$ à $\Sigma \cup (-\Sigma) = p^{-1}(\pi) \cup -p^{-1}(0)$ $(=F'' \cup F'$ avec les notations de la démonstration de 4.3) et alors

$$\begin{aligned} R_* &= R^{\Sigma} \times R^{\Sigma}, R = \{ (\rho', \rho'') \in R^{\Sigma} \times R^{\Sigma} \mid \rho'(K) = \rho''(K) \} ,\\ Q_1 &= \{ (\rho', \rho'') \in R \mid \rho' = \rho'' \}, \ Q_2 = \{ (\rho', \rho'') \in R \mid \rho' = f^*(\rho'') \} ,\\ R_- &= \{ (\rho', \rho'') \in R^{\Sigma} \times R^{\Sigma} \mid \rho'(K) = \rho''(K) = -1 \} = R^{\Sigma}_- \times R^{\Sigma}_- . \end{aligned}$$

On a aussi une SO(3) fibration $\pi: \hat{R}_{-} \to \hat{R}_{-}^{\Sigma} \times \hat{R}_{-}^{\Sigma}$ et on note $\hat{\Delta}$ la diagonale de $\hat{R}_{-}^{\Sigma} \times \hat{R}_{-}^{\Sigma}$ (cf. Remarque 4.5).

D'après 4.3 et 4.5 il nous suffit de calculer
$$\frac{\langle \pi^{-1}(\hat{\Delta}), \hat{Q}_2 \rangle_{\hat{R}}}{(Q_1, Q_2)_{R_*}}$$

Vu que Q_1 est la diagonale de $R_* = R^{\Sigma} \times R^{\Sigma}$ et Q_2 le graphe de $f^* \colon R^{\Sigma} \to R^{\Sigma}$ on a d'après la définition géométrique du nombre de Lefschetz Lef $(f^*) = (Q_1, Q_2)_{R_*}$ et d'après la définition algébrique du nombre de Lefschetz et 3.4 on a aussi Lef $(f^*) = \det(\mathrm{Id} - f_{\#})$. On peut si l'on préfère utiliser 3.1 et 3.8 iii) pour montrer directement $(Q_1, Q_2)_{R_*} = \det(\mathrm{Id} - f_{\#})$.

Pour calculer¹) le numérateur, on commence par remarquer que Q_2 est transverse à R_- car $\partial_{|Q_2}: Q_2 \to S^3$ est égale à la restriction à Q_2 de $\partial' \circ p_1:$ $R^{\Sigma} \times R^{\Sigma} \to R^{\Sigma} \to S^3$ qui est une submersion près de $(\partial' \circ p_1)^{-1}(-1)$. Donc \hat{Q}_2 est transverse à \hat{R}_- et $< \pi^{-1}(\hat{\Delta}), \hat{Q}_2 > \hat{R} = < \pi^{-1}(\hat{\Delta}), \hat{Q}_2 \cap \hat{R}_- > \hat{R}_-$.

D'autre part $\hat{Q}_2 \cap \hat{R}_-$, le quotient par l'action de SO(3) de $\{(\rho', \rho'') \in R_-^{\Sigma} \times R_-^{\Sigma} | \rho' = f_-(\rho'')\}$ est une section de π au-dessus du graphe de \hat{f}_-^{-1} (où $f_- = f_{|R_{\Sigma}|}^*$) donc:

$$<\pi^{-1}(\hat{\Delta}), \hat{Q}_2 \cap \hat{R}_- >_{\hat{R}_-} = <\hat{\Delta}, \text{ graphe } (\hat{f}_-^{-1})>_{\hat{R}} \Sigma \times \hat{R} \Sigma$$

= Lef (\hat{f}_-^{-1}) = Lef (\hat{f}_-)

(On peut voir la première égalité en rendant graphe (\hat{f}_{-}) transverse à $\hat{\Delta}$ par une isotopie de $\hat{R}_{-}^{\Sigma} \times \hat{R}_{-}^{\Sigma}$ que l'on relève à \hat{R}_{-} en une isotopie qui rend $\hat{Q}_{2} \cap \hat{R}_{-}$ transverse à $\pi^{-1}(\hat{\Delta})$, la deuxième est la définition géométrique du nombre de Lefschetz, la troisième a lieu car \hat{R}_{-}^{Σ} est de dimension paire). \Box

4.7. Exemple. Si K = T est le nœud de trèfle, alors (cf. [Rf] chap. 10) T est un nœud fibré de genre 1 et dans une base convenable la matrice de $f_{\#}$ est $\begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}$ donc det $(\mathrm{Id} - f_{\#}) = 1$. D'autre part $\hat{R}_{-}^{\Sigma} = \{(x, y) \in$ $S^3 \times S^3 \mid [x, y] = -1\}/SO(3)$ est réduit à un point (la classe de conjugaison de (i, j), cf. le lemme B.2). Donc Lef $(\hat{f}_{-}) = 1$ et $\lambda'(T) = \lambda$ (sphère de Poincaré) = 1. (Pour la sphère de Poincaré cf. [Rf] chap. 9D).

¹) Le calcul qui suit est au signe près. La vérification du signe est assez pénible et laissée au lecteur consciencieux.

4.8*. LEMME. Soit (K,L) un entrelacs bord dans une sphère d'homologie M, alors $\lambda''(K,L)$ est pair.

Démonstration de 4.8. Soit une décomposition de Heegaard de M comme dans le lemme 4.1 iii). Soient \hat{h}_K et \hat{h}_L les difféomorphismes de \hat{R} induits par les «twists» de Dehn autour de K et de L, et notons $\hat{\delta}_K$ et $\hat{\delta}_L$ les cycles correspondants construits dans la proposition 4.3 avec les choix $h = h_K$, $Q_1 = Q_1$ et $h = h_L^{-1}$, $Q_1 = Q_2$ respectivement. On a alors (après une extension évidente du lemme 4.2):

$$2(-1)^{g}(Q_{1},Q_{2})_{R_{*}}\lambda''(K,L) = \langle \hat{h}_{L}(\hat{h}_{K}(\hat{Q}_{1})), \hat{Q}_{2} \rangle_{\hat{R}} \\ - \langle \hat{h}_{K}(\hat{Q}_{1}), \hat{Q}_{2} \rangle_{\hat{R}} - \langle \hat{h}_{L}(\hat{Q}_{1}), \hat{Q}_{2} \rangle_{\hat{R}} + \langle \hat{Q}_{1}, \hat{Q}_{2} \rangle_{\hat{R}} \\ = \langle \hat{h}_{K}(\hat{Q}_{1}), \hat{h}_{L}^{-1}(\hat{Q}_{2}) \rangle_{\hat{R}} - \langle \hat{Q}_{1}, \hat{h}_{L}^{-1}(\hat{Q}_{2}) \rangle_{\hat{R}} - \langle \hat{h}_{K}(\hat{Q}_{1}), \hat{Q}_{2} \rangle_{\hat{R}} \\ + \langle \hat{Q}_{1}, \hat{Q}_{2} \rangle_{\hat{R}} = 2(\hat{\delta}_{K}, \hat{h}_{L}^{-1}(\hat{Q}_{2}))_{\hat{R}} - 2(\hat{\delta}_{K}, \hat{Q}_{2})_{\hat{R}} = 4(\hat{\delta}_{K}, \hat{\delta}_{L})_{\hat{R}}$$

donc $\lambda''(K, L)$ est pair. \Box

En fait on a la:

4.9. PROPOSITION. Soit (K, L) un entrelacs bord dans une sphère d'homologie M, alors $\lambda''(K, L)$ est nul.

Démonstration de 4.9. Par un calcul analogue au précédent, on établit:

$$2(-1)^{g}(Q_{1}, Q_{2})_{R_{*}}\lambda^{\prime\prime}(K, L) = 2 < \hat{h}_{L}(\hat{\delta}_{K}) - \hat{\delta}_{K}, \hat{Q}_{2} > \hat{R}.$$

Prenons le représentant de $\hat{\delta}_K$ construit dans la remarque 4.5 et supposons que la courbe L soit dans la moitié F'' de F. Le cycle $\hat{h}_L(\hat{\delta}_K)$ est alors la préimage par p du graphe de l'effet du «twist» de Dehn h_L sur $\hat{R}' \cong \hat{R}''$. La proposition découle ensuite de ce que \hat{h}_L induit l'identité dans l'homologie de \hat{R}''_- car le «twist» de Dehn autour de L induit l'identité sur l'homologie de F'': c'est le contenu du théorème suivant dû à Newstead:

4.10. THÉORÈME. Un difféomorphisme h d'une surface F_* connexe et à bord connexe, induisant l'identité dans l'homologie de F_* induit l'identité sur l'homologie rationnelle de \hat{R}_- . Ici R_- est { $\rho \in R(\pi_1(F_*)) | \rho(\partial F_*)$ = -1} et \hat{R}_- est le quotient de R_- par l'action de conjugaison de S^3 .

Remarques sur la démonstration de 4.10. Newstead (cf. [N1] Théorème 2 p. 246) avait calculé de manière purement topologique la dimension de l'homo-

logie rationnelle de \hat{R}_{-} . Puis il a obtenu pour l'anneau de cohomologie rationnelle de \hat{R}_{-} des générateurs explicites évidemment fixés par une action issue d'un difféomorphisme de F_{*} induisant l'identité en homologie: d'où le théorème 4.10 (cf. [N2] théorème 1 p. 338). Pour ce dernier résultat il a eu besoin de deux résultats non triviaux de géométrie algébrique:

1) \hat{R}_{-} est homéomorphe à l'espace $S^{(g)}$ des fibrés stables de rang 2 sur une courbe de genre g, la classe de Chern de ces fibrés valant 1 et leur déterminant étant fixé (cf. [NS]).

