REAL NUMBERS WITH BOUNDED PARTIAL QUOTIENTS: A SURVEY

Autor(en): Shallit, Jeffrey
Objekttyp: Article
Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 38 (1992)
Heft 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
23.07.2024

Persistenter Link: https://doi.org/10.5169/seals-59489

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

REAL NUMBERS WITH BOUNDED PARTIAL QUOTIENTS: A SURVEY

by Jeffrey Shallit

Abstract. Real numbers with bounded partial quotients in their continued fraction expansion appear in many different fields of mathematics and computer science: Diophantine approximation, fractal geometry, transcendental number theory, ergodic theory, numerical analysis, pseudo-random number generation, dynamical systems, and formal language theory. In this paper we survey some of these applications.

1. Introduction and Definitions

If x is a real number, we can expand x as a simple continued fraction

$$
x=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots}}}
$$

which we abbreviate in this paper as

$$
x=\left[a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right] .
$$

In this paper, we only discuss the case of regular continued fractions, where a_{0} is an integer and a_{i}, is a positive integer for $i \geqslant 1$; the expansion may or may not terminate. (For an introduction to continued fractions, see Hardy and Wright [135, Chap. 10]; for a more definitive work, see Perron [236]. For a history of continued fractions, see Brezinski [44].)

[^0]If x is rational, then its continued fraction expansion terminates, and we can write $x=\left[a_{0}, a_{1}, \ldots, a_{n}\right]$. If we agree that $a_{n}=1$ and $n \geqslant 1$, then this expansion is unique and we define

$$
K(x)=\max _{1 \leqslant k \leqslant n} a_{k},
$$

the largest partial quotient in the continued fraction for x.
If x is irrational, then its continued fraction expansion does not terminate. This expansion is unique. We write $x=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$ and define

$$
K(x)=\sup _{k \geqslant 1} a_{k} .
$$

If $K(x)<\infty$, then we say that x has bounded partial quotients.
We define $\mathscr{B}_{k}=\{x \in \mathbf{R} \mid K(x) \leqslant k\}$, and $\mathscr{B}=\{x \in \mathbf{R} \mid K(x)<\infty\}$. Furthermore, let $\mathscr{E}_{k}=\mathscr{B}_{k} \cap(0,1)$ and $\mathscr{E}=\mathscr{B} \cap(0,1)$.

Real numbers with bounded partial quotients appear in many fields of mathematics and computer science: Diophantine approximation, fractal geometry, transcendental number theory, ergodic theory, numerical analysis, pseudo-random number generation, dynamical systems, and formal language theory. In this paper we survey some of these applications. Because of limited space, we cannot include a discussion of every result in detail. However, we have tried to include as complete a list of references as possible for those topics directly related to the main subject. Readers who know of other references are urged to contact the author (and provide a copy of the relevant paper, if possible). It is hoped that the list of references may contain some surprises even for experts in the field.

The author's interest in the subject arose from the material in Section 9. Because of this, the viewpoint presented in this article may be somewhat idiosyncratic.

2. Numbers of Constant Type

Let θ be an irrational number, and let $\|\theta\|$ denote the distance between θ and the closest integer.

Let $r \geqslant 1$ be a real number. We say that θ is of type $<r$ if

$$
q\|q \theta\| \geqslant \frac{1}{r}
$$

for all integers $q \geqslant 0$. Then we have the following

Theorem 1. If θ is of type $<r$, then $K(\theta)<r$. If $K(\theta)=r$, then θ is of type $<r+2$.

For a proof, see Baker [20, p. 47] or Schmidt [272, p. 22].
If there exists an $r<\infty$ such that θ is of type $<r$, then θ is said to be of constant type. By the theorem, numbers of constant type and numbers with bounded partial quotients coincide, and we will use these terms interchangeably in what follows.

A classical theorem of Lagrange states that the continued fraction for x is ultimately periodic if and only if x is a real quadratic irrational, and so all real quadratic irrationals are of constant type; see, for example, Lagrange [178] or Hardy and Wright [135, Chapter 10]. We will not explicitly discuss quadratic irrationals further in this paper.

Since

$$
e=[2,1,2,1,1,4,1,1,6,1,1,8,1,1,10, \ldots]
$$

(see Cotes [58] and Euler [102]), we see that e is not of constant type. It is also known that the numbers $e^{2 / n}$ and $\tan 1 / n(n$ an integer $\geqslant 1)$ are not of constant type. The status of π and γ (Euler's constant) is presently unknown. In section 9 we will see some explicit examples of transcendental numbers of constant type.

One way to interpret Theorem 1 is to say that numbers with bounded partial quotients are badly approximable by rationals; this term is also used frequently in the literature.

Note that if θ is of constant type, and r is a rational number, then $r \theta$ is also of constant type [54]. In fact, it is not hard to prove the following: let $r=a / b$ be a rational number, and suppose $K(\theta)=n$. Then $K(r \theta) \leqslant|a b|(n+2)$, and $K(\theta+r) \leqslant b^{2}(n+2) ;$ see Cusick and Mendès France [69].

From this, it follows that if a, b, c, d are integers with $a d-b c \neq 0$, then

$$
\frac{a \theta+b}{c \theta+d}
$$

has bounded partial quotients iff θ does. (See Shallit [278]. I would like to thank J. C. Lagarias for bringing this to my attention.) One can also deduce this result directly from the continued fraction, using results of Raney [256]. For another view of Raney's results, see van der Poorten [246].

Another related concept is the Lagrange-Markoff constant, denoted by $\mu(\theta)$. It is defined as follows:

$$
\mu(\theta)^{-1}=\underset{q \rightarrow \infty}{\lim \inf } q\|q \theta\| .
$$

Hurwitz [150] showed, among other things, that $\mu(\theta) \geqslant \sqrt{5}$; furthermore, $\mu\left(\frac{1+\sqrt{5}}{2}\right)=\sqrt{5}$. Perron [234] showed that if

$$
\theta=\left[a_{0}, a_{1}, a_{2}, \ldots\right],
$$

then

$$
\mu(\theta)=\underset{i \rightarrow \infty}{\lim \sup }\left(\left[a_{i+1}, a_{i+2}, a_{i+3}, \ldots\right]+\left[0, a_{i}, a_{i-1}, \ldots, a_{1}\right]\right) .
$$

From this it follows that $\mu(\theta)<\infty$ if and only if θ is of constant type.
The range of $\mu(\theta)$, as θ takes on all irrational values, is known as the Lagrange spectrum and has been extensively studied. We direct the reader to the work of Lagrange [178, pp. 26-27]; Markoff [203, 204]; Heawood [138]; Perron [235]; Vinogradov, Delone, and Fuks [295]; Freiman [111]; Kinney and Pitcher [166]; Berštein [29]; Davis and Kinney [78]; Cusick [59, 62]; Flahive [117]; Cusick and Mendès France [69]; Wilson [301]; Dietz [89]; Pavone [232]; Prasad [249]; and especially the books of Koksma [172] and Cusick and Flahive [67].

For more on approximation by rational numbers, see Cassels [52], Schmidt [272], Kraaikamp and Liardet [313], Larcher [312].

3. The Metric Theory of Continued Fractions

Recall that \mathscr{E} denotes the set of real numbers in $(0,1)$ with bounded partial quotients.

While it is easy to see \mathscr{E} has uncountably many elements, nevertheless "most" numbers do not have bounded partial quotients. More precisely, we have the following

THEOREM 2 (Borel-Bernstein). \mathscr{E} is a set of measure 0.
The theorem is due to Borel [38]. The original proof was not complete, as discussed in Bernstein [27]; further details were provided in a later paper of Borel [39]. For other proofs, see Hardy and Wright [135, Thm. 196] or Khintchine [160]. Also see Dyson [96].

Here is a sketch of a more general theorem: first, let us equate probability with Lebesgue measure, and assume x is a real number in $(0,1)$. Then, expanding x as a continued fraction, we have

$$
x=\left[0, a_{1}, a_{2}, a_{3}, \ldots\right],
$$

and we can consider each $a_{i}=a_{i}(x)$ to be a function of x. Then it is not difficult to show that

$$
\operatorname{Pr}\left[a_{n}(x)=k\right]=\Theta\left(\frac{1}{k^{2}}\right) .
$$

From this, it follows that

$$
\operatorname{Pr}\left[a_{n}(x) \geqslant k\right]=\Theta\left(\frac{1}{k}\right)
$$

If the random variables $a_{i}(x)$ were independent, it would follow from the Borel-Cantelli lemma that

$$
\operatorname{Pr}\left[a_{n}(x) \geqslant b_{n} \text { infinitely often }\right]=1
$$

if and only if $\sum_{n \geqslant 1} \frac{1}{b_{n}}$ diverges. Unfortunately, the $a_{i}(x)$ are not independent, but they are "almost" independent; with some additional work, the result can be shown.

Now taking, e.g., $b_{n}=n$, we see that for almost all x, we have $a_{n}(x) \geqslant n$ infinitely often, and hence \mathscr{E} is a set of measure 0 .

Theorem 2 is a simple result in the metric theory of continued fractions, which had its origins in an 1812 letter from Gauss to Laplace. Gauss essentially stated [116] that

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[a_{n}(x)=k\right]=\log _{2}\left(1+\frac{1}{k(k+2)}\right)
$$

and this was proven by Kuzmin [174, 175] and Lévy [186], independently.
Actually, even more is known. For example, Khintchine [160, 162] proved that if $f(n)$ is a non-negative function that does not grow too quickly, then with probability 1 we have

$$
\lim _{m \rightarrow \infty} \frac{1}{m} \sum_{1 \leqslant k \leqslant m} f\left(a_{k}\right)=\sum_{r \geqslant 1} f(r) \log _{2}\left(1+\frac{1}{r(r+2)}\right) .
$$

Now setting $f(i)=1$ if $i=n$, and $f(i)=0$ otherwise, we see that with probability 1 , the fraction $\log _{2}\left(1+\frac{1}{r(r+2)}\right)$ of the partial quotients in the continued fraction expansion of a real number x are equal to r.

Some early papers discussing the distribution of partial quotients include Gyldén [123, 124]; Brodén [45]; and Wiman [302].

