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L'Enseignement Mathématique, t. 38 (1992), p. 329-344

RATIONALITY OF PIECEWISE LINEAR FOLIATIONS

AND HOMOLOGY OF THE GROUP OF PIECEWISE LINEAR
HOMEOMORPHISMS

by Takashi TSUBOI

Introduction

Let Y" be a codimension one transversely piecewise linear foliation of
S3 x S3. For such a foliation, the discrete Godbillon-Vey class is defined as

a 3-dimensional cohomology class ([5], [3]). Hence in this case, GV(é?~)

e H3(S3 x S3;R) R © R.

In this paper, we first show that if GV(ß**) (a, b) e H3(S3 x S3; R),
then a/b eQufoo}, which is the meaning of the rationality in the title.

The same question on the Godbillon-Vey class ([6]) for the smooth

codimension one foliations was raised in Gel'fand-Feigin-Fuks [2] and

discussed in Morita [10]. In the case of transversely oriented, transversely

piecewise linear foliations, the classifying space for them is known by
Greenberg ([7]). In fact, this classifying space is weakly homotopic to the join
BR6 * BR6 of two copies of BR8 K(R, 1) which is the classifying space for
the additive group R with the discrete topology. Since the cup product is trivial
on the cohomology ring of the join of two spaces (see § 1), the higher
discontinuous invariants defined by Morita ([10]) are trivial in this classifying

space. The rationality for codimension one transversely piecewise linear
foliations of S3 x S3 is a consequence of this.

Morita translated the question of rationality into that of graded
commutativity of *-product defined on the homology of the group of
diffeomorphisms of R with compact support ([10]). Using the description by
Greenberg ([7]) of the classifying space for transversely oriented, transversely
piecewise linear foliations, we can calculate the homology of the group
PLC(R) of piecewise linear homeomorphisms of R with compact support as

well as the *-product structure. Then we see that the *-product is certainly not
graded commutative, which insures the rationality. In fact we calculated this
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first, and later we found out the fact that the classifying space is a join is the

origin of rationality.
This paper is organized as follows. In § 1, we show two lemmas in algebraic

topology. One asserts that the cup product, is trivial on the cohomology ring
of the join of two spaces. The other concerns the relationship between the

tensor product in the E2 term of the spectral sequence associated to the

fibration QX - PX X and the Pontrjagin product on the homology of QX.
Both of them should be well known but we include their proofs. In §2, we
review the definition of discontinuous invariants of Morita ([10]). We see

immediately that all higher discontinuous invariants vanish for codimension

one transversely piecewise linear foliations. This implies the rationality of such

foliations. The rest of this paper concerns the homology of the group PLC(R)
of piecewise linear homeomorphisms of the real line with compact support.
This would be of interest because it would provide a good concrete example

illustrating the relationship between the homology of the group of homeomorphisms

and the homotopy of the classfying space for foliations. In § 3, we give
the result of calculation of the homology of PLC(R). In §4, we describe the

way of calculation. This is done by defining sufficiently many cocycles. For
this, we define and use a determinant with values in the tensor product over
the rationals Q of a number of copies of R. In §5, we show the fact that the

homomorphism PLC([0, oo))-> R which sends / to log/'(0) induces a

surjection in homology. Since there are no natural sections, this is not trivial.
The nontriviality of the cocycles defined in §4 depends on this fact.

My knowledge on the group of piecewise linear homeomorphisms of the

real line was deepened during my visit à l'Université de Genève in the winter
1990/91. I would like to thank it for its warm hospitality. This work is done

during my visit à l'Ecole Normale Supérieure de Lyon in the spring 1991. I
would like to thank it for its warm hospitality and I also thank la Fondation

Scientifique de Lyon et du Sud-Est for the financial support. I thank André

Haefliger, Etienne Ghys, Peter Greenberg, Vlad Sergiescu and Shigeyuki
Morita for their interest taken for this work.

§ 1. Lemmas

First we show the cup product is trivial on the cohomology ring of the join
of two spaces. This is an exercise in algebraic topology.

Lemma (1.1). Let X and Y be two topological spaces. The cup
product on the cohomology ring of the join X* Y is trivial.
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Proof. We may assume that X and Y are simplicial complexes. The

simplices of the join X* Y other than those in X and in Y are the joins of
simplices of X and Y. Since X * Y contains the cones of X and Y, any cocycle

on X * Y is cohomologous to a cocycle which vanishes on chains in X or Y.