2) $S^{(g)}$ est une variété algébrique projective (cf. [Mu]), on peut donc lui appliquer la théorie de Lefschetz.

Une autre route nous est donnée par Atiyah et Bott qui, en utilisant la théorie de Morse et les équations de Yang-Mills, ont retrouvé le résultat de Newstead et obtenu la cohomologie entière des espaces de modules (cf. [AB] théorème 9.11).

APPENDICE A

POLYNÔME D'ALEXANDER ET FORME QUADRATIQUE D'UN ENTRELACS ORIENTÉ:

Formule de Conway et invariant de Robertello

Soit K un entrelacs orienté dans une sphère d'homologie orientée M et F une surface de Seifert connexe pour K (cf. [Rf] p. 118-120 ou [G] p. 24-28). Soit $i: F \times [-1, 1] \rightarrow M$ un bicollier orienté autour de F dans M. La forme de Seifert de la surface F est la forme bilinéaire \varDelta définie sur $H_1(F; \mathbb{Z})$ qui associe à deux classes d'homologie représentées par deux courbes x et y tracées sur la surface F le nombre d'enlacement de $x^+ = i(x, 1)$ et de y. Une matrice de Seifert¹) S de F est une matrice de la forme \varDelta dans une base de $H_1(F; \mathbb{Z})$.

La forme antisymétrique $I = \pounds - t \pounds est^2$) la forme d'intersection de la surface F, et si K est un nœud elle est unimodulaire car égale à celle de la surface F recollée avec un disque le long de K.

La forme symétrique q = s + t s est la forme quadratique de la surface F, elle est paire et dans le cas d'un nœud, non dégénérée de discriminant impair car congrue modulo 2 à I. L'invariant de Arf de la réduction q_2 modulo 2 de q/2 est l'invariant de Rohlin-Robertello du nœud K (cf. [Rb]).

Le polynôme d'Alexander normalisé³) de K est $\Delta_K(t) = \det(t^{1/2}S - t^{-1/2}tS)$. Dans le cas d'un nœud, le rang de $H_1(F; \mathbb{Z})$ est pair et on obtient un polynôme⁴) en t et t^{-1} qui vérifie $\Delta_K(1) = 1$ et $\Delta_K(t^{-1}) = \Delta_K(t)$. On en déduit que le polynôme d'Alexander ne dépend pas de l'orientation ambiante (car si l'on renverse celle-ci, la matrice de Seifert se change en sa transposée).

²) ^t \checkmark désigne la transposée de la forme \checkmark : ^t \checkmark (x, y) = \checkmark (y, x).

³) D'après la note 1 ci-dessus Δ_K(t) ne dépend pas du choix de la surface de Seifert S.
⁴) Plus généralement si le rang de H₁(F; Z) est pair (sinon t^{1/2}Δ_K(t) est un polynôme en t et t⁻¹).

¹) Deux surfaces de Seifert d'un même entrelacs sont isotopes après que l'on leur ait rajouté des anses triviales et donc deux matrices de Seifert sont S équivalentes: congruentes après un certain nombre de stabilisations $S \mapsto \begin{bmatrix} S & * & 0 \\ * & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ ou $S \mapsto \begin{bmatrix} S & * & 0 \\ * & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ (cf. [G]).

La variation par changement de croisement du polynôme d'Alexander normalisé est donnée par la formule de Conway:

A.1. LEMME (Formule de Conway). Soient K_- , K_0 et K_+ trois entrelacs orientés qui coïncident hors d'une boule B et coupent cette boule en deux arcs dénoués disposés suivant les schémas de la figure 12 Alors:

$$\Delta_{K_{+}}(t) - \Delta_{K_{-}}(t) = (t^{-1/2} - t^{1/2}) \Delta_{K_{0}}(t) .$$

Modification d'une surface de Seifert lors d'un changement d'un croisement

Démonstration de A.1. Soit F_0 une surface de Seifert connexe pour K_0 qui coupe la boule B en deux disques disjoints bordés chacun par un arc de ∂B et une composante de $B \cap K$. Définissons F_+ et F_- des surfaces de Seifert pour K_+ et K_- qui sont égales à F_0 hors de B et dans B sont les bandes que l'on voit sur la figure 12.

Les paires de surfaces (F_+, F_0) et (F_-, F_0) sont abstraitement difféomorphes. Soient $(a_1, ..., a_n)$ des courbes de F_0 formant une base de $H_1(F_0; \mathbb{Z})$ et soit a_0 une courbe de F_{\pm} telle que $(a_0, a_1, ..., a_n)$ donne une base de $H_1(F_{\pm}; \mathbb{Z})$. Si S_-, S_0, S_+ sont les matrices de Seifert correspondantes dans ces bases on a

$$S_{+} = \begin{pmatrix} a & c_{1} \dots c_{n} \\ b_{1} & \\ & V_{0} \end{pmatrix}, S_{-} = S_{+} + \begin{pmatrix} 1 & 0 \dots 0 \\ 0 & \\ & 0 \end{pmatrix}, \text{ donc}$$
$$t^{1/2}S_{+} - t^{-1/2}tS_{+} = t^{1/2}S_{-} - t^{-1/2}tS_{-} - \begin{pmatrix} t^{1/2} - t^{-1/2} & 0 \dots 0 \\ 0 & \\ & 0 \end{pmatrix}$$
$$= \begin{pmatrix} * & * & \dots & * \\ * & t^{1/2}S_{0} - t^{-1/2}tS_{0} \end{pmatrix}.$$

En développant det $(t^{1/2}S_+ - t^{-1/2} {}^tS_+)$ et det $(t^{1/2}S_- - t^{-1/2} {}^tS_-)$ suivant la première colonne on obtient l'identité cherchée.

A.2. LEMME. Soit K un nœud dans une sphère d'homologie M alors l'invariant de Rohlin-Robertello de K est la réduction modulo 2 de $\frac{1}{2}\Delta_K''(1)$.

Démonstration de A.2. La forme quadratique de la surface F de matrice $Q = S + {}^{t}S$ est paire et de discriminant impair, elle est donc semblable sur les entiers 2-adiques à une somme orthogonale de formes paires de rang 2 (cf. [HNK] p. 4-5):

$$Q = {}^{t}P\left(\begin{pmatrix} * & & \\ 2a_{j} & 1 \\ 1 & 2b_{j} \end{pmatrix}_{*}\right)P \quad \text{où la matrice } P \text{ est de déterminant impair }.$$

Il vient donc: $\Delta_{K}(-1) = \det(iQ) = \det(P)^{2} \prod_{j=1}^{g} \det\left(i \begin{pmatrix} 2a_{j} & 1\\ 1 & 2b_{j} \end{pmatrix}\right)$ = $\det(P)^{2} \prod_{j=1}^{g} (1 - 4a_{j}b_{j}) \equiv 1 + 4 \sum_{j=1}^{g} a_{j}b_{j} \mod 8$

On a donc la formule de Levine:

 $\Delta_K(-1) \equiv 1 + 4\operatorname{Arf}(q_2) \mod 8 .$

Puisque $\Delta_K(t)$ est un polynôme en t et t^{-1} , la série de Taylor en 1 de $\Delta_K(t)$ est à coefficients entiers. Elle permet donc de calculer dans les entiers deux-adiques la valeur du polynôme d'Alexander en tout nombre impair et en particulier:

$$\Delta_{K}(-1) = \Delta_{K}(1) + \Delta_{K}'(1) \times (-2) + \frac{1}{2} \Delta_{K}''(1) \times (-2)^{2}$$
$$- 8 \sum_{n=3}^{\infty} \frac{1}{n!} \Delta_{K}^{(n)}(1) \times (-2)^{n-3},$$

Par normalisation on a $\Delta_K(1) = 1$ et $\Delta_K(t) = \Delta_K(t^{-1})$ donc $\Delta'_K(1) = 0$ d'où

$$\Delta_K(-1) \equiv 1 + 4\frac{1}{2}\Delta_K''(1) \mod 8 .$$

Ce qui par comparaison avec la formule de Levine établit A.2:

Arf
$$(q_2) = \frac{1}{2} \Delta_K''(1)$$
 modulo 2.

APPENDICE B

par A. MARIN

L'invariant de Casson d'un nœud de genre 1 à surface de Seifert dénouée

B.1. THÉORÈME. Soit K un nœud dans une sphère d'homologie Mayant une surface de Seifert dénouée¹) de genre 1, alors l'invariant de Casson $\lambda'(K)$ est égal au déterminant de la matrice de Seifert de cette surface

(donc à $\frac{1}{2}\Delta_K''(1)$ puisque le genre est 1).

I. REPRÉSENTATIONS IRRÉDUCTIBLES D'UN GROUPE LIBRE À DEUX GÉNÉRATEURS

Soit $L_2 = \mathbb{Z} * \mathbb{Z}$ un groupe libre sur deux générateurs e_1 et e_2 , on note $\delta = e_1^{-1} e_2^{-1} e_1 e_2$ et $\partial: R(L_2) \to S^3$ l'application qui à ρ associe $\rho(\delta)$. On a ici $S(L_2) = \partial^{-1}(1)$ et d'après la proposition 3.5, ∂ est une fibration de $\tilde{R}(L_2)$ au-dessus de $S^3 - \{1\}$. On note $\pi: \tilde{R}(L_2) \to \hat{R}(L_2)$ la projection.