For the classical metric theory of continued fractions, see (in addition to the papers mentioned above) Lévy [187, 188, 189, 191]; Khintchine [162, 163]; and Denjoy [83, 84, 85]. For more recent improvements, see Szüsz [289, 290]; de Vroedt [296]; Wirsing [303]; Rieger [261]; Babenko [12]; and Babenko and Jur'ev [13].

A more modern approach derives these results using powerful methods of ergodic theory. A good introduction is the book of Billingsley [31]. Other articles include Knopp [168]; Doeblin [91]; Ryll-Nardzewski [266]; Hartman, Marczewski, and Ryll-Nardzewski [137]; Hartman [136]; Lévy [190]; Rényi [257]; de Vroedt [297]; Stackelberg [283]; Šalát [267]; Philipp [239, 240, 241, 242, 243]; Philipp and Stackelberg [244]; and Galambos [112, 113, 114].

4. Continued Fractions for Algebraic Numbers

A major open problem is to determine if any algebraic numbers of degree >2 are in \mathscr{B}. As Khintchine $[164,165,160$] has remarked,

It is interesting to note that we do not, at the present time, know the continued-fraction expansion of a single algebraic number of degree higher than 2 . We do not know, for example, whether the sets of elements [partial quotients] in such expansions are bounded or unbounded. In general, questions connected with the continued-fraction expansion of algebraic numbers of higher degree than the second are extremely difficult and have hardly been studied.
(The problem goes back at least to 1949, with the appearance of Khintchine's book [164]. The paragraph above most likely also appeared in the first (1936) edition of Khintchine's book, but I have not been able to verify this by examining a copy. I do not know any earlier explicit reference to the problem. A remark similar to Khintchine's was made by Delone in a foreword to a translation of Delone and Fadeev [82, p. iv].)

Khintchine's remark is still true today; there are only a few papers that have explicitly discussed the partial quotients of algebraic numbers of degree >2. See, for example, Davenport ${ }^{1}$) [76]; Orevkov [229]; Pass [231]; Wolfskill [304]; Blinov and Rabinovich [34]; Bombieri and van der Poorten [37]; Dzenskevich and Shapiro [98]; and van der Poorten [247].

[^1]One can deduce weak upper bounds on the growth of the partial quotients of algebraic numbers from results in Diophantine approximation. Suppose there exist constants C, s such that

$$
\|q \theta\|>\frac{C}{q^{s}}
$$

for all positive integers q. Wolfskill [304] remarked that the partial quotients a_{i} in the continued fraction expansion of θ then satisfy $a_{i}<A^{(s+\varepsilon)^{i}}$, where A depends on C and ε. Thus upper bounds can be deduced from the results in the following papers: Liouville [192]; Thue [291]; Siegel [280, 281]; Dyson [97]; Roth [265]; Davenport and Roth [77]; Baker [18, 19]; Feldman [105]; Bombieri [35]; Bombieri and Mueller [36]; Chudnovsky [55]; Easton [99]; and Baker and Stewart [22]. Stronger results were given by Davenport and Roth [77]. They showed that the denominators q_{i} of convergents to a real algebraic number θ satisfy

$$
\log \log q_{n}<\frac{C n}{\sqrt{\log n}}
$$

here C is a constant that depends on θ but not on n. Furthermore, this constant can be made effective.

There are several methods known for computing the partial quotients for a given algebraic number. See the papers of Lagrange [177]; Vincent [294]; Cantor, Galyean, and Zimmer [50]; Churchhouse [56]; Rosen and Shallit [264]; Akritas and Ng [6, 7]; Thull [292]; and Akritas [1, 2, 3, 4, 5].

In 1769, Lagrange [177] showed that the real zero of $x^{3}-2 x-5$ has a continued fraction expansion which begins

$$
[2,10,1,1,2,1,3,1,1,12, \ldots] .
$$

For some other explicit computations of the continued fraction expansions of algebraic numbers of degree >2, see von Neumann and Tuckerman [217]; Richtmyer, Devaney, and Metropolis [260]; Bryuno [46]; Lang and Trotter [181]; Richtmyer [259]; and Pethö [238]. In 1964, J. Brillhart found that the real zero of $x^{3}-8 x-10$ had some unusually large partial quotients. An explanation was provided later by Churchhouse and Muir [57] and Stark [284].

5. Certain Sums in Diophantine Approximation

Let us agree to write $\{\theta\}$ for the fractional part of θ, namely, $\theta-[\theta]$. One of the earliest appearances of real numbers with bounded partial quotients is in the theory of Diophantine approximation.

For example, consider the sum

$$
s_{n}^{\prime}(\theta)=\sum_{1 \leqslant k \leqslant n}\left(\{k \theta\}-\frac{1}{2}\right) .
$$

Clearly $s_{n}^{\prime}(\theta)=O(n)$; but Lerch proved in 1904 that if θ has bounded partial quotients, we have $s_{n}^{\prime}(\theta)=O(\log n)$. See [184]. (This result was also announced by Hardy and Littlewood in 1912; see [128].)

At the International Congress of Mathematicians in 1912, Hardy and Littlewood [128] announced several theorems on Diophantine approximation, some of which relate to the subject at hand. For example, they defined

$$
s_{n}(\theta)=\sum_{1 \leqslant k \leqslant n} e^{\left(k-\frac{1}{2}\right)^{2} \pi i \theta}
$$

and stated that if θ has bounded partial quotients, then $s_{n}(\theta)=O(\sqrt{n})$. The proof appeared later; see [130].

At the same Congress, Hardy and Littlewood announced that

$$
\sum_{1 \leqslant k \leqslant n}\left(\{k \theta\}-\frac{1}{2}\right)^{2}=\frac{n}{12}+O(1)
$$

for all irrational θ. This is incorrect, and the correct formulation was stated in a 1922 paper: the result holds for many, but not all irrationals, and in particular it holds for θ with bounded partial quotients. See [132] for the statement and [133] for a proof.

Hardy and Littlewood also examined other series of interest. They defined:

$$
\begin{aligned}
& U_{n}(\theta)=\sum_{1 \leqslant k \leqslant n} \frac{(-1)^{k}}{k \sin k \pi \theta}, \\
& V_{n}(\theta)=\sum_{1 \leqslant k \leqslant n} \frac{(-1)^{k}}{\sin k \pi \theta},
\end{aligned}
$$

and

$$
W_{n}(\theta)=\sum_{1 \leqslant k \leqslant n} \frac{1}{(\sin k \pi \theta)^{2}} .
$$

They showed that if θ has bounded partial quotients, then $U_{n}(\theta)=O(\log n)$, $V_{n}(\theta)=O(n)$, and $W_{n}(\theta)=O\left(n^{2}\right)$. See [134].
(Warning to the reader: in their papers, Hardy and Littlewood used the notation $\{x\}$ to mean $x-[x]-\frac{1}{2}$, not $x-[x]$, as is more standard today.)

For other related papers, see Hardy and Littlewood [129, 131]; the collected works of Hardy [127]; Ostrowski [230]; Khintchine [161]; Oppenheim [228]; Chowla [53, 54]; Walfisz [298, 299, 300], and Schoissengeier [314].

Others researchers have examined similar sums in connection with numbers with bounded partial quotients. See the papers of Faĭziev [104] Ivanov [151], and Schoissengeier [274].

6. Fractal Geometry

Numbers with bounded partial quotients provided an early example of a set with non-integral Hausdorff dimension.

Let $\operatorname{dim} S$ denote the Hausdorff dimension of the set S (for a definition, see, e.g. Falconer [103]). We use the definitions of \mathscr{E} and \mathscr{E}_{k} from section 1.

In 1928, Jarník [152] proved that $\operatorname{dim} \mathscr{E}=1$,

$$
\frac{1}{4}<\operatorname{dim} \mathscr{E}_{2}<1
$$

and

$$
1-\frac{4}{k \log 2}<\operatorname{dim} \mathscr{E}_{k}<1-\frac{1}{8 k \log k}
$$

for $k>8$. An exposition of Jarník's work can be found in Rogers [263].
In 1941, Good proved the following result [118]:

$$
\operatorname{dim} \mathscr{E}_{k}=\lim _{n \rightarrow \infty} \sigma_{k, n}
$$

where $\sigma=\sigma_{k, n}$ is the real root of the equation

$$
\sum_{1 \leqslant a_{1}, a_{2}, \ldots, a_{n} \leqslant k} Q\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{-2 \sigma}=1
$$

and $Q()$ denotes Euler's continuant polynomial. (These are multivariate polynomials, defined by $Q()=1, Q\left(a_{1}\right)=a_{1}$, and

$$
Q\left(a_{1}, a_{2}, \ldots a_{n}\right)=a_{n} Q\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)+Q\left(a_{1}, a_{2}, \ldots, a_{n-2}\right)
$$

for $n \geqslant 2$.)

Good also obtained the estimate $.5306<\operatorname{dim} \mathscr{E}_{2}<.5320$. This was improved by Bumby [48] in 1985 to $.5312 \leqslant \operatorname{dim} \mathscr{E}_{2} \leqslant .5314$. More recently, Hensley [140] showed that $.53128049<\operatorname{dim} \mathscr{E}_{2}<.53128051$. For other results on the Hausdorff dimension of \mathscr{E}_{k} and related sets, see Jarník [153]; Besicovitch [30]; Rogers [262]; Baker and Schmidt [21]; Hirst [147, 148]; Billingsley and Henningsen [32]; Cusick [63, 64, 65]; Pollington [245]; Kaufman [158]; Marion [202]; Gardner and Mauldin [115]; Ramharter [253, 254]; and Hensley [139, 141, 308, 309].

7. Schmidt's Game

W. M. Schmidt [270] introduced the following two-player game, called an (α, β) game: let α, β be real numbers with $0<\alpha, \beta<1$. First Bob chooses a closed interval on the real line, called B_{1}. Then Alice chooses a closed interval $A_{1} \subset B_{1}$, such that the length of A_{1} is α times the length of B_{1}. Then Bob chooses a closed interval $B_{2} \subset A_{1}$, such that the length of B_{2} is β times the length of A_{1}, and so on. If the intersection of all the intervals A_{i} is a number with bounded partial quotients, then Alice is declared the winner; otherwise Bob is declared the winner.

Schmidt showed that if $0<\alpha<1 / 2$, then Alice always has a winning strategy for this game. This is somewhat surprising, since as we have seen above, the set \mathscr{E} of numbers with bounded partial quotients has Lebesgue measure 0 .