We look at the Alexander-Whitney approximation of the diagonal map
The image of a simplex in X* Y in C* (X * Y)

(x) C*(W* Y) is a sum of o/ ® oy, where either o, or oy does not contain the

edge corresponding to the joining interval. Hence the evaluation of the cup
product of two modified cocycles is always zero.

The second lemma concerns the relationship between the tensor product
in the E2 term of the spectral sequence associated to the fibration
QX-+ PX -+ X and the Pontrjagin product * in the homology of the loop
space ÇIX.

Lemma (1.2). Let X be a simply connected CW complex such that
H* {X; Z) is torsion free. Let PX and QX be the path space and the loop
space of X, respectively. Let

E\i9 HP(X-Z)<g> H9(QX; Z)

denote the E1 term of the spectral sequence associated to the fibration. For
positive integer p, there is a homomorphism

s : Hp (QW ; Z)~^Hp+l(X;Z)
such that, for v e Hq(QX; Z),

s(u) ®ue E2p+hg=HP + i(X; Z) <g> Z)
and

u*ve Hp + q{ÇlX\ Z)

are related under dp+l, where * denotes the (Pontrjagin) product
induced by the composition of loops. More precisely, for the submodules
ZrP + Uq and Brp+Uq of E2p + Uq which give z;+ Uq/Brp^q,

s(u)®vand 0"+ '(5(w) <g>

Proof. The element u is represented by the image of the fundamental class
of a p-dimensional finite complex Y under a continuous map Y -> We
define s(u) to be the class represented by the adjoint map SY^-X, where SY
denotes the suspension of Y.Sincethe composition Y - QX -> PX bounds the
map SY^PX in the obvious way and the composition SY -+ PX X
represents s(ü) e Hp+[(X;Z),s(u) and u are related under dp +1. Let
Z - QX represent u. Consider the composition
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Y x Z-+QX x QX 5 QX

Then this represents u*ueHp +q(Q,X;Z).On the other hand, the com-
position

YxZ-+QXxClX-+PXxQX*+XxQX
bounds S Y x Z -* PX x QX -+ X x OX, which represents s(u) ® v. Hence
s(u) (x) v and u* u are related under 9^+1.

§2. Discontinuous invariants

First we review the definition by Morita ([10]) of discontinuous invariants
arising from the Godbillon-Vey invariant for codimension one foliations.

Let ^ be a codimension one foliation of a closed oriented 3/:-dimensional
manifold M. Then the Godbillon-Vey class gu(<!Z~) e H3(M; R) is defined

([6]). Let {xi, ...,xn} be a basis of H3(M; Q). Then gv(^) is written as

gv(.T) a{xi + + anxn

where au an e R. The discontinuous invariant GVk is defined by

k

GVk(Jr)= £ (X/1u...uXit)[M]aj|AQ...AQfljt6RAt RAQ...A(!R,
/!<...< ik

where [M] e H3k(M; Z) is the fundamental class. Morita showed that GVk is

natural, GVk depends only on the foliated cobordism class of and hence

there is a universal map GVk: H3k(BTi ; Z) RA/: ([10]).
The same argument applies to transversely piecewise linear foliations and

the discrete Godbillon-Vey class defined in [5] and [3]. Then the following
theorem is obtained from the description by Greenberg ([7]) of the classifying

space for them and Lemma (1.1).

Theorem (2.1). Let !F be a codimension one transversely orientable

transversely piecewise linear foliation of a closed oriented 3k-dimensional

manifold M(k^ 2). Then GVk(T) 0.

Proof The weak homotopy type of the classifying space Z?ffL for
codimension one transversely oriented transversely piecewise linear foliations
is known by Greenberg ([7]). This classifying space BffL has the weak

homotopy type of the join BR5 * BRè of two copies of BR5 K(R, 1). Let
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gv denote the discrete Godbillon-Vey class defined as a 3-dimensional cohomo-

logy class of this classifying space ([5], [3]).

gv e H3(BT^L; R)

By Lemma (1.1), the higher discontinuous invariants GVk are trivial in this

classifying space i?rfL. Hence by the naturality of GVk, GV/f^) 0.

Corollary (2.2). Let be a codimension one transversely piecewise

linear foliation of S3 x S3. GF(J^) (a, b) e H3(S3 x S3, R) satisfies

a/b eQu(oo).

Proof 0 GV1(^r) aAQb. Hence a/b eQu{oo}.