B.2. LEMME. L'ensemble $\Sigma = \{\rho \in R(L_2) | \partial(\rho) = -1\}$ fibre de ∂ est aussi une fibre de π . On l'oriente comme fibre de π c'est-à-dire comme SO(3).

Démonstration de B.2. On calcule que tout élément de Σ est conjugué à la représentation ρ vérifiant $\rho(e_1) = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ et $\rho(e_2) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ (cf. exemple 4.7). \Box

Soit *D* le disque unité ouvert de **C** et $\sigma: D \times]0, \pi[\to \tilde{R}(L_2)$ l'application donnée par

$$\sigma(\alpha, t) (e_1) = \begin{pmatrix} e^{it} & 0 \\ 0 & e^{-it} \end{pmatrix}; \sigma(\alpha, t) (e_2) = \begin{pmatrix} \alpha & -\sqrt{1-|\alpha|^2} \\ \sqrt{1-|\alpha|^2} & \overline{\alpha} \end{pmatrix}$$

¹) C'est-à-dire: le complémentaire d'un bicollier de la surface de Seifert est l'union d'une boule et d'anses d'indice 1.

Dans certains calculs ci-dessous on considérera $\sigma(\alpha, t)$ (e_1) et $\sigma(\alpha, t)$ (e_2) comme les quaternions e^{it} et $\alpha - \sqrt{1 - |\alpha|^2} j$. Notons que $\partial \sigma \left(0, \frac{\pi}{2}\right) = -1$.

B.3. LEMME. Les applications $\partial \circ \sigma$ et $\pi \circ \sigma$ sont des difféomorphismes de $D \times]0, \pi[$ sur $S^3 \setminus \{1\}$ et $\hat{R}(L_2)$ respectivement.

Démonstration de B.3. 1) cas de $\partial \circ \sigma$: Comme $\partial \circ \sigma$ est propre, il suffit de vérifier que $\partial \circ \sigma$ est une submersion. Les étapes du calcul sont les suivantes:

Posons $X(t) = \sigma(\alpha, t) (e_1) = e^{it}$ et $Y(\alpha) = \sigma(\alpha, t) (e_2) = \alpha - \sqrt{1 - |\alpha|^2} j$. On identifie $R(L_2)$ à $S^3 \times S^3$ [en associant à ρ le couple $(\rho(e_1), \rho(e_2))$]. Alors la différentielle de $\sigma, D\sigma: \mathbb{R}^3 \to \mathcal{L} \times \mathcal{L}$ est donnée par:

$$D\sigma(\alpha_0, t_0) (0, 0, s) = \left(\frac{d}{dt}X(t)X(t_0)_{|t|=t_0}^{-1}(s), 0\right) = (si, 0), s \in \mathbf{R} \quad \text{et}$$
$$D\sigma(\alpha_0, t_0) (\omega, 0) = (0, D[Y(\alpha)Y(\alpha_0)^{-1}]_{\alpha = \alpha_0}(\omega)) = (0, \eta(\omega)i + \theta(\omega)j),$$

où $\eta(\omega) = \operatorname{Re}(\alpha_0 i \overline{\omega})$ et $\theta : \mathbb{R}^2 \to \mathbb{R}^2$ est linéaire et inversible. En effet le calcul donne

$$\sqrt{1-|\alpha_0|^2}\theta(\omega) = (1-|\alpha_0|^2)\omega + \alpha_0 \operatorname{Re}(\alpha_0 \bar{\omega}) = \omega + i\alpha_0 \operatorname{Im}(\alpha_0 \bar{\omega})$$

donc si $\omega \neq 0$, $|i\alpha_0 \operatorname{Im}(\alpha_0 \overline{\omega})| \leq |\alpha_0|^2 |\omega| < |\omega|$ et $\theta(\omega) \neq 0$ donc θ est inversible.

Ensuite la différentielle de ∂ , $D\partial$: $\mathscr{L} \times \mathscr{L} \rightarrow \mathscr{L}$ vérifie d'après 3.7

$$D\partial_{(X, Y)}(v, w) = \mathrm{Ad}_{YX}[(\mathrm{Id} - \mathrm{Ad}_{Y^{-1}})(v) + (\mathrm{Ad}_{X^{-1}} - \mathrm{Id})(w)]$$

on calcule donc

$$(\mathrm{Id} - \mathrm{Ad}_{Y^{-1}}) (si) = 2(1 - |\alpha_0|^2)si + ?j + ?k \quad \text{si} \quad Y = Y(\alpha_0) \quad \text{et}$$

$$(\mathrm{Ad}_{X^{-1}} - \mathrm{Id}) (ui + vj) = (-1 + e^{2it_0})vj \quad \text{si} \quad X = X(t_0)$$

Donc $D(\partial \circ \sigma)$ (α_0, t_0) est surjective car $|\alpha_0| < 1$ et $e^{2it_0} \neq 1$.

2) Cas de $\pi \circ \sigma$: Soit ρ une représentation irréductible, quitte à conjuguer ρ on peut supposer que $\rho(e_1) = \begin{pmatrix} e^{it} & 0 \\ 0 & e^{-it} \end{pmatrix}$ avec t dans]0, π [, puis quitte à conjuguer à nouveau ρ par des éléments commutant avec $\rho(e_1)$ (des matrices diagonales) on peut aussi supposer que $\rho(e_2) = \begin{pmatrix} \alpha & -b \\ b & \overline{\alpha} \end{pmatrix}$ avec bstrictement positif. L'élément qui conjugue ρ à une telle représentation de l'image de σ est unique au signe près et (on peut le calculer explicitement) son image dans SO(3) dépend différentiablement de ρ . Donc $\pi \circ \sigma$ est un difféomorphisme.

B.4. Remarque. Il est facile de continuer les calculs précédents pour voir que si l'on oriente l'image de σ en transportant l'orientation de $D \times [0, \pi[\in \mathbb{R}^3]$ par $D\sigma$ alors: d'une part $D\partial_{\sigma(0, \pi/2)}: T_{\sigma(0, \pi/2)} \operatorname{Im}(\sigma) \to \mathcal{L} = T_1 S^3$ renverse l'orientation et d'autre part si l'orbite par SO(3) de $\sigma(0, \pi/2)$ est orientée comme SO(3) alors $T_{\sigma(0, \pi/2)} \operatorname{Im}(\sigma) \oplus T_{\sigma(0, \pi/2)} \sigma(0, \pi/2) \cdot SO(3)$ a une orientation opposée à celle de $\mathcal{L} \oplus \mathcal{L}$ et donc $D\pi_{\sigma(0, \pi/2)}: T_{\sigma(0, \pi/2)} \operatorname{Im}(\sigma)$ $\to T_{\sigma(0, \pi/2)} \hat{R}(L_2)$ renverse l'orientation. En définitive, on voit que l'ensemble Σ (du lemme B2) a la même orientation qu'il soit vu comme fibre de π ou comme fibre de ∂ . Nous verrons cependant que nous n'avons pas besoin de ce calcul, la différence $\varepsilon = \pm 1$ (éventuelle) d'orientation intervenant deux fois !

II. UN OUVERT DE REPRÉSENTATIONS IRRÉDUCTIBLES DU GROUPE FONDAMENTAL D'UNE SURFACE DE GENRE 2

Soit $F = F_- \cup F_+$ une surface de genre 2, union de deux exemplaires $F_$ et F_+ d'une surface à bord F_0 de genre 1. Choisissons des bases (e_1^-, e_2^-) de $\pi_1(F_-)$ et (e_1^+, e_2^+) de $\pi_1(F_+)$ de sorte que $\delta_- = [e_1^-, e_2^-] = [\partial F_-]$ dans $\pi_1(F_-)$ et $\delta_+ = [\partial F_+]$ dans $\pi_1(F_+)$. Ces bases identifient $\pi_1(F_-)$ et $\pi_1(F_+)$ à des groupes libres sur deux générateurs et $R_- = R(\pi_1(F_-))$ comme $R_+ = R(\pi_1(F_+))$ à $S^3 \times S^3$. On note $\partial_- : R_- \to S^3$ et $\partial_+ : R_+ \to S^3$ les flèches d'évaluation sur δ_- et δ_+ respectivement. On a comme en I des applications $\sigma_- : D \times]0, \pi[\to R_-$ et $\sigma_+ : D \times]0, \pi[\to R_+$. On oriente R_* grâce à la base $e_1^-, e_2^-, e_1^+, e_2^+$ de F_* . Alors $R_* = R_- \times R_+$ et l'espace des représentations de $\pi_1(F)$ est

 $R = \{ (\rho_{-}, \rho_{+}) \in R_{-} \times R_{+} \mid (\partial_{-}(\rho_{-}))^{-1} = \partial_{+}(\rho_{+}) \}.$

Désignons par \mathscr{U} l'ouvert de \tilde{R} formé des représentations $\rho = (\rho_{-}, \rho_{+})$ de R telles que $\partial_{+}(\rho_{+}) \neq 1$.

D'après le lemme B3 dans la classe de conjugaison de tout élément ρ de \mathscr{U} il existe un unique élément de la forme ($\sigma_{-}(\alpha, t), \rho_{+}$). Ce ρ_{+} est dans \tilde{R}_{+} et on définit ainsi un difféomorphisme

$$f: \hat{\mathscr{U}} \to \tilde{R}_+$$

dont l'inverse associe à $\rho_+ \in \tilde{R}_+$ la classe de conjugaison de $(\sigma_-(\alpha, t), \rho_+)$ où $\sigma_-(\alpha, t)$ est choisi de sorte que $\partial_-\sigma_-(\alpha, t) = (\partial_+\rho_+)^{-1}$.