Using the theory of (α, β) games, Schmidt also reproved the result of Jarník that \mathscr{E} has Hausdorff dimension 1.

Several papers have proved other results on (α, β) games: see Schmidt [271]; Freiling [109, 110]; and Dani [70, 71, 72]. Also see Schmidt [272, Chapter 3].

8. Hall's theorem

If S and T are sets, then by $S+T$ we mean the set

$$
\{s+t \mid s \in S, t \in T\}
$$

Similarly, by $S \cdot T$ we mean the set

$$
\{s t \mid s \in S, t \in T\}
$$

If S is a set of Lebesgue measure zero, then it is quite possible for $S+S$ to have positive measure. For example, if C denotes the Cantor set (numbers
in $[0,1]$ containing only 0 's and 2 's in their ternary expansion), then C has measure 0 , and it is not hard to show that $C+C=[0,2]$; see Borel [40] or Pavone [233]. The result is due to Steinhaus [310]; I am most grateful to G. Myerson for bringing this to my attention.

As we have seen above, the set \mathscr{B}, and hence each \mathscr{B}_{k}, also has Lebesgue measure zero. In 1947 Hall proved the following theorem [126]:

THEOREM 3. Every real number x can be written as $x=y+z$, where $y, z \in \mathscr{B}_{4}$. Every real number $x \geqslant 1$ can be written as $x=y z$, where $y, z \in \mathscr{B}_{4}$.

An exposition of Hall's result can be found in Cusick and Flahive [67].
Using the notation of the first paragraph of this section, we could rephrase the statement of Hall's theorem as follows: $\mathscr{B}_{4}+\mathscr{B}_{4}=\mathbf{R}$, and $[1, \infty) \subseteq \mathscr{B}_{4} \cdot \mathscr{B}_{4}$.

In 1973, Cusick [61] proved that $\mathscr{B}_{3}+\mathscr{B}_{3}+\mathscr{B}_{3}=\mathbf{R}$, and $\mathscr{B}_{2}+\mathscr{B}_{2}$ $+\mathscr{B}_{2}+\mathscr{B}_{2}=\mathbf{R}$. He also observed that $\mathscr{B}_{3}+\mathscr{B}_{3} \neq \mathbf{R}$, and $\mathscr{B}_{2}+\mathscr{B}_{2}$ $+\mathscr{B}_{2} \neq \mathbf{R}$. These results were independently discovered by Diviš [90] and J. Hlavka ${ }^{1}$) [149]. Hlavka also showed that $\mathscr{B}_{3}+\mathscr{B}_{4}=\mathbf{R}$, and similar results. Apparently the status of $\mathscr{B}_{2}+\mathscr{B}_{5}$ and $\mathscr{B}_{2}+\mathscr{B}_{6}$ is still open.

For results of a similar character, see Cusick [60]; Cusick and Lee [68]; and Bumby [47].

9. EXPLICIT EXAMPLES OF TRANSCENDENTAL NUMBERS with bounded partial quotients

In Lang [179] we find the following statement:
No simple example of [irrational] numbers of constant type, other than the one given above [real quadratic irrationals], is known. The best guess is that there are no other "natural" examples.
(Also see Lang [180].)
However, in 1979 Kmošek [167] and Shallit [275] independently discovered the following "natural" example of numbers of constant type.

Theorem 4. Let $n \geqslant 2$ be an integer and define

$$
\begin{equation*}
f(n)=\sum_{i \geqslant 0} n^{-2^{i}} \tag{1}
\end{equation*}
$$

[^2]Then $K(f(2))=6$ and $K(f(n))=n+2$ for $n \geqslant 3$.
For example, we have

$$
f(3)=[0,2,5,3,3,1,3,5,3,1,5,3,1, \ldots]
$$

It is also possible to show that $K(n f(n))=n$.
For related articles, see Köhler [171]; Pethö [237]; Shallit [277], and Wu [305]. (An aside: Mignotte [213] proved that there exists a constant c such that

$$
\left|f(2)-\frac{p}{q}\right|>\frac{c}{q^{3}}
$$

for all integers p and odd q. However, by combining Theorems 1 and 4, we get the improved bound

$$
\left|f(2)-\frac{p}{q}\right|>\frac{1}{8 q^{2}}
$$

for all integers $q \geqslant 1$. Also see Derevyanko [86].)
Kempner [159] had proved in 1916 that $f(n)$ is transcendental for all integers $n \geqslant 2$. Mahler [200] also proved this result; also see Loxton and van der Poorten [195].
(Kempner seems to be responsible for a mistake that has been perpetuated in several papers. He called the series in Eq. (1) above the Fredholm series, in the belief that Fredholm studied it. Kempner referred to a paper of MittagLeffler [215], but this paper discusses the series

$$
\sum_{i \geqslant 0} x^{i^{2}},
$$

which is very different. An examination of Fredholm's collected works [108] did not turn up any papers on the series in Eq. (1). This mistaken attribution was repeated by Schneider in his classic work on transcendental numbers [273], and then repeated by other authors; see, e.g. Pethö [237]; Mendès France [207].)

Mendès France pointed out an intriguing connection between the continued fraction expansion of $f(n)$ and iterated paperfolding, which we now describe briefly.

If we fold a piece of paper in half repeatedly, say n times, always folding right hand over left hand, we get a series of $2^{n}-1$ hills and valleys upon unfolding. Let us denote the hills by +1 and the valleys by -1 . Letting X_{n} be the sequence of folds so obtained, it is not hard to see that

$$
X_{n+1}=X_{n} \quad(+1) \quad-X_{n}^{R},
$$

where juxtaposition denotes concatenation, and by X_{n}^{R} we mean the sequence X_{n} taken in reverse order.

More generally, we can choose to introduce a hill or valley at the nth fold. If we denote the nth fold by a_{n}, then after folding with $a_{1}, a_{2}, \ldots, a_{n}$, upon unfolding we get the sequence

$$
F_{a_{1}}\left(F_{a_{2}}\left(\cdots\left(F_{a_{n}}(\varepsilon)\right) \cdots\right)\right),
$$

where ε denotes a sequence of length 0 , and F_{i} is the folding map, given by

$$
F_{i}(X)=X \quad i \quad-X^{R} .
$$

Mendès France observed that the continued fraction expansion of $f(n)$ could be written in terms of the folding map F_{i}; see Mendès France [207]; Blanchard and Mendès France [33]; Dekking, van der Poorten and Mendès France [80]; Shallit [276]; and Mendès France and Shallit [209].

More recently, van der Poorten and Shallit [248] discovered a closer connection between paperfolding and continued fractions. Suppose we consider the formal power series

$$
g(X)=\sum_{k \geqslant 0} X^{-2^{k}} \in \mathbf{Q}((1 / X)) .
$$

Then $X g(X)$ can be expanded as a continued fraction, and it is not hard to prove that

$$
X g(X)=\left[1, F_{-X}\left(F_{-X}\left(\cdots\left(F_{-X}(X)\right) \cdots\right)\right)\right] ;
$$

i.e. the continued fraction is given by the iterated folding of a piece of paper!

Using this result, we can prove the following theorem: let $\varepsilon_{0}=1$ and $\varepsilon_{i}= \pm 1$ for $i \geqslant 1$. Then the continued fraction expansion of each of the numbers

$$
2 \sum_{i \geqslant 0} \varepsilon_{i} 2^{-2^{i}}
$$

consists solely of 1 's and 2 's. For example,

$$
2 f(2)=[1,1,1,1,2,1,1,1,1,1,1,1,2, \ldots]
$$

Let us now turn to other constructions of transcendental numbers with bounded partial quotients.

Since the set \mathscr{B} is uncountable, while the set of algebraic numbers is countable, it is clear that almost all elements of \mathscr{B} are transcendental. However, many investigators were concerned with the explicit construction of transcendental elements of \mathscr{B}. For example, Baker proved that

$$
[0,1,2,2,1,1,1,1, \overbrace{2, \ldots, 2}, \overbrace{1, \ldots, 1}^{8}, \overbrace{2, \ldots, 2}^{16}
$$

and similar numbers are transcendental; see [16]. Previously, Maillet had given similar examples, but not explicitly [201]. Other examples have been recently given by Davison [79]. Also see Grant [120].

10. '"Quasi-Monte-Carlo'" Methods and Zaremba's Conjecture

In this section we briefly discuss some integration methods that depend on rational numbers with small partial quotients. There is a large literature on this subject; the interested reader can start with the comprehensive survey of Niederreiter [220].
(This section is tied to the main subject in the following manner: we wish to construct explicitly rational numbers with small partial quotients. One way to do this is to take an irrational number with bounded partial quotients and employ the sequence of convergents.)

In s-dimensional "quasi-Monte Carlo" integration, we approximate the integral

$$
\begin{equation*}
\int_{[0,1]^{s}} f(\mathbf{t}) d \mathbf{t} \tag{2}
\end{equation*}
$$

by the sum

$$
\frac{1}{n} \sum_{1 \leqslant k \leqslant n} f\left(\mathbf{x}_{k}\right),
$$

where $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ is a set of points in $[0,1]^{s}$.
The goal of quasi-Monte Carlo integration is to choose the points $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ so as to minimize the error in the approximation.

In the method of good lattice points, we assume that the function f is periodic of period 1 in each variable. We choose a large fixed integer m and a special lattice point $\mathbf{g} \in \mathbf{Z}^{s}$. Then we approximate the integral (2) with the sum

$$
\frac{1}{m} \sum_{1 \leqslant k \leqslant m} f\left(\frac{k}{m} \mathbf{g}\right)
$$

"Good" lattice points \mathbf{g} make the error in this approximation relatively small.
Let $\mathbf{h}=\left(h_{1}, h_{2}, \ldots, h_{s}\right)$ and define

$$
r(\mathbf{h})=\prod_{1 \leqslant i \leqslant s} \max \left(1,\left|h_{i}\right|\right)
$$

Also define

$$
\rho(\mathbf{g}, m)=\min _{\mathbf{h}} r(\mathbf{h}),
$$

where \mathbf{h} ranges over all lattice points with

$$
\frac{-m}{2}<h_{j} \leqslant \frac{m}{2},
$$

$\mathbf{h} \neq 0$, and $\mathbf{h} \cdot \mathbf{g} \equiv 0(\bmod m)$. It can be shown that good lattice points correspond to large values of ρ.