Remark. Morita translated the question of rationality into that of graded

commutativity of *-product defined on the homology of the group of
diffeomorphisms of R with compact support ([10]). In the later sections, we

calculate the homology of the group PLC(R) of piecewise linear homeo-

morphisms of R with compact support as well as the *-product structure. We

see that the *-product is certainly not graded commutative, which insures the

rationality. The argument on the rationality of transversely piecewise linear
foliations uses the fact that the Godbillon-Vey invariant localizes on
transversely discrete sets and this argument cannot be generalized for smooth
foliations for the moment. See how the class exists in §3. We also

see that the Whitehead product of elements of nn(BT^L) which are not zero
in homology is usually nontrivial and has infinite order.

Remark. The Hurewicz map

nn(Br*L)->Hn(Br?;Z

is surjective. To see this, note first that by Greenberg ([7]),

Hn(BTf; Z) f'R < ® Q R*» - » - <

/ 1

An element (a, AQ aqö,) ® Q (bi+i AQ AQô„_,) e RA' <g)Q RA"~ is

represented by the following foliation of T'* 1 Consider the foliated
R-product with noncompact support over Tn~l such that the holonomy

h: kI (Tn ~1 -> PL(R)is given by

h(ej) W ea>x for x < 0 and h(ej)(x)x for x > 0 if 1,

He/) H) x for x < 0 and h(ej) (x) ebJx for x > 0 if + 1,- 1
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This foliation restricted to Tn~1 x [- 1, 1] induces a foliation of Tl* Tn~x~i
which is

T"~l x [-1, l]/(rf x P"-1-' x { -1} ~ T' x { -1}
Ti x r*-1-*' x {1} ~ Tn~l^t x {1})

Note that there is a degree one map from the suspension of Tn~l to
7'/* Since we can embed Tn~x x [-1,1] in S", we have a degree

one map from S" to the suspension of Tn~l, hence to T'* Thus
Hurewicz map is surjective.

§3. Homology of the group of piecewise linear homeomorphisms

Let PLC(R) denote the group of piecewise linear homeomorphisms of R
with compact support. Let p : PLC(R) x PLC(R) -> PLC(R) be the

composition of two isomorphisms PLC(R) PLC((- oo, 0)) and PLC(R)
PLc((0, oo)), and the inclusion

PLC({- oo, 0)) x PLc((0, oo)) - PLC(R)

Then p induces a product * on the homology of BPLC(R)6 ([10]).
The homology of the group PLC(R) of piecewise linear homeomorphisms

of R with compact support is described as follows. For positive integers i
and j, put

ViJ RAi ®qRaJ
i j

(R Aq Aq R) (x) q (R Aq Aq R)

Theorem (3.1).

Hm(BPLc{R)«;Z)£ ®Q... ®Q

where the sum is taken over even number of positive integers

such that k{ + k^+ + k~ + k* Moreover, the

*:Hi{BPLc{R)6;Z) X Hj(BPLc{R)8;Z)R)8;Z)

coincides with the tensor product.
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For small dimensions, this theorem says that

HX{BPLC(R)8;Z)sO,

H2(BPLc(R)6;Z) s R®qR
H3 (BPLC(R)5; Z) (R AQ R) ® q R © R ® q (R AQ R), and

Ha BPLC(R)5; Z) s (R AQ R Aq R) ® q R © (R Aq R) ® Q (R AQ R)

©R®q(RAqRAqR)©R®qR®QR®QR •

The first homology group is 0 is equivalent to that PTC(R) is perfect and

this is due to Epstein ([1]). The second and third homologies are given explicitly

by Greenberg ([7]). The summand R ®qR ®qR ®qR of H4(BPLc(K)i", Z)
is the image of the »-product on H2(BPLR)S;Z)and since the »-product
coincides with the tensor product, the »-product is not graded commutative.

This implies that the Whitehead product

TiiiBr1;1) x n3(Bff)- ju(ßrf'
is highly nontrivial and this is the obstruction to construct a foliation on
S3 x S3 with given Godbillon-Vey class. In this way, as in mentioned in §2,

this is related to the rationality (see [10]).
Theorem (3.1) is also obtained as an application of the description by

Greenberg ([7]) of the classifying space i?ffL. As we mentioned, his result

says that this classifying space is weakly homotopy equivalent to the join
BR6* BR6. To show Theorem (3.1), we use the isomorphism

H*(BPLC(R)6; Z) //*(Q£ffL; Z)

due to Mather ([9]) adapted for the PL case by Ghys-Sergiescu ([5]) and

Greenberg ([7]) using a result of Segal ([11]), and the homology spectral
sequence associated to the fibration

Q.BÏf PBTfL -+ BTfL

Since #ffL is simply connected, the E2 term of this spectral sequence is as

follows.