B.5. LEMME. Le difféomorphisme f préserve ou renverse l'orientation selon que le signe ε de la remarque B4 vaut +1 ou -1.

Démonstration de B.5. On a d'abord des difféomorphismes:

$$\widetilde{R}_{-} \times \widetilde{R}_{+} \leftarrow (D \times]0, \pi[) \times SO(3) \times R_{+} \rightarrow (S^{3} - \{1\}) \times SO(3) \times R_{+}$$
$$(\sigma_{-}(\alpha, t) \cdot g, \rho_{+}) \leftarrow ((\alpha, t), g, \rho_{+}) \mapsto (\partial_{-}\sigma_{-}(\alpha, t) \cdot g, g, \rho_{+})$$

D'où un difféomorphisme $\varphi: \tilde{R}_- \times \tilde{R}_+ \to (S^3 - \{1\}) \times SO(3) \times \tilde{R}_+$ qui préserve ou renverse l'orientation selon que ε vaut 1 ou - 1. On a aussi un difféomorphisme

$$\psi: S^3 \times SO(3) \times \tilde{R}_+ \to S^3 \times \tilde{R}_+ \times SO(3), (x, g, \rho_+) \mapsto (x \cdot \partial_+ \rho_+, \rho_+, g^{-1}, g)$$

qui préserve l'orientation.

Enfin le point $(\sigma_-(0, \pi/2), \rho_+^0)$ de $\tilde{R}_- \times \tilde{R}_+$ où $\partial_+ \rho_+^0 = -1$ = $\partial_- \sigma_-(0, \pi/2)$ admet un voisinage dans $R_* \supset \tilde{R}_- \times \tilde{R}_+$ qui est positivement difféomorphe à $A \times B \times C$ où A est un voisinage de 1 dans S^3 , B un voisinage de la classe de $(\sigma_-(0, \pi/2), \rho_+^0)$ dans $\hat{\mathcal{U}}$ et C un voisinage de 1 dans SO(3). Par composition on obtient un plongement ouvert

$$A \times B \times C \rightarrow S^{3} \times R_{+} \times SO(3)$$

$$\downarrow \qquad \qquad \downarrow$$

$$A \times C \rightarrow S^{3} \times SO(3)$$

faisant commuter le diagramme (car si $\psi \circ \phi(\rho_-, \rho_+) = ((\partial_- \rho_-), (\partial_+ \rho_+), \rho_+, g^{-1}, g)$ alors

$$\psi \circ \varphi((\rho_-, \rho_+), g') = ((\partial_- \rho_-), (\partial_+ \rho_+), \rho_+, g^{-1}, g, g'))$$

et tel que $1 \times B \times 1$ s'envoie sur $1 \times O \times 1$ où O est un voisinage de ρ_+^0 dans \tilde{R}_+ . Donc $f: \hat{\mathscr{U}} \to \tilde{R}_+$ préserve ou renverse l'orientation selon que ε vaut 1 ou -1.

III. DÉMONSTRATION DU THÉORÈME B.1

Soit F_0 la surface de Seifert dénouée du nœud K et $F = F_- \cup F_+$ le bord d'un voisinage régulier W_1 de F_0 et W_2 le bretzel complémentaire.

Choisissons une base (e_1, e_2) de $\pi_1(F_0)$ induisant une base symplectique de $H_1(F_0)$ et prenons-la pour base de $\pi_1(W_1)$. Choisissons aussi une base (f_1, f_2) de $H_1(W_2)$ telle que la matrice des nombres d'enlacement $lk(e_i, f_j)$ soit la matrice identité, alors la matrice de l'application induite par l'inclusion $H_1(F_+) \rightarrow H_1(W_2)$ est la matrice de Seifert S de F_0 . Une base symplectique de $H_1(F_*)$ est $(e_2^-, e_1^-, e_1^+, e_2^+)$ où e_i^{\pm} est la courbe e_i poussée dans F_{\pm} .

CALCUL DE $(Q_1, Q_2)_{R_*}$

On identifie, grâce aux bases précédentes, R_* , Q_1 , Q_2 , R_0 , R_- , R_+ à des produits de sphères S^3 . D'après le corollaire 3.4 le nombre d'intersection $(Q_1, Q_2)_{R_*}$ est égal à

$$\det \left(H_1(F_*) \to H_1(W_1) \oplus H_1(W_2) \right)$$

où les flèches en homologie sont induites par les inclusions d'espace.

Les matrices de $H_1(F_*) \to H_1(W_1)$ et $H_1(F_*) \to H_1(W_2)$ sont respectivement $\begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$ et $\begin{pmatrix} tS & \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} & S \end{pmatrix}$ où S est la matrice de Seifert de la surface F_0 et tS sa transposée. Notons T la matrice $tS & \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Alors

$$(Q_1, Q_2)_{R_*} = \det \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ T & S \end{bmatrix} = \det \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & S - {}^tS \end{bmatrix} = -\det (S - {}^tS) = -1,$$

car $S - {}^{t}S$ est la matrice de la forme d'intersection de F_0 donc de déterminant 1.

CALCUL DE $<\hat{h}(\hat{Q}_1), \hat{Q}_2 >_{\hat{R}} - <\hat{Q}_1, \hat{Q}_2 >_{\hat{R}} = 2<\hat{\delta}, \hat{Q}_2 >_{\hat{R}}$

Remarquons que $\hat{\delta} \subset \hat{R}_{-}$ est inclus dans l'ouvert $\hat{\mathscr{U}}$ donc d'après la partie II

$$2 < \hat{\delta}, \hat{Q}_2 >_{\hat{R}} = 2(\hat{\delta}.(\hat{Q}_2 \cap \hat{\mathscr{U}}))_{\hat{R}} = 2\varepsilon(f(\hat{\delta}).f(\hat{Q}_2 \cap \hat{\mathscr{U}}))_{\tilde{R}_+}$$

= $2\varepsilon(\varepsilon\Sigma.f(\hat{Q}_2 \cap \hat{\mathscr{U}})_{\tilde{R}_+} = -2\deg(\pi:f(\hat{Q}_2 \cap \hat{\mathscr{U}}) \rightarrow \hat{R}_+).$

Or on a un morphisme de
$$SO(3)$$
 fibrés

$$Q_{2} \cap \mathscr{U} \xrightarrow{i + |Q_{2} \cap \mathscr{U}} \tilde{R}_{+}$$

$$\sigma \uparrow \downarrow \pi \qquad \qquad \downarrow \pi$$

$$\hat{O}_{2} \cap \widehat{\mathscr{U}} \xrightarrow{\pi} \hat{R}_{+}$$

où $i_+: Q_2 \to R_+$ est induit par l'inclusion $F_+ \to W_1$ et $\overline{\pi}$ est défini par ce diagramme.

Donc

$$\deg(\bar{\pi}) = \deg(i_+|_{Q_2 \cap \mathcal{Q}}) = \deg(i_+) = \deg(H_1(F_*) \to H_1(W_2)) = \det(S)$$

où la troisième égalité a lieu d'après le corollaire 3.4. Donc $\langle \hat{h}(\hat{Q}_1), \hat{Q}_2 \rangle_{\hat{R}} - \langle \hat{Q}_1, \hat{Q}_2 \rangle_{\hat{R}} = -2 \det(S).$

Comme g = 2 il vient bien:

$$\lambda'(K) = \frac{1}{2} (-1)^g \frac{\langle \hat{h}(\hat{Q}_1), \hat{Q}_2 \rangle_{\hat{R}} - \langle \hat{Q}_1, \hat{Q}_2 \rangle_{\hat{R}}}{(Q_1, Q_2)_{R_*}} = \frac{1}{2} \frac{-2 \det(S)}{-1}$$
$$= \det(S). \quad \Box$$

APPENDICE C

par Christine LESCOP

Un calcul élémentaire de l'invariant de Casson des sphères d'homologie entière fibrées de Seifert à trois fibres exceptionnelles

§0. INTRODUCTION

Le but de cet appendice est de présenter un calcul direct (à partir de la construction de la partie 3.B) de l'invariant de Casson des fibrés de Seifert à 3 fibres exceptionnelles, sphères d'homologie entière.

L'ensemble des classes de représentations irréductibles du groupe fondamental de ces fibrés a un cardinal fini calculé, géométriquement au paragraphe C.3.A, et différemment par S. Boyer et D. Lines dans l'appendice B de [BL].

Avec les notations de 3.B (en supposant arrêtés les différents choix), l'étude du voisinage de $\hat{Q}_1 \cap \hat{Q}_2$ dans \hat{R} , faite au paragraphe C.3.B, montre que, dans ce cas, les espaces \hat{Q}_1 et \hat{Q}_2 se coupent transversalement dans \hat{R} et toujours avec le même signe; l'invariant de Casson d'une telle sphère d'homologie est alors, au signe près, la moitié du cardinal de l'ensemble des classes de représentations irréductibles de son groupe fondamental.

On retrouve ainsi, pour le cas des fibrés à trois fibres exceptionnelles, le résultat que R. Fintushel et R. Stern ont démontré à l'aide de l'homologie de Floer dans [FS]:

«L'invariant de Casson d'un fibré de Seifert Σ , sphère d'homologie entière, est égal, au signe près, à la moitié de la caractéristique d'Euler de $\hat{R}(\pi_1(\Sigma))$.»