Now consider the 2-dimensional case, i.e. $s=2$. Let $\mathbf{g}=(1, g)$ with $\operatorname{gcd}(g, m)=1$. Then Zaremba [306] showed that

$$
\frac{m}{K(g / m)+2} \leqslant \rho(\mathbf{g}, m) \leqslant \frac{m}{K(g / m)} .
$$

Hence good lattice points correspond to rationals g / m with small partial quotients.

For other connections with numerical integration, see the papers of Haber and Osgood [125] and Zaremba [307].

We now turn to Zaremba's conjecture. Define

$$
Z(n)=\min _{\substack{1 \leqslant j \leqslant n \\ \operatorname{gcd}(j, n)=1}} K\left(\frac{j}{n}\right) .
$$

Then Zaremba [307] conjectured that $Z(n) \leqslant 5$.
Borosh [41] showed that Zaremba's conjecture is true for $1 \leqslant n \leqslant 10000$. In this range, only two integers have $Z(n)=5$, namely $n=54$ and $n=150$. Twenty-five integers in this range have $Z(n)=4$; the smallest is 6 and the largest is 6234. A brief discussion of Zaremba's conjecture up to 1978 can be found in [220].

Borosh and Niederreiter [42] suggested that in fact $Z(n) \leqslant 3$ for all sufficiently large n. The most extensive computation seems to be that of Knuth, cited in [42], which verified that $Z(n) \leqslant 3$ for $10000 \leqslant n \leqslant 3200000$.

Zaremba's conjecture is true for certain infinite sequences. For example, we certainly have $Z\left(F_{k}\right)=1$ for $k \geqslant 1$, where F_{k} is the k-th Fibonacci
number. It follows from the results of Kmošek and Shallit cited above that $Z\left(2^{2^{k-1}}\right) \leqslant 2$ for all $k \geqslant 0$.

Borosh and Niederreiter [42] showed that $Z\left(2^{k}\right) \leqslant 3$ for $6 \leqslant k \leqslant 35$.
More recently, Niederreiter [223] proved that Zaremba's conjecture holds for all powers of 2 ; in fact, we have $Z\left(2^{k}\right) \leqslant 3$ for all $k \geqslant 0$.

Larcher [182, Corollary 2] proved the existence of a constant c, such that for every $n \geqslant 1$ there exists a positive integer $j \leqslant n$, relatively prime to n, such that if

$$
j / n=\left[0, a_{1}, a_{2}, \ldots, a_{m}\right],
$$

then

$$
\sum_{1 \leqslant i \leqslant m} a_{i}<c(\log n)(\log \log n)^{2} .
$$

This is close to the best possible bound $O(\log n)$, which was reportedly conjectured by L. Moser (although I do not know a reference); the bound would be a consequence of Zaremba's conjecture.

For other results connected with Zaremba's conjecture, see the papers of Cusick [63, 66]; Niederreiter [224]; Sander [268]; and Hensley [315].

11. Properties of the sequence $n \theta(\bmod 1)$

If θ is a real number, by $\theta(\bmod 1)$ we mean $\{\theta\}=\theta-[\theta]$, the fractional part of θ.

It has been known at least since Bernoulli [26] that properties of the sequence $\theta, 2 \theta, 3 \theta, \ldots$ are intimately connected with the continued fraction expansion for θ. The distribution of $n \theta(\bmod 1)$ is a vast subject, and we restrict ourselves to mentioning several results connected with numbers of constant type.

Let θ be an irrational number, and let

$$
0=a_{0}<a_{1}<a_{2}<\cdots<a_{n}<a_{n+1}=1
$$

be the sequence of points $\{k \theta\}, 1 \leqslant k \leqslant n$, arranged in ascending order. Define

$$
\delta_{\theta}(n)=\max _{1 \leqslant i \leqslant n+1} a_{i}-a_{i-1}
$$

Then Graham and van Lint [119] proved the following theorem:

$$
\limsup _{n \rightarrow \infty} n \delta_{\theta}(n)<\infty
$$

if and only if θ is a number of constant type.
Boyd and Steele [43] introduced the function $l_{n}^{+}(\theta)$, the length of the longest increasing subsequence of $\{\theta\},\{2 \theta\}, \ldots,\{n \theta\}$. They proved that

$$
\underset{n \rightarrow \infty}{\liminf } \frac{l_{n}^{+}(\theta)}{\sqrt{n}}>0
$$

and

$$
\limsup _{n \rightarrow \infty} \frac{l_{n}^{+}(\theta)}{\sqrt{n}}<\infty
$$

if and only if the partial quotients of θ are bounded.
For some other results on $\{n \theta\}$ connected with bounded partial quotients, see Ennola [100, 101]; Lesca [185]; Drobot [92]; and Strauch [288].

12. DISCREPANCY AND DISPERSION

Let $\omega=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ be a sequence of real numbers. Let $I \subseteq[0,1)$ be an interval and let $|I|$ denote its length. Define the counting function $S_{n}(I)=S_{n}(I, \omega)$ as the number of terms $x_{k}, 1 \leqslant k \leqslant n$, for which $\left\{x_{k}\right\} \in I$.

The discrepancy $D_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a measure of how much the sequence $x_{1}, x_{2}, \ldots, x_{n}$ deviates from a uniform distribution. It is defined as follows:

$$
D_{n}(\omega)=D_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sup _{I \subseteq[0,1)}\left|\frac{S_{n}(I, \omega)}{n}-|I|\right| .
$$

Now consider the discrepancy of the sequence $\omega=(\theta, 2 \theta, 3 \theta, \ldots)$. If θ has bounded partial quotients, then the discrepancy of ω is small. In particular, we have the following estimate: If $K(\theta) \leqslant k$, then

$$
n D_{n}(\omega) \leqslant 3+\left(\frac{1}{\log \alpha}+\frac{k}{\log (k+1)}\right) \log n
$$

for $\alpha=\frac{1}{2}(1+\sqrt{5})$. See, for example, Kuipers and Niederreiter [173].

For other results connecting discrepancy and the boundedness of the partial quotients, see the papers of Niederreiter [218] and Dupain and Sós [94, 95]. Also see Beck and Chen [25] and Richert [258].

We can also consider the so-called L^{2} discrepancy, T_{n}, defined as follows: let

$$
R_{n}(t)=\frac{S_{n}([0, t), \omega)}{n}-t
$$

and put

$$
T_{n}(\omega)=\left(\int_{0}^{1} R_{n}^{2}(t) d t\right)^{1 / 2}
$$

It is possible to generalize the definitions of D_{n} and T_{n} to the multidimensional case, though we omit the details. By appealing to numbers with bounded partial quotients, Davenport [73] constructed sequences in two dimensions with low L^{2} discrepancy. Also see Proinov [250, 251, 252].

Another measure connected with sequences is called dispersion. Let $\omega=\left(x_{1}, x_{2}, \ldots\right)$ and define the dispersion

$$
d_{n}(\omega)=\sup _{x \in[0,1]} \min _{1 \leqslant k \leqslant n}\left|x-x_{k}\right|,
$$

essentially half the distance between the most widely separated points of the sequence $x_{1}, x_{2}, \ldots, x_{n}$. (Compare with the function $\delta_{\theta}(n)$ in Section 11.)

Niederreiter [221] considered the dispersion of the sequence $\{n \theta\}$. He showed that if θ has bounded partial quotients, then $d_{n}(\omega)=O(1 / n)$. He also gave a more detailed estimate, showing that $d_{n}(\omega)$ is approximately $K(\theta) / 4 n$. Also see Drobot [93] and Larcher [311].

13. Connections with Ergodic Theory

Let θ be irrational, $\omega=(\theta, 2 \theta, \ldots)$ and $S_{n}(I, \omega)$ be defined as in the previous section. Veech [293] developed connections between S_{n} and ergodic theory. We mention one result that is number-theoretic in nature. Let $x_{n}=S_{n}(I, \omega) \bmod 2$, and define

$$
\mu_{\theta}(I)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{1 \leqslant k \leqslant n} x_{k},
$$

if the limit exists. Then Veech showed that $\mu_{\theta}(I)$ exists for all $I \subseteq[0,1)$ if and only if the partial quotients of θ are bounded.

For other connections with ergodic theory, see the papers of Stewart [286]; del Junco [154]; Dani [70, 72]; and Baggett and Merrill [14, 15].

14. Pseudo-random Number Generation

Lehmer [183] introduced the linear congruential method for pseudorandom number generation. Let X_{0}, m, a, c be given, and define

$$
X_{k+1}=a X_{k}+c \quad(\bmod m),
$$

for $k \geqslant 0$. For this to be a good source of 'random'" numbers, we want the sequence X_{k} to be uniformly distributed, as well as the sequence of pairs $\left(X_{k}, X_{k+1}\right)$, triples, etc.

A test for randomness called the serial test on pairs (X_{k}, X_{k+1}) amounts to the two-dimensional version of the discrepancy mentioned above in Section 12. This turns out to be essentially the function $\rho(\mathbf{g}, m)$ defined in Section 10. Thus linear congruential generators that pass the pairwise serial test arise from rationals a / m having small partial quotients in their continued fraction expansion. See the papers of Dieter [87, 88]; Niederreiter [219, 220, 222]; Knuth [170, Section 3.3.3]; and Borosh and Niederreiter [42].

15. Formal Language Theory

Let $w=w_{0} w_{1} w_{2} \cdots$ be an infinite word over a finite alphabet. We say that the finite word $x=x_{0} x_{1} \cdots x_{n}$ is a subword of w if there exists $m \geqslant 0$ such that $w_{m+i}=x_{i}$, for $0 \leqslant i \leqslant n$. We say that w is k-th power free if x^{k} is never a subword of w, for all nonempty words x. Here is a classical example: let $s(n)$ denote the number of 1's in the binary expansion of n. Then the infinite word of Thue-Morse

$$
t=t_{0} t_{1} t_{2} \cdots=0110100110010110 \cdots,
$$

defined by $t_{n}=s(n) \bmod 2$, is cube-free.
Another way to define infinite words is as the fixed point of a homomorphism on a finite alphabet. For example, the Thue-Morse word t is a fixed point of φ, where $\varphi(0)=01$ and $\varphi(1)=10$.