E2p+ UV H„ + ,(5f fL; Z) ®0 ; Z)

Note that TGfßf ; Z) is torsion free. From this, Greenberg obtained the
second and the third homologies ([7]). To show our theorem, we show that,
for p ^ 0,

Ep + 1 ,q — %p+\,q m ~ ^p+l,q an<^

7"P+l _ y°° A D00 _ _ p2^p+ Uq ~ ^p+l,q ~ U np+Uq ~ Dp+\,q '



336 T. TSUBOI

This is equivalent to that the differentials induce an isomorphism

I Hp+l(Bff; Z) 0 q (Qßf ; Z) - + Z)
p + q m,p ^ 0

To show this we define the cohomology classes of BPLC{R)5 which detect the
images of generators of Hp+1(Bf^L; Z) (x)Q//^(QJßffL; Z).

§4. Construction of cocycles of the group PLc(R)

Tensor determinants. We define a determinant of an (« x «) real matrix
which takes values in the tensor product over Q of n copies of R. For

(flu)ij I,...,*, we put

det®Q(a/y) £ sign(o) aail)l (x)Q... <g)Qao(#I)/I
a

For example,

det®Q I
" 0121 a„ 0q«22 - Û2i 0Qßi2 •

\#21 #22/

We have the usual multilinearity but we do not have the usual alternativity.
For example,

det®Q
a

| 0 but det®Q I j a ®Qb - b (g)Qa a AQb
a b *G

The latter is not necessarily zero. In general, if we change the rows then this

determinant changes sign, however, there are no simple laws for changing
columns. It is worth noticing that we have the usual formula of developing
with respect to the first or the last column.

det®Q(ßy) Yj (—l),+ 1a<i 0Qdet®Q(4n)
i + 1

i (- 1)' +"det®Q(Ain)0q«;„
i + 1

where Atj is the matrix (a/y) with the z-th row and the y-th column deleted.

Cocycles of Lipschitz homeomorphism groups. We review the construction

of cocycles of certain Lipschitz homeomorphism groups of the real line

or the circle (see [13]). Let be the space of functions with compact support
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which are locally constant outside of finitely many points. (For other Lipschitz
homeomorphism groups, SA is replaced by other spaces of functions which
contains the logarithm of derivatives of the homeomorphisms.) Let F be a

Q-vector space. Let

n

ATTTT^'x - V

be a multilinear form which is invariant under the parameter change in the

following sense. If h is a homeomorphism of R with compact support, then

A(q>i ° /*, ...,(p„o/z) A(g>u ...,cpn)

Then the V valued function

C:PLc{R) X x PLC(R) -> V

defined by

C(gi,g2, ...,gn) A(\ogg[oglo ogni logg'2og3o ogn9 ...,logg'n)

is an «-cocycle of PLC(R). The verification is straightforward.

Cocycles of PL homeomorphism groups. For a (ZsJ-tuple of positive
integers (kï, kf t ...,k;,k^) such that fcf + kf + + kf + k+ m, we
define a multilinear form

A(kûkt,...,k~,k;y X S'-R®*
whose values are contained in Vki>ki ®Q... ®Q Vk* >k?. This is given by

A(kLkl,---,k-,C)(Wl> '--itym) D — det®Q
xjc...<xs ml

((pCxi -Q) A(p(xj)... A(pfe)

k\ k\

(p fc - 0)... (p (x5 - 0) Acp (x5)... A(p (xs))

ks ks

where <p denotes the vertical vector '((pi, (pw) and Aq>(x) <p(x + 0)
- (p(x - 0). Note that, since (pi, cpw are elements of the sum is in fact
a finite sum. It is clear that A^kinvariant under the parameter
change.
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For example, the functional 9* x y^R(x)QR is defined as

follows.