Pour un fibré de Seifert Σ , sphère d'homologie entière, $\hat{R}(\pi_1(\Sigma))$ est une réunion disjointe de variétés différentiables de dimension paire. P. Kirk et E. Klassen étudient en détails $\hat{R}(\pi_1(\Sigma))$ dans [KK] où ils donnent en particulier une approche du calcul de la caractéristique d'Euler de $\hat{R}(\pi_1(\Sigma))$. D'autre part, K. Walker, dans [W], a défini, pour toute sphère d'homologie entière (et même rationnelle!), une structure complexe sur l'espace tangent $T\hat{R}$ pour laquelle $T\hat{Q}_1$ et $T\hat{Q}_2$ sont totalement réels, ceci permet de justifier l'intervention de la caractéristique d'Euler de chaque composante connexe de $\hat{R}(\pi_1(\Sigma))$ dans l'expression de l'invariant de Casson de Σ ; il pourrait être intéressant de comprendre pourquoi les caractéristiques d'Euler de toutes les composantes apparaisent avec le même signe...

Remarque. Le calcul effectué ci-dessous et la formule de chirurgie de Casson 1.3.3 suffisent pour calculer l'invariant de Casson de toutes les sphères d'homologie entière fibrées de Seifert (voir [FMS] et [NW]). En fait, la généralisation par K. Walker de l'invariant de Casson et de la formule de chirurgie I.3.3 ([W]) permettent un calcul beaucoup plus simple de ce nouvel invariant généralisé pour toutes les sphères d'homologie rationnelle fibrées de Seifert (voir [L]).

Je remercie M. Boileau, qui m'a décrit le scindement de Heegaard du paragraphe 2, L. Guillou, A. Marin, qui m'a suggéré le calcul du paragraphe 3.A, et P. Vogel.

§1. PRÉSENTATION DES ESPACES ET ÉNONCÉ DU THÉORÈME

Notations. Dans cet appendice, a_1, a_2 et a_3 désigneront trois entiers positifs deux à deux premiers entre eux.

On note $\Sigma(a_1, a_2, a_3)$ la sphère de Brieskorn qui admet les deux présentations de chirurgie équivalentes (voir [Rf] chapitre 9 §G):

FIGURE 1

FIGURE 2

où b_1 , b_2 et b_3 sont trois entiers qui vérifient

$$(E): b_1a_2a_3 + a_1b_2a_3 + a_1a_2b_3 = 1$$

Remarque. On vérifie aisément que la variété ainsi présentée est indépendante du choix du triplet d'entiers (b_1, b_2, b_3) qui vérifie (E) (on peut, par exemple, choisir arbitrairement, b_1 parmi les inverses modulo a_1 de a_2a_3 , et b_2 parmi les inverses modulo a_2 de a_1a_3 , b_3 est alors l'unique inverse modulo a_3 de a_1a_2 tel que (E) soit vérifiée.)

Les fibrés de Seifert à trois fibres exceptionnelles, sphères d'homologie entière, s'écrivent tous sous la forme $\pm \Sigma(a_1, a_2, a_3)$ avec trois entiers a_1, a_2, a_3 premiers entre eux (voir [Sf]). La relation $\lambda(-M) = -\lambda(M)$ nous permet de ne calculer que l'invariant de Casson de $\Sigma(a_1, a_2, a_3)$.

Si on note $\tau(a_1, a_2, a_3)$ le nombre de points à coordonnées entières intérieurs au tétraèdre de \mathbb{R}^3 , $T(a_1, a_2, a_3)$, de sommets (0, 0, 0), $(0, a_2, a_3)$, $(a_1, 0, a_3)$ et $(a_1, a_2, 0)$, on a le résultat:

C.1. THÉORÈME. L'invariant de Casson de
$$\Sigma(a_1, a_2, a_3)$$
 est égal à $-\left(\frac{1}{8}\right) \tau(a_1, a_2, a_3)$.

La fonction $\tau(.,.,.)$ est l'opposée de la fonction t(.,.,.) dite de Brieskorn décrite dans [HZ], on peut l'exprimer à l'aide des formules qui suivent:

C.2.
$$\tau(a_1, a_2, a_3) = \sum_{k=1}^{3} (-1)^k \# \{ (x_1, x_2, x_3) \in \mathbb{Z}^3 \cap]0, a_1[$$

 $\times]0, a_2[\times]0, a_3[| (k-1) < \frac{x_1}{a_1} + \frac{x_2}{a_2} + \frac{x_3}{a_3} < k \}$

(F. Hirzebruch et D. Zagier expriment la fonction de Brieskorn $t(a_1, a_2, a_3)$ sous (l'opposée de) cette forme dans [HZ].)

C.3.
$$\tau(a_1, a_2, a_3) = 4[s(a_1a_2, a_3) + s(a_3a_1, a_2) + s(a_2a_3, a_1)] + \frac{a_1a_2a_3}{3}\left(1 - \sum_{i=1}^3 \frac{1}{a_i^2}\right) - \frac{1}{3a_1a_2a_3} + 1$$

où s désigne la somme de Dedekind:

$$s(q,p) = \sum_{i=1}^{|p|} \left(\left(\frac{i}{p}\right) \right) \left(\left(\frac{qi}{p}\right) \right) \text{ pour } p, q \in \mathbb{Z} \text{ avec } ((x)) = \begin{cases} 0 & \text{si } x \in \mathbb{Z} \\ x - E(x) - \frac{1}{2} \text{sinon} \end{cases}$$

où E(x) est la partie entière de x.

§2. Scindement de Heegaard de $\Sigma(a_1, a_2, a_3)$

2.A. DESCRIPTION GÉOMÉTRIQUE

On considère la présentation de chirurgie de $\Sigma = \Sigma(a_1, a_2, a_3)$ indiquée par la figure 2:

FIGURE 3

Notations. Considérons la figure 3. On note K_1, K_2, K_3 les composantes de l'entrelacs de la figure 2.

On décompose le méridien de K_3 en $I \coprod_{\partial I = \partial I'} I'$ où I et I' sont des inter-

valles d'intérieurs disjoints.

 α , β , γ et δ sont les arêtes du carré hachuré C. (Situé dans le plan de la figure 3: α et γ sont des intervalles sur les méridiens de K_1 et K_2 respectivement et β et δ des intervalles sur le parallèle planaire à K_3 .)

Pour $i = 1, 2, 3, T_i$ désigne le tore plein recollé sur le bord du voisinage tubulaire de K_i lors de la chirurgie prescrite par le diagramme. Soit W_1 et W_2 les deux corps en anses suivants:

$$W_1 = (T_1 \amalg T_2) \bigcup_{I \times (\alpha \amalg \gamma)} I \times C, \qquad W_2 = T_3 \bigcup_{I' \times (\beta \amalg \delta)} I' \times C$$

et F le bord commun à W_1 et à W_2 (voir fig. 4): $W_1 \cup W_2$ est un scindement de Heegaard de $\Sigma(a_1, a_2, a_3)$.

Remarque. Si on utilise la terminologie de Seifert, le méridien de K_3 est une fibre ordinaire, les tores T_i sont des voisinages tubulaires des fibres exceptionnelles et le scindement de Heegaard est réalisé en prenant pour W_1 , une somme connexe le long des bords des voisinages de deux fibres exceptionnelles et pour W_2 l'adhérence du complémentaire de W_1 .

2.B. DESCRIPTION DES GROUPES FONDAMENTAUX ASSOCIÉS

 $\pi_1(F_*)$ est le groupe libre à quatre générateurs $\mu_1, \lambda_1, \mu_2, \lambda_2$ décrits par la figure 4. Le bord orienté δ de F_* s'écrit¹) $[\lambda_1^{-1}, \mu_1] [\mu_2^{-1}, \lambda_2^{-1}]$ dans cette base de $\pi_1(F_*)$. On en déduit la présentation de $\pi_1(F)$ par générateurs et relations: $\pi_1(F) = \langle \mu_1, \lambda_1, \mu_2, \lambda_2 | \delta \rangle$.

Conventions

i(,) désigne la forme d'intersection sur $H_1(F)$; un élément de $\pi_1(F)$ et son image dans $H_1(F)$ par l'homomorphisme d'Hurewicz sont notés de la même manière, leur nature est précisée par le contexte.

¹) Attention: les lacets sont composés dans l'ordre opposé à l'ordre usuel et [a, b] désigne le commutateur $a^{-1}b^{-1}ab$ (cf. les conventions avant 3.5).

Les deux éléments j_1 et j_2 de $\pi_1(W_1)$ représentés par des lacets de F respectivement homotopes aux âmes de T_1 et de T_2 et orientés de sorte que $i(a_1\mu_1 + b_1\lambda_1, j_1)$ et $i(a_2\mu_2 + b_2\lambda_2, j_2)$ valent 1, forment une base du groupe libre $\pi_1(W_1)$.

Soit $\lambda_3 = \mu_1 \mu_2$ et $\mu_3 = \lambda_2$ les deux éléments de $\pi_1(F)$ représentés respectivement par une longitude et un méridien de K_3 . L'élément j_3 de $\pi_1(W_2)$ représenté par un lacet de F homotope à l'âme de T_3 , orienté de sorte que $i(a_3\lambda_3 - b_3\mu_3, j_3)$ vale 1, et l'élément j_4 de $\pi_1(W_2)$ représenté par μ_1 forment une base du groupe libre $\pi_1(W_2)$.