A famous infinite word which has been extensively studied is the Fibonacci word

$$
f=101101011011010 \cdots \text {; }
$$

it is a fixed point of the homomorphism μ, where $\mu(1)=10$ and $\mu(0)=1$. For some of the properties of this word, see the survey of Berstel [28]. Karhumäki showed that f is fourth-power-free; see [155].

Now we define some special infinite words. Let $\theta \in[0,1)$ and define the infinite word $w=w_{1} w_{2} w_{3} \cdots$ as follows:

$$
w_{n}=[(n+1) \theta]-[n \theta] .
$$

If we set $\theta=(\sqrt{5}-1) / 2$, we get the Fibonacci word f. Recently, Mignosi [212] proved the following theorem: there exists a k such that w is k-th powerfree, if and only if θ has bounded partial quotients. (One direction of Mignosi's theorem follows easily from two different descriptions of w in terms of the continued fraction expansion for θ; see Markoff [205]; Stolarsky [287]; and Fraenkel, Mushkin, and Tassa [107].)

16. Other Results

Let θ be an irrational number of constant type. Let p_{n} / q_{n} denote the n-th convergent to θ.

For n a positive integer, let $P(n)$ denote the largest prime factor of n. Then given $\varepsilon>0$, there exists a constant $c=c(\theta ; \varepsilon)$ such that the number of positive integers $n \leqslant x$ with

$$
P\left(q_{n}\right)<c \log \log q_{n}
$$

is at most εx. This is a result of Shorey [279].
Schmidt [269] showed that if f_{1}, f_{2}, \ldots is a sequence of differentiable functions whose derivatives are continuous and vanish nowhere, then there are uncountably many numbers θ such that all the numbers $f_{1}(\theta), f_{2}(\theta), \ldots$ have bounded partial quotients. For related results, see Davenport [74, 75] and Cassels [51].

Other topics connected with real numbers with bounded partial quotients not discussed in this survey include transcendental number theory (see Baker [17]; Flicker [106]; Bundschuh [49]; Angell [11]), Fibonacci hashing on digital computers (see Knuth [169, pp. 510-512]), dynamical systems and global analysis (see Deligne [81]; Katznelson [156]; Herman [142, 143, 144, 145, 146]; Meyer [211]; de la Llave [193, 194]; MacKay [196, 197]; MacKay, Meiss, and

Percival [198]; Greene and MacKay [121]; Gutierrez [122]; Rand [255]; Stark [285]; Katznelson and Ornstein [157]; MacKay and Stark [199]; Sinai and Khanin [282]), and in the proof of a theorem connected with Kemperman's inequality (see Laczkovich [176]). For a connection with the "entropy" of a curve, see Mendès France [208].

17. Related Results

In this survey, we have restricted our attention to real numbers with bounded partial quotients. However, we would be remiss to omit mentioning the work on formal power series over a finite field having partial quotients of bounded degree. See the papers of Baum and Sweet [23, 24]; Mills and Robbins [214]; Mesirov and Sweet [210]; Mullen and Niederreiter [216]; Niederreiter [225, 227, 226]; Allouche [8]; and Allouche, Mendès France, and van der Poorten [10].

It is perhaps appropriate to mention the following question of Mendès France, which asks (roughly) if a formal power series over a finite field is algebraic and the partial quotients in its continued fraction expansion are of bounded degree, then must those partial quotients be accepted by a finite automaton? For a more precise version of this conjecture, see the paper of Allouche, Betrema, and Shallit [9]. This paper also gives some examples for which the answer to Mendès France's question is positive. However, the partial quotients in the continued fraction for the power series of Baum and Sweet [23], which were later described explicitly by Mills and Robbins [214], do not seem to be accepted by a finite automaton.

18. ACKNOWLEDGMENTS

The author would like to express his thanks to the library staff at Darthmout College and the University of Waterloo, for their invaluable assistance in locating some of the more obscure references presented here.

Thanks to A. Baker, J. L. Davison, T. Cusick, K. Dilcher, H. Niederreiter, A. J. van der Poorten, M. Mendès France, R. Bumby, D. Yang, and A. Pethö for providing pointers to the literature. I. Vardi and J. C. Lagarias read an early version of this paper and made many useful suggestions. A. Bultheel and B. Swartz provided a reference to the work of Cotes. I am most grateful to J. Wolfskill, who pointed out that the results in Davenport and Roth [77] could be made effective.