a 2 / V
1

^ /(Pl(X"°) A(PlW\
^(i,i)(<Pi,<P2) I -det®Q

x6r2 \<p2(*-0) Acp2(x) /

E ^ ((Pi(x-0)(x)QA(p1(x-) - (p2(x-0)®QA(p2(x)) e R(x)QR
xeR 2

Then A(11} is bilinear and invariant under the parameter change. This

functional A2(l l) composed with the evaluation map R (x)QR -> R gives the

area of the polygon whose vertices are the image of ((p}, cp2) and whose edges

join the subsequent vertices with respect to the order of R. The functional
A2l{) gives rise to the following 2-cocycle C2xl).

r^2 X V
1

^ .(X) (loëg'l°&(X-0) A log g[° g2 (x) \
Cljl)(g1,g2) - E -det®Q j e R (x)Q R

«r2 \ log g2(x-0) A log g2(x) J

This 2-cocycle C2(l l) composed with the evaluation map R (x)Q R R is the

discrete Godbillon-Vey invariant ([5], [3], [13], [8]).
The nontriviality of this class is shown easily. Let gx and g2 be piecewise

linear homeomorphisms of R with support in [—1,0] and [0, 1], respectively,
such that logg;(0 - 0) a and logg^O + 0) b. Then (gi, g2) - (g2,gi) is a

2-cycle and

/ x
1 la a \ 1 10 b \

C(i,i)(fei.g2) - (g2,g\)) - - det®Q - - det®Q
2 \0 b 2 \a -a]
a®Qb

Another interesting example is AA{l l l l) defined by

^a,i,i,i)(<Pi,<P2,<P3,<P4) I L det®Q((P(X-0)A(P(*)<pC-0)A<p00)
x < y 4

e R ®qR ®qR (x)qR

where (p denotes the vertical vector ^(q>i, cp2, cp3, cp4). This gives rise to the

cocycle C(liMil) which measures the noncommutativity of *-product. The

nontriviality of C4luul) is easily shown by evaluating on the ^-product of
two examples described above.

Independence of the cohomology classes. The bijectivity of the homo-

morphism

I Hp+l{BTpxL-,Z)®QHq(QBTr;L-Z) - Hp + g(OBf fL; Z)
p + q - m
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is equivalent to the independence of the cohomology classes of these cocycles

Ck- k+ k- k+y To show the independence we use the following theorem.

Theorem (4.1). Let j+ : PLC([0, oo)) - R denote the homomorphism

defined by

y+(/) log/'(0)

The homomorphism j+ induces a surjection in integer homology.

Using this theorem, we can show the independence. Let wf (x)Q wf be an

element of Vkf >ki («f eRAki uf eRA^' Then we have a &f -dimensional

cycle of of BPLC((- oo, 0])5 such that the image under (j-)* coincides with

uf e RAk' Hkr(BRô; Z), where y'_ : PLC((- oo, 0]) R denotes the

homomorphism defined by j_ (/) log/'(0). We also have a

fcf-dimensional cycle of of ÄPLc([0, oo))5 such that the image under (/+)*
coincides with «f e RAÉf TT^f (7?RÔ; Z). Then of X of is a (&f + &f)
-dimensional cycle of 2?(PLC((-<», 0]) x PLc([0, oo)))5 such that the image
under (/_ x y+)* coincides with wf (x)Q wf e Now let Tl5 be

translations of R such that 7^(0) < < 7^(0) and the supports of
O/ 7)(of x of) Ty1 are contained in disjoint open intervals, where the

support of a cycle of BPLC(R)6 is the union of the supports of the

homeomorphisms which appear in the expression of the cycle. Then
Oi x x o5 is an «7-cycle and the value of the cocycle Ck~tk+t_tl:-on
it is (Wj (x)Q wf) (g)Q... (x)Q(«f ®q wf It is easy to see that the values of
the other «2-cocycles on this cycle are 0.

The fact that *-product coincides with the tensor product follows
from Lemma (1.2). Note that the map 5 in Lemma (1.2) is an isomorphism
from the subgroup of H*(BPLC(R)6;Z) generated by the o~ X o+ to
77*+i(2?TfL; Z). Thus Theorem (3.1) is proved.

§5. SURJECTIVITY OF (y+)+

We prove Theorem (4.1). We consider j+ as a homomorphism from
PLc([0, oo)) to the group of germs at 0. We use the fact that the «-dimensional

homology group of £RÔ is isomorphic to RAn and whose generators
are represented by the images of the fundamental classes of tori Tn of dimension

n under the mappings which are defined by n (commuting) elements. We
will construct an «-complex Yn with the fundamental class and a degree one
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map Yn-+Tn. Then for each mapping Tn-*BTüb, we will construct a

mapping Yn -> BPLc([0, co))s such that the following diagram commutes.