L'inclusion i_{1_*} de $\pi_1(F)$ dans $\pi_1(W_1)$ s'écrit alors:

 $i_{1_{*}}(\mu_{1}) = j_{1}^{-b_{1}} \qquad i_{1_{*}}(\mu_{2}) = j_{2}^{-b_{2}}$ $i_{1_{*}}(\lambda_{1}) = j_{1}^{a_{1}} \qquad i_{1_{*}}(\lambda_{2}) = j_{2}^{a_{2}}$

tandis que l'inclusion i_{2_*} de $\pi_1(F)$ dans $\pi_1(W_2)$ s'écrit:

$$i_{2_{*}}(\mu_{1}) = j_{4} \qquad i_{2_{*}}(\mu_{2}) = j_{4}^{-1} j_{3}^{b_{3}}$$
$$i_{2_{*}}(\lambda_{1}) = j_{3}^{a_{3}} \qquad i_{2_{*}}(\lambda_{2}) = j_{3}^{a_{3}} \qquad (i_{2_{*}}(\mu_{1}\mu_{2}) = j_{3}^{b_{3}})$$

2.C. DESCRIPTION DES ESPACES DE REPRÉSENTATIONS ASSOCIÉS

 $R_* = R(\pi_1(F_*))$ est identifié à $(S^3)^4$ grâce à la base $(\mu_1, \lambda_1, \mu_2, \lambda_2)$: à une représentation ρ de R_* correspond le quadruplet $(\rho(\mu_1), \rho(\lambda_1), \rho(\mu_2), \rho(\lambda_2))$. De la même manière, Q_1 et Q_2 sont identifiés à $(S^3)^2$ grâce aux bases (j_1, j_2) et (j_3, j_4) .

Ces identifications orientent naturellement Q_1, Q_2 et R_* .

D'après 3.4 (cf. la preuve de 3.8 i)) et les expressions de i_{1_*} et de i_{2_*} , on a:

$$(Q_1, Q_2)_{R_*} = \det \begin{pmatrix} -b_1 & a_1 & 0 & 0\\ 0 & 0 & -b_2 & a_2\\ 0 & a_3 & b_3 & a_3\\ 1 & 0 & -1 & 0 \end{pmatrix} = b_1 a_2 a_3 + a_1 b_2 a_3 + a_1 a_2 b_3 = 1$$

et donc: $\lambda(\Sigma(a_1, a_2, a_3)) = \frac{1}{2} \langle \hat{Q}_1, \hat{Q}_2 \rangle_{\hat{R}}$.

Le calcul consiste maintenant à évaluer $\langle \hat{Q}_1, \hat{Q}_2 \rangle_{\hat{R}}$.

§3. Etude de $\hat{Q}_1 \cap \hat{Q}_2$

Cette intersection est $\hat{R}(\pi_1(\Sigma))$, on utilise, pour simplifier les calculs et les notations, les conventions suivantes:

 a_1 et a_2 sont impairs (quitte à permuter a_1, a_2 et a_3 qui jouent le même rôle).

On peut alors choisir b_1 et b_2 pairs, b_3 est alors impair.

Le groupe SU(2) est naturellement identifié à la sphère unité du corps H des quaternions. On écrit les éléments de $SU(2) = S^3$ sous la forme $\exp(x)$ où x est un quaternion pur.

3.A. Description ensembliste de $\hat{Q}_1 \cap \hat{Q}_2$

Cette description montrera en particulier le lemme suivant:

LEMME. Il existe une bijection naturelle de $\hat{Q}_1 \cap \hat{Q}_2$ dans l'ensemble E des points entiers, intérieurs au tétraèdre $T(a_1, a_2, a_3)$, et dont les deux premières coordonnées sont paires.

Démonstration. Description des éléments de $\hat{Q}_1 \cap \hat{Q}_2$:

Le groupe $\pi_1(\Sigma)$ admet la présentation par générateurs et relations suivante:

$$\pi_1(\Sigma) = \langle \mu_1, \mu_2, h \mid h \text{ central}, \ \mu_1^{a_1} = h^{-b_1}, \ \mu_2^{a_2} = h^{-b_2}, \ (\mu_1 \mu_2)^{a_3} = h^{b_3} \rangle$$
$$(h = \lambda_1 = \lambda_2);$$

les représentations irréductibles de $\pi_1(\Sigma)$ doivent associer 1 ou (-1) à l'élément central h de $\pi_1(\Sigma)$, on en déduit aisément que (cf. le lemme B.3.2) chaque classe de $\hat{R}(\pi_1(\Sigma))$ contient exactement un représentant ρ tel que:

$$\rho(\mu_1) = \exp\left(\frac{ix_1\pi}{a_1}\right)$$

$$\rho(\mu_2) = \exp\left(\frac{(ir+j\sqrt{1-r^2})x_2\pi}{a_2}\right)$$
et Re($\rho(\mu_1\mu_2)$) $\left(=\cos\left(\frac{x_1\pi}{a_1}\right)\cos\left(\frac{x_2\pi}{a_2}\right) - r\sin\left(\frac{x_1\pi}{a_1}\right)\sin\left(\frac{x_2\pi}{a_2}\right)\right)$

$$= \cos\left(\frac{x_3\pi}{a_3}\right)$$
 (et donc $\rho(h) = (-1)^{x_3}$)

où x_1, x_2 et x_3 sont des entiers positifs non nuls respectivement strictement inférieurs à a_1, a_2 et a_3 ,

 x_1 et x_2 sont pairs,

et r est un réel strictement compris entre -1 et 1.

Ceci définit une bijection ϕ de $\hat{Q}_1 \cap \hat{Q}_2$ dans l'ensemble des triplets (x_1, x_2, x_3) de $(2\mathbb{Z})^2 \times \mathbb{Z}$ qui vérifient:

(*)
$$\begin{cases} \forall i \in \{1, 2, 3\}, 0 < x_i < a_i, \\ \exists r \in]-1, 1[\text{ tel que:} \cos\left(\frac{x_1 \pi}{a_1}\right) \cos\left(\frac{x_2 \pi}{a_2}\right) - r \sin\left(\frac{x_1 \pi}{a_1}\right) \sin\left(\frac{x_2 \pi}{a_2}\right) = \cos\left(\frac{x_3 \pi}{a_3}\right) \end{cases}$$

$$(*) \Leftrightarrow \left\{ \begin{array}{l} \forall i \in \{1, 2, 3\}, 0 < x_i < a_i \\ \cos\left(\left(\frac{x_1}{a_1} + \frac{x_2}{a_2}\right)\pi\right) < \cos\left(\frac{x_3\pi}{a_3}\right) < \cos\left(\left(\frac{x_1}{a_1} - \frac{x_2}{a_2}\right)\pi\right) \end{array} \right\} \right\}.$$

$$(*) \Leftrightarrow \left| \begin{array}{c} \frac{x_1}{a_1} - \frac{x_2}{a_2} \\ \frac{x_3}{a_3} < \min \left(\frac{x_1}{a_1} + \frac{x_2}{a_2} \\ \frac{x_2}{a_2} \\ \frac{x_1}{a_1} + \frac{x_2}{a_2} \\ \frac{x_1}{a_1} + \frac{x_2}{a_2} \\ \frac{x_2}{a_2} \\ \frac{x_1}{a_1} + \frac{x_2}{a_2} \\ \frac{x_1}{a_1} + \frac{x_2}{a_2} \\ \frac{x_2}{a_2} \\ \frac{x_1}{a_1} + \frac{x_2}{a_2} \\ \frac{x_2}{a_2} \\ \frac{x_1}{a_1} + \frac{x_2}{a_2} \\ \frac{x_2}{a_2} \\ \frac{x_2}{a_2} \\ \frac{x_1}{a_1} + \frac{x_2}{a_2} \\ \frac{x_2}{a_2} \\ \frac{x_2}{a_2} \\ \frac{x_2}{a_2} \\ \frac{x_1}{a_1} + \frac{x_2}{a_2} \\ \frac{x_2}{a_$$

$$(*) \Leftrightarrow \begin{cases} \frac{x_2}{a_2} + \frac{x_3}{a_3} - \frac{x_1}{a_1} > 0\\ \frac{x_3}{a_3} + \frac{x_1}{a_1} - \frac{x_2}{a_2} > 0 \quad \text{et} \quad \frac{x_1}{a_1} + \frac{x_2}{a_2} + \frac{x_3}{a_3} < 2\\ \frac{x_1}{a_1} + \frac{x_2}{a_2} - \frac{x_3}{a_3} > 0 \end{cases}$$

(*) \Leftrightarrow (x_1, x_2, x_3) est intérieur à $T(a_1, a_2, a_3)$.

LEMME. Le cardinal de
$$E$$
 est égal à $\frac{1}{4}\tau(a_1, a_2, a_3)$.