REFERENCES

[1] Akritas, A. G. On the solution of polynomial equations using continued fractions. Inform. Process. Lett. 9 (1979), 182-184.
[2] - The fastest exact algorithms for the isolation of the real roots of a polynomial equation. Computing 24 (1980), 299-313. MR $82 \mathrm{e} \# 65054$.
[3] - An implementation of Vincent's theorem. Numer. Math. 36 (1980), 53-62. MR 82d \# 26009.
[4] - Vincent's forgotten theorem, its extension and application. Comput. Math. Appl. 7 (1981), 309-317. MR 83e \# 65088.
[5] —— There is no "Uspensky's method". In Symsac '86-Proceedings of the 1986 Symposium on Symbolic and Algebraic Manipulation (Waterloo, Ont., Canada, July 21-23, 1986), pages 88-90. ACM, New York, 1986.
[6] Akritas, A. G. and K. H. Ng. Exact algorithms for polynomial real root approximation using continued fractions. Computing 30 (1983), 63-76. MR 84d \# 65031.
[7] -- Polynomial real root approximation using continued fractions. Internat. J. Comput. Math. 14 (1983), 59-71. MR 84 m \# 65062.
[8] Allouche, J.-P. Sur le développement en fraction continue de certaines séries formelles. C. R. Acad. Sci. Paris 307 (1988), 631-633. MR 89 m \# 11067.
[9] Allouche, J.-P., J. Betrema and J. Shallit. Sur des points fixes de morphismes d'un monoïde libre. RAIRO Informatique Théorique et Applications 23 (1989), 235-249.
[10] Allouche, J.-P., M. Mendès France and A. J. van der Poorten. An infinite product with bounded partial quotients. Technical Report 90-0049, Macquarie Mathematics Reports, Macquarie University, April 1990. To appear, Acta Arith. 59 (1992).
[11] Angell, D. The limiting behaviour of certain sequences of continued fractions. Bull. Austral. Math. Soc. 38 (1988), 67-76. MR 90a \# 11015.
[12] Babenko, K. I. On a problem of Gauss. Dokl. Akad. Nauk SSSR 238 (1978), 1021-1024. (In Russian); English translation in Soviet Math. Dokl. 19 (1978), 136-140. MR 57 \# 12436.
[13] Babenko, K. I. and S. P. Jur'ev. On the discretization of a problem of Gauss. Dokl. Akad. Nauk SSSR 240 (1978), 1273-1276. (In Russian); English translation in Soviet Math. Dokl. 19 (1978), 731-735. MR 81h \# 65015.
Baggett, L. and K. Merrill. Representations of the Mautner group and cocycles of an irrational rotation. Michigan Math. J. 33 (1986), 221-229. MR 87h \# 22011.
[15] —— Equivalence of cocycles under an irrational rotation. Proc. Amer. Math. Soc. 104 (1988), 1050-1053. MR $89 \mathrm{~h} \# 28022$ b.
[16] Baker, A. Continued fractions of transcendental numbers. Mathematika 9 (1962), 1-8. MR 26 \# 2394.
[17] —— On Mahler's classification of transcendental numbers. Acta Math. 111 (1964), 97-120. MR 28 \# 1171.
[18] —— Rational approximations to $\sqrt[3]{2}$ and other algebraic numbers. Quart J. Math. Oxford 15 (1964), 375-383. MR 30\# 1977.
[19] —— Rational approximations to certain algebraic numbers. Proc. Lond. Math. Soc. 14 (1964), 385-398. MR 28 \# 5029.
[20] - A Concise Introduction to the Theory of Numbers. Cambridge University Press, 1984. MR 86f \# 11001.
[21] Baker, A. and W. M. Schmidt. Diophantine approximation and Hausdorff dimension. Proc. Lond. Math. Soc. 21 (1970), 1-11. MR 42 \# 5916.
[22] Baker, A. and C. L. Stewart. On effective approximations to cubic irrationals. In A. Baker, editor, New Advances in Transcendence Theory, pages 1-24. Cambridge Univ. Press, 1988. MR 89m \# 11065.
[23] Baum, L. E. and M. M. Sweet. Continued fractions of algebraic power series in characteristic 2. Ann. Math. 103 (1976), 593-610. MR 53\# 13127.
[24] —— Badly approximable power series in characteristic 2. Ann. Math. 105 (1977), 573-580. MR 56 \# 2928.
[25] ВЕСк, J. and W. W. L. Chen. Irregularities of Distribution. Cambridge University Press, 1987.
[26] Bernoulli, J. III. Recueil pour les Astronomes, Sur une nouvelle espèce de calcul, volume I, pages 255-284. Berlin, 1772.
[27] Bernstein, F. Über eine Anwendung der Mengenlehre auf ein aus der Theorie der säkularen Störungen herrührendes Problem. Math. Ann. 71 (1912), 417-439.
[28] Berstel, J. Fibonacci words - a survey. In G. Rozenberg and A. Salomaa, editors, The Book of L, pages 13-27. Springer-Verlag, 1986.
[29] Berštein, A. A. On necessary and sufficient conditions for the occurrence of Markov spectrum points in the Lagrange spectrum. Dokl. Akad. Nauk SSSR 191 (1970), 971-973. (In Russian); English translation in Soviet Math. Dokl. 11 (1970), 463-466. MR 41 \# 3403.
[30] Besicovitch, A. S. Sets of fractional dimensions (IV): On rational approximation to real numbers. J. London Math. Soc. 9 (1934), 126-131.
[31] Billingsley, P. Ergodic Theory and Information. John Wiley \& Sons, New York, 1965.
[32] Billingsley, P. and I. Henningsen. Hausdorff dimension of some continued-fraction sets. Z. Wahrscheinlichkeitstheorie verw. Gebiete 31 (1975), 163-173. MR 51 \# 5535.
[33] Blanchard, A. and M. Mendes France. Symétrie et transcendance. Bull. Sci. Math. 106 (1982), 325-335. MR 84d \# 10041.
[34] Blinov, I. N. and M. G. Rabinovich. Efficient estimates of the denominators of the convergents of continued fractions of algebraic numbers. Mat. Zametki 40 (1986), 289-309. (In Russian); English translation in Math. Notes 40 (1986), 667-680. MR 88d \# 11064.
[35] Bombieri, E. On the Thue-Siegel-Dyson theorem. Acta Math. 148 (1982), 255-296. MR 83m \# 10052.
[36] Bombieri, E. and J. Mueller. On effective measures of irrationality for $\sqrt{r} \frac{a}{b}$ and related numbers. J. Reine Angew. Math. 342 (1983), 173-196. MR $84 \mathrm{~m} \# 10023$.
Bombieri, E. and A. J. van der Poorten. Continued fractions of algebraic numbers. Macquarie Mathematics Reports 86-0070, School of Mathematics and Physics, Macquarie University, January 1986.
[38] Borel, E. Les probabilités dénombrables et leurs applications arithmétiques. Rend. Circ. Mat. Palermo 27 (1909), 247-271.
[39] —— Sur un problème de probabilités relatif aux fractions continues. Math. Ann. 72 (1912), 578-584.
[40] - Eléments de la Théorie des Ensembles. Editions Albin Michel, Paris, 1949.
[41] Borosh, I. Rational continued fractions with small partial quotients. Notices Amer. Math. Soc. 23 (1976), A-52. Abstract 731-10-29.
[42] Borosh, I. and H. Niederreiter. Optimal multipliers for pseudo-random number generation by the linear congruential method. BIT 23 (1983), 65-74. MR 84e \# 65012.
[43] Boyd, D. W. and J. M. Steele. Monotone subsequences in the sequence of fractional parts of multiples of an irrational. J. Reine Angew. Math. 306 (1979), 49-59. MR 80h \# 10044.
[44] Brezinski, C. History of Continued Fractions and Padé Approximants. Volume 12 of Springer Series in Computational Mathematics. SpringerVerlag, 1991.
[45] Brodén, T. Wahrscheinlichkeitsbestimmungen bei der gewöhnlichen Kettenbruchentwickelung reeler Zahlen. Öfversigt af Kongl. VetenskapsAkademiens Förhandlingar (Stockholm) 57 (1900), 239-266.
[46] Bryuno, A. D. Continued fraction expansion of algebraic numbers. Zh. Vychisl. Mat. i Mat. Fiz. 4(2) (1964), 211-221. (In Russian); English translation in U.S.S.R. Comput. Math. Math. Phys. 4(2) (1964), 1-15.
Bumby, R. T. The Markov spectrum. In C. F. Osgood, editor, Diophantine Approximation and its Applications, pages 25-28. Academic Press, New York, 1973. MR 52 \# 8045.
[48] —— Hausdorff dimension of sets arising in number theory. In D. V. Chudnovsky, G. V. Chudnovsky, H. Cohn, and M. B. Nathanson, editors, Number Theory, volume 1135 of Lecture Notes in Mathematics, pages 1-8. Springer-Verlag, 1985. MR 87a \# 11074.
[49] BundschuH, P. Über eine Klasse reeller transzendenter Zahlen mit explizit angebbarer g-adischer und Kettenbruch-Entwicklung. J. Reine Angew. Math. 318 (1980), 110-119. MR 82e \# 10061.
[50] Cantor, D., P. Galyean and H. Zimmer. A continued fraction algorithm for real algebraic numbers. Math. Comp. 26 (1972), 785-791. MR 48 \# 8456.
[51] Cassels, J. W. S. On a method of Marshall Hall. Mathematika 3 (1956), 109-110. MR 18-875.
[52] —— An Introduction to Diophantine Approximation. Cambridge University Press, 1957. MR 19-396.
[53] Chowla, S. D. Note on a trigonometric sum. J. London Math. Soc. 5 (1930), 176-178.
[54] —— Some problems of diophantine approximation (I). Math. Zeitschift 33 (1931), 544-563.
[55] Chudnovsky, G. V. On the method of Thue-Siegel. Ann. Math. 117 (1983), 325-382. MR 85 g \# 10058.
Churchhouse, R. F. Efficient computation of algebraic continued fractions. In Journées Algorithmiques (Ecole Norm. Sup., Paris, 1975), pages 23-32. Soc. Math. France, Paris, 1976. (Astérisque, n ${ }^{\circ}$ 38-39).
Churchhouse, R. F. and S. T. E. Muir. Continued fractions, algebraic numbers and modular invariants. J. Inst. Math. Appl. 5 (1969), 318-328. MR 41 \# 155.
Cotes, R. Logometria. Phil. Trans. Royal Soc. London 29 (1714), 5-45.
Cusick, T. W. Measures of diophantine approximation. Boll. Un. Mat. Ital. 3 (1970), 761-767. MR 46\#145.
[60] -- Sums and products of continued fractions. Proc. Amer. Math. Soc. 27 (1971), 35-38. MR $42 \# 4498$.
[61] —— On M. Hall's continued fraction theorem. Proc. Amer. Math. Soc. 38 (1973), 253-254. MR 46 \# 4980.
[62] - The connection between the Lagrange and Markoff spectra. Duke Math. J. 42 (1975), 507-517. MR 51 \# 10240.
[63] —— Continuants with bounded digits. Mathematika 24 (1977), 166-171. MR 57 \# 12413.
[64] —— Continuants with bounded digits, II. Mathematika 25 (1978), 107-109. MR 58 \# 16539.
[65] —— Continuants with bounded digits, III. Monatshefte Math. 99 (1985), 105-109. MR 86c \# 11050.
[66] —— Products of simultaneous approximations of rational numbers. Arch. Math. 53 (1989), 154-158. MR 90i \# 11071.
[67] Cusick, T. W. and M. E. Flahive. The Markoff and Lagrange Spectra. Volume 30 of Mathematical Surveys and Monographs. Amer. Math. Soc., 1989. MR 90i \# 11069.
[68] Cusick, T. W. and R. A. Lee. Sums of sets of continued fractions. Proc. Amer. Math. Soc. 30 (1971), 241-246. MR 44 \# 158.
[69] Cusick, T. W. and M. Mendès France. The Lagrange spectrum of a set. Acta Arith. 34 (1979), 287-293. MR 80i \# 10038a.
[70] Dani, S. G. Bounded orbits of flows on homogeneous spaces. Comment. Math. Helvetici 61 (1986), 636-660. MR 88i \# 22011.
[71] —— On orbits of endomorphisms of tori and the Schmidt game. Ergod. Theory \& Dynam. Sys. 8 (1988), 523-529. MR 90b \# 58145.
[72] —— On badly approximable numbers, Schmidt games and bounded orbits of flows. In M. M. Dodson and J. A. G. Vickers, editors, Number Theory and Dynamical Systems, volume 134 of London Mathematical Society Lecture Note Series, pages 69-86. Cambridge Univ. Press, 1989.
[73] Davenport, H. Note on irregularities of distribution. Mathematika 3 (1956), 131-135. MR 18 \# 566.
[74] —— A note on Diophantine approximation. In G. Szegö, C. Loewner, S. Bergman, M. M. Schiffer, J. Neyman, D. Gilbarg and H. Solomon, editors, Studies in Mathematical Analysis and Related Topics (Essays in Honor of George Pólya), pages 77-81. Stanford University Press, 1962. MR 26\#3671.
[75] —— A note on Diophantine approximation (II). Mathematika 11 (1964), 50-58. MR 29 \# 3432.
[76] —— A remark on continued fractions. Michigan Math. J. 11 (1964), 343-344. MR 29\# 5788.
[77] Davenport, H. and K. F. Roth. Rational approximations to algebraic numbers. Mathematika 2 (1955), 160-167. MR 17, 1060.
[78] Davis, N. and J. R. Kinney. Quadratic irrationals in the lower Lagrange spectrum. Canad. J. Math. 25 (1973), 578-584. MR 47 \# 8444.
[79] Davidson, J. L. A class of transcendental numbers with bounded partial quotients. In R. A. Mollin, editor, Number Theory and Applications, pages 365-371. Kluwer Academic Publishers, 1989.
[80] Dekking, M., A. van der Poorten and M. Mendès France. Folds! Math. Intell. 4 (1982), 130-138, 173-181, 190-195. (Errata in 5 (1983), 5.) MR 84f \# 10016abc.
[81] Deligne, P. Les difféomorphismes du cercle (d'après M. R. Herman). In Séminaire Bourbaki 1975/76, Exposé \# 477, volume 567 of Lecture