Yn - BPLc([0, <»))*

1 1

Tn _> ßRö

Theorem (4.1) follows immediately from this commutative diagram.

Construction of Yn. Let L be a large positive real number. In the
Euclidean n space, we consider the following polyhedron Xn

Xn — {fa, ...,x„) e [0i L\n ; X/j + + x,^ ^ (k — \)k/2
for 1 ^ d < < ik ^ «}

The shape of Xn is the cube with certain neighborhoods of the &-faces

(k ^ n - 2) in the coordinate planes deleted, those of the (k - l)-faces being
thicker than those of the k-faces.

The polyhedron Xn has 2n — 1 + n faces of dimension n — 1. If
(xj, ...,xn) is a vertex of Xn then (xi,...,x„) is a permutation of
(0,1,.., k,L, ...,L). In this case we say (xr,...,x„) is a vertex of type
{0,1, L, ...,L}. There are edges between (xi,...,x^) and (x{, ..*,x^) of
the same type {0,1 L,...,L} if one is obtained from the other by
permuting two coordinates. The edges between different types exists only if
the types are {0,1,.., k - 1 ,L, ...,L} and {0,1,.., £,L, ...,L}, and one vertex
is obtained from the other by changing the entries k and L.

The polyhedron has the (/? — l)-face {x/ L} which is isometric to
Xn_i. The (n - l)-face {x,- 0} is isometric toZ„_! with L replaces by L - 1

because if x,- 0 then

X/j + + x/a. ^ (k- l)k/2
for {d, 4} containing i implies

(x/j - 1) + + (xik -I) ^ {k- \)k/2

for {ii, ik} not containing /. Hence we can define a simplicial identification

between the faces {x/ L} and {x,- 0}. In general, the face

{x/j + + */* (A: - l)Ar/2}
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is isometric to X'n_k x Yk, where X'n_k is Xn-k with L replaced by L k

and E* is the face {xx + + xk (k - l)k/2} in Xk. The reason is

X/j + + Xiy ^ (k — \)k /2

for ik>) containing {iu implies

(x/'j — k) + + (Xi'k, — k) ^ (k — 1 )k /2

for {/J,..., ik,} not containing {z'i,..., /*}. We also fix a simplicial identification

between X'n_k and Xn-k. Now we distinguish the faces by the set

{/j, ik} of indices and we see that

dX„ U X{1
A C {1, .# A > 2

u
i i

where

X{i „} -ax1,4 {*,, + + xik (k - \)k/2}if {/'i,4}
X\\]...,n)-W~{XiL}and _{/} {*,- 0}

The complex Yn is defined inductively as follows. Y\ X{ [0, L], Y2 is

obtained from X2 (a pentagon) by identifying X\^ and X^ (i =1,2) and by

taking the double of it. Hence Y2 is a surface of genus 2. We call the new

part in the double 2?E{1>2}.

Y2 X2 + 2} •

Y3 is obtained from X3 by identifying X\fj} and XfX](iJ= 1,2,3), by
attaching X{k] x BY{tj}({iyj,k} {1,2,3}) to each X{k] X and then

by taking the double. The boundary before taking the double is a surface of
genus 6. We call the new part in the double BY{U2i3}.

Y3 X3 + Y X{ii2t3i^{iui2} X 2?£{/i>/2! + -

{ix,i2} C {1,2,3}

In general, we define Yn to be the double of

xn + Yj X{U^^n} ^ a x bya
A C {!,...,«}, # A ^ 2

and we call the new part in the double

Y„ Xn + Y ^{i,...,/!} -A X BYa + jBE^.^}
A C {1, #A>2

The mapping from Yn to Tn is the one which sends the all BYA parts to
a point and X„ to the fundamental domain of Tn.
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Construction of Yn -> BPLC([0, oo))5. Now given a mapping Tn PRÔ,

we construct a mapping Yn-+BPLC([0, oo))5. In other words, given
a homomorphism Z" R, we construct a homomorphism nx(Yn)
-» PLc([0, oo)). This is also done inductively.

For n 1, it is only necessary to choose a lift in PLC{[0, oo)) of an
element of R.