Démonstration. Soit s_1 (resp. s_2) la symétrie axiale de $T(a_1, a_2, a_3)$ qui, à (x_1, x_2, x_3) , associe le point $(a_1 - x_1, a_2 - x_2, x_3)$ (resp. $(a_1 - x_1, x_2, a_3 - x_3)$); s_1, s_2 et s_2s_1 transforment respectivement $\overset{\circ}{T}(a_1, a_2, a_3) \cap ((2\mathbb{Z})^2 \times \mathbb{Z})$ en $\overset{\circ}{T}(a_1, a_2, a_3) \cap ((2\mathbb{Z} + 1)^2 \times \mathbb{Z})$, $\overset{\circ}{T}(a_1, a_2, a_3) \cap ((2\mathbb{Z} + 1) \times 2\mathbb{Z} \times \mathbb{Z})$ et $(\overset{\circ}{T}(a_1, a_2, a_3) \cap ((2\mathbb{Z}) \times (2\mathbb{Z} + 1) \times \mathbb{Z})$; le cardinal de $\overset{\circ}{T}(a_1, a_2, a_3) \cap \mathbb{Z}^3$ est donc égal à quatre fois celui de $\overset{\circ}{T}(a_1, a_2, a_3) \cap ((2\mathbb{Z})^2 \times \mathbb{Z})$. \Box

Démonstration de C.2. Soit $\pi = (a_1 - 1) (a_2 - 1) (a_3 - 1)$ le cardinal de $P = [0, a_1[\times]0, a_2[\times]0, a_3[\cap \mathbb{Z}^3]$.

So it
$$\tau_k$$
 le cardinal de $T_k = \{(x_1, x_2, x_3) \in P \mid (k-1) < \frac{x_1}{a_1} + \frac{x_2}{a_2} + \frac{x_3}{a_3} < k\}$.

Comme les entiers a_1 , a_2 et a_3 sont premiers entre eux deux à deux, les hyperplans de définition de $T(a_1, a_2, a_3)$, T_1 , T_2 et T_3 ne rencontrent pas P; on en déduit que P est réunion disjointe de T_1 , T_2 et T_3 (donc: $\pi = \tau_1 + \tau_2 + \tau_3$) et que le cardinal de $P \setminus T(a_1, a_2, a_3)$ est $(\pi - \tau)$. $(\tau = \tau(a_1, a_2, a_3))$

FIGURE 7

T(3, 4, 5) et les quatre composantes de $P \setminus T(3, 4, 5)$

De plus, comme les symétries du parallélépipède P opèrent transitivement sur ses sommets en laissant le réseau Z³ invariant, T_1 est isomorphe à T_3 et aux quatre composantes de $P \setminus T(a_1, a_2, a_3)$, d'où

$$\tau_1 = \tau_3 = \frac{1}{4}(\pi - \tau)$$
, puis $\sum_{k=1}^{3} (-1)^k \tau_k = \pi - 4\tau_1 = \tau$.

Démonstration de C.3. Un théorème de Mordell (Theorem 5 du paragraphe 3E de [RG]) donne l'expression arithmétique de $\tau_1(a_1, a_2, a_3)$:

$$\tau_1(a_1, a_2, a_3) = - [s(a_1a_2, a_3) + s(a_3a_1, a_2) + s(a_2a_3, a_1)] \\ + \frac{a_1a_2a_3}{12} \left(\sum_{i=1}^3 \frac{1}{a_i^2}\right) + \frac{1}{12a_1a_2a_3} \\ + \frac{a_1a_2a_3}{6} - \frac{a_1a_2 + a_3a_1 + a_2a_3}{4} + \frac{a_1 + a_2 + a_3}{4} - \frac{1}{2}.$$

La relation entre $\tau(a_1, a_2, a_3)$ et $\tau_1(a_1, a_2, a_3)$:

$$(\tau(a_1, a_2, a_3) = (a_1 - 1) (a_2 - 1) (a_3 - 1) - 4\tau_1(a_1, a_2, a_3))$$

alors de conclure.

3.B. Etude du voisinage de
$$\hat{Q}_1 \cap \hat{Q}_2$$
 dans \hat{R}

PROPOSITION. \hat{Q}_1 et \hat{Q}_2 sont transverses dans \hat{R} et le signe associé à tout point de l'intersection est «moins».

Démonstration. Soit $\hat{\rho}$ un point de $\hat{Q}_1 \cap \hat{Q}_2$; supposons connues des cartes orientées F_1, F_2 et F de \hat{Q}_1, \hat{Q}_2 et \hat{R} au voisinage de $\hat{\rho}$; il suffit de montrer que le déterminant de la matrice M de l'application linéaire

 $L: \mathbf{R}^3 \oplus \mathbf{R}^3 \to \mathbf{R}^6$

permet

$$(x_1, x_2) \quad \mapsto D_{|F_1(\hat{p})}(F \circ \hat{i}_1 \circ F_1^{-1}) \cdot x_1 + D_{|F_2(\hat{p})}(F \circ \hat{i}_2 \circ F_2^{-1}) \cdot x_2$$

est strictement négatif.

On commence donc par définir des cartes F_1 , F_2 et F de sorte que cette matrice s'écrive le plus simplement possible (on choisit les représentants des classes de conjugaison comme au début du paragraphe C.3.A.): LEMME. «*Cartes au voisinage d'un point* $\hat{\rho}$ *de* $\hat{Q}_1 \cap \hat{Q}_2$ » On note:

 $\varepsilon = \rho(\lambda_1) = \rho(h),$

 $\theta_1, \theta_2, \theta_3$, les trois angles de]0, π [tels que $\rho(\mu_1), \rho(\mu_2), \rho(\lambda_3) = \rho(\mu_1 \mu_2)$ soient respectivement conjugués à $\exp(i\theta_1), \exp(i\theta_2)$ et $\exp(i\theta_3)$

et ε_1 , ε_2 , ε_3 les trois signes tels que $\sin(-b_1\varepsilon_1\theta_1)$, $\sin(-b_2\varepsilon_2\theta_2)$ et $\sin(b_3\varepsilon_3\theta_3)$ soient strictement positifs.

1. Le difféomorphisme $F_1(\varepsilon_1, \varepsilon_2)$ de \hat{Q}_1 dans $\varepsilon_1]0, \pi[\times \varepsilon_2]0, \pi[\times] - 1, + 1[$ qui, à la classe de $(\exp(i\varphi), \exp((ir+j\sqrt{1-r^2})\theta))$, associe (φ, θ, r) , définit une carte orientée de \hat{Q}_1 .

2. Le difféomorphisme F_2 de \hat{Q}_2 dans $\varepsilon_3]0, \pi[\times] - 1, +1[\times]0, \pi[$ qui, à la classe de $(\exp((ir + \exp(i\varphi)j\sqrt{1-r^2})\theta), \exp(i\varphi)),$ associe $(\varphi, r, \theta),$ définit une carte orientée de \hat{Q}_2 .

3. L'application F de \hat{R} dans $(]0, \pi[\times] - 1, +1[)^2 \times] - 1, +1[^2 qui,$ à la classe de l'élément

 $(\exp(i\varphi), \varepsilon(g_1 + ig_i + jg_j + kg_k), \exp((ir + j\sqrt{1 - r^2})\theta), \varepsilon(h_1 + ih_i + jh_j + kh_k))$ associe l'élément $(\varphi, g_i, \theta, r, h_j, h_k)$ définit une carte orientée au voisinage de $\hat{\rho}$ dans \hat{R} .

Démonstration.

1. Supposons d'abord ε_1 et ε_2 égaux à 1.

Comme \tilde{Q}_1 est connexe, pour montrer que $F_1(1, 1)$ est une carte de \hat{Q}_1 orienté comme base du SO(3)-fibré $(\tilde{Q}_1 \rightarrow \hat{Q}_1)$, il suffit de calculer le jacobien (positif!) de l'application tangente en $\left(\frac{\pi}{2}, \frac{\pi}{2}, 0, 1\right)$ du difféomorphisme

$$G_1:]0, \pi[^2 \times]-1, +1[\times SO(3) \to Q_1, (\varphi, \theta, r, \gamma) \mapsto (\exp(i\varphi) \cdot \gamma, \exp((ir+j)\sqrt{1-r^2})\theta) \cdot \gamma).$$

Pour conclure la démonstration de 1. dans les cas où $(\varepsilon_1, \varepsilon_2)$ est différent de (1, 1), il suffit de remarquer que si $k(\varepsilon_1, \varepsilon_2)$ est le difféomorphisme orienté

$$k(\varepsilon_1, \varepsilon_2): \qquad \varepsilon_1]0, \pi[\times \varepsilon_2]0, \pi[\times] - 1, + 1[\rightarrow]0, \pi[^2 \times] - 1, + 1[(\phi, \theta, r)) \qquad \qquad \mapsto \quad (\varepsilon_1 \phi, \varepsilon_2 \theta, \varepsilon_1 \varepsilon_2 r) ,$$

le composé $k(\varepsilon_1, \varepsilon_2) \circ F_1(\varepsilon_1, \varepsilon_2)$ est égal à $F_1(1, 1)$.