Notes in Mathematics, pages 99-121. Springer-Verlag, 1977. MR 56 \# 13291b.
[82] Delone, B. N. and D. K. Faddeev. The Theory of Irrationalities of the Third Degree. American Mathematical Society, Providence, R. I., 1964.
[83] Denjoy, A. Sur les fractions continues. C. R. Acad. Sci. Paris 202 (1936), 371-374.
[84] - Sur une formule de Gauss. C. R. Acad. Sci. Paris 202 (1936), 537-540.
[85] - Physique et métrique des ensembles. A propos d'une note de M. Paul Lévy. C. R. Acad. Sci. Paris 202 (1936), 1140-1142.
[86] Derevyanko, N. I. Approximation of the values of certain functions. Vest. Moskov. Univ. Mat. 44 (1989), 45-49. (In Russian); English translation in Moscow Univ. Math. Bulletin 44 (1989), 64-70. MR 90e \# 11105.
[87] Dieter, U. Pseudo-random numbers: the exact distribution of pairs. Math. Comp. 25 (1971), 855-883. MR 45 \# 7776.
[88] - Statistical interdependence of pseudo-random numbers generated by the linear congruential method. In S. K. Zaremba, editor, Applications of Number Theory to Numerical Analysis, pages 287-317. Academic Press, New York, 1972. MR 50 \# 6105.
[89] Dietz, B. On the gaps of the Lagrange spectrum. Acta Arith. 45 (1985), 59-64. MR 86h \# 11050 .
[90] Diviš B. On the sums of continued fractions. Acta Arith. 22 (1973), 157-173. MR 51 \# 8043.
[91] Doeblin, W. Remarques sur la théorie métrique des fractions continues. Compositio Math. 7 (1940), 353-371.
[92] Drobot, V. Uniform partitions of an interval. Trans. Amer. Math. Soc. 268 (1981), 151-160. MR $83 \mathrm{f} \# 10054$.
[93] - On dispersion and Markov constants. Acta. Math. Hung. 47 (1986), 89-93. MR 87k \# 11082.
[94] Dupain, Y. and V. T. Sós. On the one-sided boundedness of discrepancyfunction of the sequence $\{n \alpha\}$. Acta Arith. 37 (1980), 363-374. MR 82 c \# 10058.
[95] —— On the discrepancy of ($n \alpha$) sequences. In Topics in Classical Number Theory V. I, volume 34 of Colloq. Math. Soc. Janos Bolyai, pages 355-387. 1981. MR 87c \# 11065.
[96] Dyson, F. J. On the order of the magnitude of the partial quotients of a continued fraction. J. London Math. Soc. 18 (1943), 40-43.
[97] - The approximation to algebraic numbers by rationals. Acta Math. 79 (1947), 225-240. MR 9, 412.
[98] Dzenskevich, E. A. and A. P. Shapiro. On the expansion of irrationalities of third and fourth degree into a continued fraction. In Algorithmic and Numerical Problems in Algebra and Number Theory, pages 3-9. Akad. Nauk SSSR, Dalnevostochn. Otdel., Vladivostok, 1987. MR 90k \# 11083.
[99] EASTon, D. Effective irrationality measures for certain algebraic numbers. Math. Comp. 46 (1986), 613-622. MR 87 f \# 11047.
[100] Ennola, V. On the distribution of fractional parts of sequences. Ann. Univ. Turku. Ser. A, 91 (1966), MR $34 \# 4239$.
[101] —— On the distribution of fractional parts of sequences. II. Ann. Univ. Turku. Ser. A, 92 (1966). MR 34 \# 4240.
[102] Euler, L. De fractionibus continuis, dissertatio. Comment. Acad. Sci. Petrop. 9 (1737), 98-137. (=Opera Omnia, (1) 14, 187-215).
[103] Falconer, K. Fractal Geometry: Mathematical Foundations and Applications. John Wiley \& Sons, Chichester, 1990.
[104] FAĬZIEv, R. A certain sum that is connected with fractional parts. Dokl. Akad. Nauk. Tadžik 15 (1972), 15-17. MR 48 \# 6011.
[105] Feldman, N. I. An effective refinement of the exponent in Liouville's theorem. Izv. Akad. Nauk. SSSR Ser. Mat. 35 (1971), 973-990. (In Russian); English translation in Math. USSR Izvestija 5 (1971), 985-1002. MR 44 \# 6609.
[106] Flicker, Y. Z. Algebraic independence by a method of Mahler. J. Austral. Math. Soc. Ser. A, 27 (1979), 173-188. MR 80i \# 10043.
[107] Fraenkel, A. S., M. Mushkin and U. Tassa. Determination of [$n \theta$] by its sequence of differences. Canad. Math. Bull. 21 (1978), 441-446. 80d \# 10051.
Fredholm, I. Oeuvres Complètes. Litos Reprotyck, Malmö, 1955.
[109] Freiling, C. An answer to a question of Schmidt on (α, β) games. J. Number Theory 15 (1982), 226-228. MR 83j \# 10041.
[110] - - Some new games and badly approximable numbers. J. Number Theory 19 (1984), 195-202. MR 86e \# 11060.
[111] Freiman, G. A. Noncoincidence of the Markoff and Lagrange spectra. Mat. Zametki 3 (1968), 195-200. (In Russian); English translation in Math. Notes 3 (1968), 125-128. MR 37 \# 2695.
[112] Galambos, J. The distribution of the largest coefficient in continued fraction expansions. Quart. J. Math. Oxford 23 (1972), 147-151. MR 45 \# 8624.
[113] - The largest coefficient in continued fractions and related problems. In C. F. Osgood, editor, Diophantine Approximation and its Applications, pages 101-109. Academic Press, New York, 1973. MR 50 \# 4516.

Gardner, R. J. and R. D. Mauldin. On the Hausdorff dimension of a set of complex continued fractions. Illinois. J. Math. 27 (1983), 334-345. MR 84f \# 30008.
Gauss, C. F. Werke. Letter from Gauss to Laplace, January 30, 1812, volume X_{I}, pages 371-374. Königlichen Gesellschaft der Wissenschaften, Göttingen, 1917.
Gbur, M. E. (= Flahive). Accumulation points of the Lagrange and Markov spectra. Monatshefte Math. 84 (1977), 91-108. MR 56 \# 15569.
Good, I. J. The fractional dimensional theory of continued fractions. Proc. Cambridge Phil. Soc. 37 (1941), 199-228. (Corrigenda: 105 (1989), 607).
Graham, R. and J. H. van Lint. On the distribution of $n \theta \bmod$ 1. Canad. J. Math. 20 (1968), 1020-1024. MR 37 \# 4027.
[120] Grant, R. The converse of Liouville's theorem. Amer. Math. Monthly 98 (1991), 354.
[121] Greene, J. M. and R. S. MacKay. An approximation to the critical commuting pair for breakup of noble tori. Physics Letters A, 107 (1985), 1-4. MR $86 \mathrm{~g} \# 58055$.
Gutierrez, C. On the C^{r}-closing lemma for flows on the torus T^{2}. Ergod Theory \& Dynam. Sys. 6 (1986), 45-56. MR 87h \# 58193.
[123] Gyldén, H. Quelques remarques relatives à la représentation de nombres irrationnels au moyen des fractions continues. C. R. Acad. Sci. Paris 106 (1888), 1584-1587.
[124] —— Quelques remarques relatives à la représentation de nombres irrationnels au moyen des fractions continues. C. R. Acad. Sci. Paris 106 (1888), 1777-1781.
[125] Haber, S. and C. F. Osgood. On the sum $\Sigma\langle n \alpha\rangle^{-t}$ and numerical integration. Pacific J. Math. 31 (1969), 383-394. MR 41 \# 4801.
[126] Hall, M. Jr. On the sum and product of continued fractions. Ann. Math. 48 (1947), 966-993. MR 9, 226.
[127] Hardy, G. H. Collected Papers of G. H. Hardy, volume I. Oxford Univ. Press, 1966.
[128] Hardy, G. H. and J. E. Littlewood. Some problems of Diophantine approximation. In Proc. 5th International Congress of Mathematicians (1912), volume I, pages 223-229, Cambridge, 1913.
[129] —— Some problems of Diophantine approximation. Acta Math. 37 (1914), 155-191.
[130] —— Some problems of Diophantine approximation II. The trigonometrical series associated with the elliptic ϑ-functions. Acta Math. 37 (1914), 193-238.
[131] - Some problems of Diophantine approximation: a further note on the trigonometrical series associated with the elliptic theta-functions. Proc. Cambridge Phil. Soc. 21 (1922), 1-5.
[132] —— Some problems of Diophantine approximation: the lattice-points of a right-angled triangle. Proc. Lond. Math. Soc. 20 (1922), 15-36.
[133] —— Some problems of Diophantine approximation: the lattice-points of a right-angled triangle (second memoir). Abh. Math. Sem. Hamburg 1 (1922), 212-249.
[134] —— Some problems of Diophantine approximation: a series of cosecants. Bull. Calcutta Math. Soc. 20 (1930), 251-266.
[135] Hardy, G. H. and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, 5th edition, 1989.
[136] Hartman, S. Quelques propriétés ergodiques des fractions continues. Studia Math. 12 (1951), 271-278. MR 13-758.
[137] Hartman, S., E. Marczewski and C. Ryll-Nardzewski. Théorèmes ergodiques et leurs applications. Colloq. Math. 2 (1951), 109-123. MR 13-758.
[138] Heawood, P. J. The classification of rational approximations. Proc. Lond. Math. Soc. 20 (1922), 233-250.
[139] Hensley, D. The distribution of badly approximable numbers and continuants with bounded digits. In J.-M. de Koninck and C. Levesque, editors, Number Theory: Proceedings of the International Number Theory Conference held at Université Laval, July 5-18, 1987, pages 371-385. Walter de Gruyter, Berlin, 1989.