Now for n 2, we choose lifts /i, /2 of the generators of Z2. To the

edges of Y2, we associate elements of PLC([0, oo)). We put fx on the edges of
X2 from (L,L) to (0,L) and from (L, 0) to (1,0), and we put f2 on the edges

of X2 from (L,L) to (L, 0) and from (0,L) to (0,1). Then we put the
commutator [f{, f2] f f2 fxlf2l on the edge from (0,1) to (1,0). Note that
the support of this commutator does not contain 0 hence this commutator is

an element of PLC((0, oo)). This commutator is also written as a commutator
of elements of PLC((0, oo)). We can do it very easily, not by using the

perfectness of the group PLC((0, oo))5 but by using a conjugation by an
element of PLC(R) which sends 0 to ö(>0) and which is the identity on
(2a, oo) when the support of [fx, f2\ is contained in (2a, oo). We call this

conjugation c*. (This technique using conjugation is similar to that in [12].)

c* is an isomorphism from PLC([0, oo)) to a subgroup of PLC((0, oo)). Then

[/l. fi\ C* ([/i, /2]) [c*/,, c*/2] and we associate c c*f2 to the edges

in the new part in the double (in the mirror). Thus we defined the desired

mapping Y2 -> BPLc([0, oo))5.

For general n, we use the same strategy. First we choose lifts /i, ...,/„ of
the generators of Z". To the edges of Xn, we associate elements of
PLc([0, oo)). We associate f to the edge from a vertex of type

{0,1, ..,k-l,L, ...,L} to a vertex of type {0,1, ,.,k,L, ...,L} if the i-th
coordinate changes from L to k. Then the elements associated to other edges

are uniquely determined. In fact, we can associate an element of PLc([0, oo))

to each vertices as follows. We associate id to the vertex of type [L, ...,£},
if we already associated an element fv to a vertex u of type

{0,1,.., k - l,L, ...,L) and a vertex v' is obtained from v by changing the /-th

coordinate from L to k then we associate ffv to the vertex u\ Thus the

edge from one vertex vx to another vertex v2 is associated with fU2 f~1. Now

if we look at the edges of EA in the (n - l)-face X{1 -a x Ya the

associated elements are in PLc((0, oo)). By induction, we can find BYA with

edges in PLc((0, oo)). Thus we find the boundary of

Xn + J] X{x ,...,n}-A X BYA
A C {1, #A>2
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is a cycle of PLC((0, oo)). Here the products are considered as in the following
remark. Hence in the double Yn, we can associate the images under c* in the

new part of the double, (c* is the conjugation by an element of PLC(R) which
sends 0 to a'{> 0) and which is the identity on (2a', oo) when the support of
the above boundary is contained in (2tf',oo).) Thus we defined the desired

mapping Yn - BPLc([0, oo))5. This proves Theorem (4.1).

Remark. For two simplices tei,...,gw) and (hm + ],..., hm + n) of the
classifying space for a discrete group, we define the product of them as

follows.

tel. X (/?„,-!, ...,hm + n)Y, sign(o) (/a, 1, • • •.
o

where the sum is taken over the shuffles o (that is, those permutations such
that o(l) < < o(m) and o(m + 1) < < o(m + n). The entry f0j is
defined as follows.

fo,c(j) Sj (j=l,...,m) and

fo ,m+j (gk • • • gm) hm + j (gk • • • gm) 1 (j 1
> • • • j >

where k is the integer such that a(k- 1) < o(m +j) < o(k). For example,

tei, gi) x (h3, h4)

tel ,g2,h3, h4) - (gi, g2h3g~ \g2, h4)

+ {g\gih3{gxg2)-1, g\,g2,h4) + (gi, g2h3g21, g2h4g2lf gi)

- (g\g2h3(gxg2)~1, g!, g2h4g~1, g2)

+ (gig2h3(glg2)~l, glg2h4(glg2)-\ gug2).

This product is defined so that

ö(te 1 5 • • • gm) x (hm +1, hm + „))
~~ te tel 5 •••> gm)) X (hm+ I ,hm + n)

+ (-l)m(gl, ...,gm-l) X (gmhm + lgml,..., gmhm + ng~l)
+ (-l)m(gu...,gm)x(d(hm + li,..,hm + n))i

where

m - 1 ^tel » Sm) (g2, gm)

+ (~ ^ fei j • gi- 1, gigi+i ,gi + 2, gm) + (~ l)m(gi, gm_ j)

-ö'tell»., gm) F (~\)m(gl,...,gm-i)
For the above complex we triangulate it and associate the elements for their
products.
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