2. Se déduit de 1, si l'on remarque que

$$(\exp(i\varphi), \exp((ir + \exp(i\varphi)j/(1-r^2)\theta)))$$

est conjugué à $(\exp(i\varphi), \exp((ir + j\sqrt{1 - r^2})\theta))$. 3. a) Soit $U =]0, \pi[\times S^3 \times]0, \pi[\times] - 1, 1[\times S^3,$ soit G le difféomorphisme

$$G: U \times SO(3) \longrightarrow G(U \times SO(3)) \subset R_*$$

((\varphi, g, \vartheta, r, h), \varphi) \mapsto (\exp(i\varphi). \varphi, \varepsilon g. \varphi, \exp((ir + j\sqrt{1 - r^2})\varepsilon). \varphi, \varepsilon h. \varphi),

et soit G_r la restriction de G à $U \times \{1\}$,

p désigne la projection de R_* sur \hat{R}_* , et p_r désigne sa restriction de $G(U \times \{1\})$ dans $p \circ G(U \times \{1\})$; d'après 1, $p_r \circ G_r$ est un difféomorphisme qui renverse l'orientation.

b) De plus, le calcul de l'application tangente en $p_r^{-1}(\hat{\rho})$ de ϑ montre que l'application (qui définit implicitement ψ)

$$(\partial \times \psi) \circ G_r: (U \times \{1\}) \to S^3 \times (]0, \pi[\times] - 1, +1[)^2 \times] - 1, +1[^2$$

 $u = (\varphi, g = (g_1 + ig_i + jg_j + kg_k), \theta, r, h = (h_1 + ih_i + jh_j + kh_k))$

 $\mapsto (\partial G_r(u) = [g^{-1}, \exp(i\varphi)] [\exp(-(ir+j)/(1-r^2)\theta), h^{-1}], (\varphi, g_i, \theta, r, h_j, h_k))$ est un difféomorphisme qui renverse l'orientation au voisinage de

 $G_r^{-1} p_r^{-1}(\hat{\rho}).$

On en déduit que $F = \psi \circ p_r^{-1}$ définit une carte orientée de \hat{R} au voisinage de la classe de $\hat{\rho}$ de la manière suivante:

Si l'on écrit l'inverse de G de $G(U \times SO(3))$ dans $U \times SO(3)$ sous la forme $(G_r^{-1} \circ p_r^{-1} \circ p) \times \tilde{\gamma}$ (où $\tilde{\gamma}$ est le composé de G^{-1} et de la projection sur SO(3)) l'application $\tilde{\chi} = [(\partial \times \psi) \circ p_r^{-1} \circ p] \times \tilde{\gamma}$ est, d'après a) et b), un difféomorphisme orienté d'un voisinage de la classe de $\hat{\rho}$ dans R_* dans un ouvert de $S^3 \times \mathbb{R}^6 \times SO(3)$.

Le composé $(\chi = \partial \times (\psi \circ p_r^{-1} \circ p) \times \tilde{\gamma})$ de $\tilde{\chi}$ et du difféomorphisme orienté de $S^3 \times \mathbb{R}^6 \times SO(3)$, qui à (g, x, γ) associe (g, γ, x, γ) , est alors un difféomorphisme orienté d'un voisinage de la classe de $\hat{\rho}$ dans R_* dans un ouvert de $S^3 \times \mathbb{R}^6 \times SO(3)$ tel que:

 $\partial(\chi^{-1}(g, x, \gamma)) = g$ et $\chi([\chi^{-1}(g, x, \gamma)] \cdot \gamma') = (g, x, \gamma \gamma')$.

Ceci, d'après les conventions d'orientation de 3.11, permet de conclure la démonstration du lemme. \Box

Avec ces cartes, la matrice M s'écrit:

?	0	0	t_4	0	? \
t_3	0	0	0	0	?
?	?	0	?	t_6	?
?	?	t_2	?	?	?
?	t_5	0	?	0	?
0 /	0	0	0	0	t_1

avec
$$t_1 = a_3 \sin(\phi) \sqrt{1 - r^2}$$
 $t_3 = a_1$ $t_5 = a_2 \sqrt{1 - r^2}$
 $t_2 = 1$ $t_4 = 1$ $t_6 = -\frac{\sin(\phi) \sin(\varepsilon_3 b_3 \theta_3)}{\sqrt{1 - x^2}}$
 $(x = \cos(\phi) \cos(\varepsilon_3 b_3 \theta_3) + r \sin(\phi) \sin(\varepsilon_3 b_3 \theta_3)),$

son déterminant qu'on peut calculer en factorisant successivement les t_i dans l'ordre indiqué par leurs indices est égal à

$$-\frac{a_1a_2a_3\sin^2(\varphi) (1-r^2)\sin(\epsilon_3b_3\theta_3)}{\sqrt{1-x^2}}$$

il est donc bien strictement négatif.

BIBLIOGRAPHIE

- [AB] ATIYAH, M. and R. BOTT. The Yang-Mills equations over a Riemann surface. *Phil. Trans. Royal Soc. London 308* (1987), 523-615.
- [AMcC] AKBULUT, S. and J. D. Mc CARTHY. Casson's invariant for oriented homology 3-spheres, an exposition. Mathematical Notes 36, Princeton University Press 1990.
- [BL] BOYER, S. and D. LINES. Surgery formulae for Casson's invariant and extension to homology lens spaces. J. Für die Reine und angewandte Mathematik 405 (1990), 181-220.
- [CLM] CAPPELL, S., R. LEE and E. MILLER. A symplectic geometry approach to generalized Casson's invariants of 3-manifolds. B.A.M.S. 22 (1990), 269-275.
- [D] DOLD, A. Lectures on algebraic topology. Die Grundlehren der mathematischen Wissenschaften, Band 200 Springer-Verlag, 1972.
- [FS] FINTUSHEL, R. and R. STERN. Instanton homology of Seifert fibered homology three sphere. Proc. London Math. soc., 3rd series 61 (1990), 109-137.

- [F1] FLOER, A. An instanton invariant for 3-manifolds. Comm. Math. Phys. 118 (1988), 215-240.
- [F2] Instanton homology, surgery, and knots. London Math. Soc. Lecture Note Series 150, Cambridge University Press, 1990, 97-114.
- [FMS] FUKUHARA, S., Y. MATSUMOTO and K. SAKAMOTO. Casson's invariant of Seifert homology 3-spheres. Math. Ann. 287 (1990), 275-285.
- [G] GORDON, C. McA. Some aspects of classical knot theory. Knot Theory Proceedings, Plans-sur-Bex, 1977, Lecture Notes in Mathematics 685, 1-60, Springer 1978.
- [GM] GUILLOU, L. et A. MARIN. Une extension d'un théorème de Rohlin sur la signature. Dans A la recherche de la topologie perdue, Progress in Mathematics vol. 62, 97-118, Birkhäuser 1986.
- [HNK] HIRZEBRUCH, F., NEUMANN, W. D. and S. S. KOH. Differentiable manifolds and quadratic forms. Marcel Dekker, New York, 1971.
- [HZ] HIRZEBRUCH, F. and D. ZAGIER. The Atiyah-Singer theorem and elementary number theory. Mathematics Lectures Series 3, Publish or Perish, 1974.
- [KK] KIRK, P. A. and E. P. KLASSEN. Representation spaces of Seifert fibered homology sphere. *Topology 30* (1991), 77-95.
- [L] LESCOP, C. Invariant de Casson-Walker des sphères d'homologie rationnelle fibrées de Seifert. C.R.A.S. Serie I, 310 (1990), 727-730.
- [M] MARIN, A. Un nouvel invariant pour les sphères d'homologies de dimension trois, [d'après A. Casson]. Sém. Bourbaki 1987-88, exposé n° 693 (Fév. 88).
- [Mu] MUMFORD, D. B. Projective invariants of projective structures and applications. Proc. Int. Congress Math. Stockholm (1962), 526-530.
- [NW] NEUMANN, W. D. and J. WAHL. Casson invariant of links of singularities. Comment. Math. Helv. 65 (1990), 58-78.
- [N1] NEWSTEAD, P. E. Topological properties of some spaces of stables bundles. Topology 6 (1967), 241-262.
- [N2] Characteristic classes of stable bundles of rank 2 over an algebraic curve. T.A.M.S. 169 (1972), 337-345.
- [NS] NARASHIMAN, M. S. and C. S. SESHADRI. Stable and unitary vector bundles on a compact surface. Ann. of Math. 82 (1965), 540-567.
- [RG] RADEMACHER, H. and E. GROSSWALD. Dedekind sums. The Carus Mathematical monographs n° 16 (1972).
- [Rb] ROBERTELLO, R. An invariant of knot cobordism. Comm. Pure Appl. Math. 18 (1965), 543-545.
- [R1] ROHLIN, V. A. Proof of Gudkov's conjecture. Funkt. Analiz. i ego Pril. 6 (1971), 62-64; traduction en anglais: Funct. Anal. and its appl. 6 (1972), 136-138.
- [Rf] ROLFSEN, D. Knots and Links. Publish or Perish, Berkeley, 1976.
- [Sf] SEIFERT, H. Topologie dreidimensionaler gefasserter Räume. Acta Math. 60 (1932), 147-238. Traduction anglaise pages 359-422 de [ST].
- [ST] SEIFERT, H. and W. THRELFALL. A Textbook of Topology. Academic press, 1980.
- [Se] SERRE, J.-P. Cours d'arithmétique. P.U.F., Paris 1970.
- [Si] SIEBENMANN, L. C. Les bissections expliquent le théorème de Reidemeister Singer un retour aux sources. Prépublication de l'université d'Orsay 1980.

[T] TAUBES, C. Casson's invariant and gauge theory. J. Differential Geometry 31 (1990), 547-599.

 [W] WALKER, K. An extension of Casson's invariant to rational homology spheres. Annoncé dans B.A.M.S. 22 (1990), 261-267 et Annals of Math. Studies 126, Princeton University Press 1992.

(Reçu le 8 juillet 1991)

Lucien Guillou

Université de Grenoble I Institut Fourier, B.P. 74 F-38402 Saint-Martin-d'Hères Cedex

Christine Lescop

E.N.S. de Lyon U.M.P.A. 46 allée d'Italie F-69364 Lyon cedex 07

Alexis Marin

E.N.S. de Lyon U.M.P.A. 46 allée d'Italie F-69364 Lyon cedex 07