- The Hausdorff dimensions of some continued fraction Cantor sets. J. Number Theory 33 (1989), 182-198.
[141] —— The distribution of badly approximable rationals and continuants with bounded digits, II. J. Number Theory 34 (1990), 293-334.
[142] Hermann, M. R. Sur la conjugaison différentiable des difféomorphismes du cercle a des rotations. Publ. Math. I. H. E. S. (49) (1979), 5-233. MR 81h \# 58039.
[143] - Sur les difféomorphismes du cercle de nombre de rotation de type constant. In W. Beckner, A. P. Calderón, R. Fefferman and P. W. Jones,
editors, Conference on Harmonic Analysis in Honor of Antoni Zygmund, volume II, pages 708-725. Wadsworth International Group, Belmont, California, 1983. MR 86b \# 58070.
[144] —— Sur les courbes invariantes par les difféomorphismes de l'anneau, Vol. 1. Astérisque, n° 103-104, pages 23-32, 1983. Chapitre IV. MR 85 m \# 58062 .
[145] - Exemples de fractions rationnelles ayant une orbite dense sur la sphère de Riemann. Bull. Soc. Math. France 112 (1984), 93-142. MR 86d \# 58055.
[146] —— Sur les courbes invariantes par les difféomorphismes de l'anneau, Vol. 2. Astérisque, $n^{\circ} 144$, pages 1-243, 1986. MR $88 \mathrm{f} \# 58131$.
[147] Hirst, K. E. A problem in the fractional dimension theory of continued fractions. Quart. J. Math. Oxford 21 (1970), 29-35. MR 41 \# 3424.
[148] —— Continued fractions with sequences of partial quotients. Proc. Amer. Math. Soc. 38 (1973), 221-227. MR 47 \# 143.
[149] Hlavka, J. L. Results on sums of continued fractions. Trans. Amer. Math. Soc. 211 (1975), 123-134. MR 51 \# 12720.
[150] Hurwitz, A. Ueber die angenäherte Darstellung der Irrationalzahlen durch rationale Brüche. Math. Ann. 39 (1891), 279-284.
[151] Ivanov, V. A. A theorem of Dirichlet in the theory of Diophantine approximations. Mat. Zametki 24 (1978), 459-474, 589. (In Russian); English translation in Math. Notes 24 (1978), 747-755. MR $80 \mathrm{f} \# 10040$.
[152] Jarník, V. Zur metrischen Theorie der diophantischen Approximationen. Prace Mat.-Fiz. 36 (1928), 91-106.
[153] —— Diophantische Approximationen und Hausdorffsches Mass. Mat. Sbornik 36 (1929), 371-382.
[154] DEL Junco, A. A family of counterexamples in ergodic theory. Israel J. Math. 44 (1983), 160-188. MR 85b \# 28012.
[155] Karhumäki, J. On cube-free ω-words generated by binary morphisms. Disc. Appl. Math. 5 (1983), 279-297. MR 84j \# 03081.
[156] Katznelson, Y. Sigma-finite invariant measures for smooth mappings of the circle. J. d'Analyse Math. 31 (1977), 1-18. MR 58 \# 6161.
[157] Katznelson, Y. and D. Ornstein. The absolute continuity of the conjugation of certain diffeomorphisms of the circle. Ergod. Theory \& Dynam. Sys. 9 (1989), 681-690.
[158] Kaufman, R. Continued fractions and Fourier transforms. Mathematika 27 (1980), 262-267. MR $82 \mathrm{~h} \# 10065$.
[159] Kempner, A. J. On transcendental numbers. Trans. Amer. Math. Soc. 17 (1916), 476-482.
[160] Khinchin A. ya. ($=$ Khintchine). Continued Fractions. University of Chicago Press, 1964. MR 28 \# 5037.
[161] Khintchine, A. Ein Satz über Kettenbrüche, mit arithmetischen Anwendungen. Math. Zeitschift 18 (1923), 289-306.
[162] —— Metrische Kettenbruchprobleme. Compositio Math. I (1935), 361-382.
—— Zur metrischen Kettenbruchtheorie. Compositio Math. 3 (1936), 276-285. Khintchine, ya. A. Continued Fractions. (In Russian). Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 2nd edition, 1949. MR 13 \# 444f.
[166] Kinney, J. R. and T. S. Pitcher. On the lower range of Perron's modular function. Canad. J. Math. 21 (1969), 808-816. MR 40 \# 1343.
[167] Kмоšeк, M. Rozwiniȩcie niektórych liczb niewymiernych na ułamki łańcuchowe. Master's thesis, Uniwersytet Warszawski, 1979.
[168] Knopp, K. Mengentheoretische Behandlung einiger Probleme der diophantischen Approximationen und der transfiniten Wahrscheinlichkeiten. Math. Ann. 95 (1926), 409-426.
Knuth, D. E. Sorting and Searching, volume III of The Art of Computer Programming. Addison-Wesley, 1973.
[170] —— Seminumerical Algorithms, volume II of The Art of Computer Programming. Addison-Wesley, 1981.
[171] KöHLER, G. Some more predictable continued fractions. Monatshefte Math. 89 (1980), 95-100. MR 81g \# 10017.
[172] Kокsma, J. F. Diophantische Approximationen. Springer-Verlag, Berlin, 1936.
[173] Kuipers, L. and H. Niederreiter. Uniform Distribution of Sequences. John Wiley \& Sons, New York, 1974, pp. 121-126; MR 54 \# 7415.
[174] Kuzmin, R. O. Sur un problème de Gauss. In Atti Congr. Intern. Bologne, volume 6, pages 83-89. 1928.
[175] —— Ob odnoi zadache Gaussa. Dokl. Akad. Nauk. Ser. A (1928), 375-380.
Laczkovich, M. On Kemperman's inequality $2 f(x) \leqslant f(x+h)+f(x+2 h)$. Colloq. Math. 49 (1984), 109-115. MR 86g \# 26028.
[177] Lagrange, J. L. Sur la résolution des équations numériques. In Oeuvres, volume 2, pages 539-652. Gauthiers-Villars, Paris, 1868.
[178] —— Additions aux éléments d'algèbre d'Euler. In Oeuvres, volume 7, pages 5-180. Gauthiers-Villars, Paris, 1877.
[179] Lang, S. Introduction to Diophantine Approximations. Addison-Wesley, Reading, Mass., 1966. Pp. 24-26. MR 35 \# 129.
[180] -- Transcendental numbers and Diophantine approximations. Bull. Amer. Math. Soc. 77 (1971), 635-677.
[181] Lang, S. and H. Trotter. Continued fractions for some algebraic numbers. J. Reine Angew. Math. 255 (1972), 112-134. MR 46 \# 5258. Addendum, 267 (1974), 219-220. MR 50 \# 2086.
[182] LARCHER, G. On the distribution of sequences connected with good lattice points. Monatshefte Math. 101 (1986), 135-150. MR 87j \# 11074.
[183] Lehmer, D. H. Mathematical methods in large-scale computing units. In Proceedings of a Second Symposium on Large-Scale Digital Calculating Machinery, 1949, pages 141-146, Cambridge, Mass., 1951. Harvard Univ. Press.
[184] Lerch, M. Question 1547. L'Intermédiaire des mathématiciens 11 (1904), 144-145.
[185] LesCa, J. Sur les approximations diophantiennes à une dimension. PhD thesis, Univ. Grenoble, 1968.
[186] Lévy, P. Sur les lois de probabilité dont dépendent les quotients complets et incomplets d'une fraction continue. Bull. Soc. Math. France 57 (1929), 178-194.
- Sur la probabilité et la fréquence asymptotiques des différentes valeurs des quotients complets et incomplets d'une fraction continue. C. R. Acad. Sci Paris 190 (1930), 608-610.
- Sur le développement en fraction continue d'un nombre choisi au hasard. Compositio Math. 3 (1936), 286-303.
[189] —— Observations sur une note de M. Denjoy. C. R. Acad. Sci. Paris 202 (1936), 812-813.
[190] - Fractions continues aléatoires. Rend. Circ. Mat. Palermo 2 (1952), 170-208. MR 16-600.
[191] —— Théorie de l'Addition des Variables Aléatoires. Gauthier-Villars, Paris, 1954.
[192] Liouville, J. Sur des classes très-étendues de quantités dont la valeur n'est ni algébrique ni même réductible à des irrationnelles algébriques. J. Math. Pures Appl. 16 (1851), 133-142.
[193] DE LA LLAVE, R. A simple proof of a particular case of C. Siegel's center theorem. J. Math. Phys. 24 (1983), 2118-2121. MR 85c \# 58060.
[194] - - Remarks on J. Langer and D. A. Singer decomposition theorem for diffeomorphisms of the circle. Commun. Math. Phys. 104 (1986), 387-401. MR 87h \# 58174.
[195] Loxton, J. H. and A. J. van der Poorten. Transcendence and algebraic independence by a method of Mahler. In A. Baker and D. W. Masser, editors, Transcendence Theory: Advances and Applications, pages 212-226. Academic Press, 1977. MR 57 \# 16219.
[196] MACKAY, R. S. A renormalisation approach to invariant circles in areapreserving maps. Physica D 7 (1983), 283-300. MR 85f \# 58045.
[197] —— Transition to chaos for area-preserving maps. In Nonlinear Dynamic Aspects of Particle Accelerators, volume 247 of Lecture Notes in Physics, pages 390-454. Springer-Verlag, 1986. MR $87 \mathrm{k} \# 58181$.
[198] MacKay, R. S., J. D. Meiss and I. C. Percival. Transport in Hamiltonian systems. Physica D 13 (1984), 55-81. MR 86m \# 58057.
[199] MacKay, R. S. and J. Stark. Evaluation of an approximate renormalisation scheme for area-preserving maps. Physics Letters A 138 (1989), 113-122. MR $90 \mathrm{~g} \# 58114$.
[200] Mahler, K. Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen. Math. Annalen 101 (1929), 342-366.
[201] Maillet, E. Introduction à la Théorie des Nombres Transcendants et des Propriétés Arithmétiques des Fonctions. Gauthier-Villars, Paris, 1906. Chapitre VII.
[202] Marion, J. Dimension de Hausdorff et fractions continues. C. R. Acad. Sci. Paris 292 (1981), 311-313. MR 82b \# 10073.
[203] Markoff, A. Sur les formes quadratiques binaires indéfinies. Math. Ann. 15 (1879), 381-406.
[204] —— Sur les formes quadratiques binaires indéfinies. (Second mémoire). Math. Ann. 17 (1880), 379-399.
[205] -- Sur une question de Jean Bernoulli. Math. Ann. 19 (1882), 27-36.
[206] Mendès France, M. On a theorem of Davenport concerning continued fractions. Mathematika 23 (1976), 136-141.
[207] —— Principe de la symétrie perturbée. In Seminar on Number Theory, Paris 1979-80, pages 77-98. Birkhauser, Boston, 1981. MR 83a \# 10089.
[208] —— Folding paper and thermodynamics. Physics Reports (Review Section of Physics Letters) 103 (1984), 161-172.
[209] Mendès France, M. and J. O. Shallit. Wire bending. J. Combin. Theory, Series A, 50 (1989), 1-23.
[210] Mesirov, J. P. and M. M. Sweet. Continued fraction expansions of rational expressions with irreducible denominators in characteristic 2. J. Number Theory 27 (1987), 144-148. MR 89a \# 11016.
[211] Meyer, Y. Sur un problème de Michael Herman. In W. Beckner, A. P. Calderón, R. Fefferman, and P. W. Jones, editors, Conference on Harmonic Analysis in Honor of Antoni Zygmund, volume II, pages 726-731. Wadsworth International Group, Belmont, California, 1983. MR 85c \# 42011.
[212] Mignosi, F. Infinite words with linear subword complexity. Theoret. Comput. Sci. 65 (1989), 221-242.
[213] Mignotte, M. Approximation des nombres par certaines suites de rationnels. In Séminaire Delange-Pisot-Poitou (Théorie des Nombres), volume 18, pages 16.01-16.03, 1976/77. MR 81c \# 10041.
[214] Mills, W. H. and D. P. Robbins. Continued fractions for certain algebraic power series. J. Number Theory 23 (1986), 388-404. MR 87k \# 11073.
[215] Mittag-Leffler, G. M. Sur une transcendante remarquable trouvée par M. Fredholm. Acta Math. 15 (1891), 279-280.
[216] Mullen, G. L. and Niederreiter, H. Optimal characteristic polynomials for digital multistep pseudorandom numbers. Computing 39 (1987), 155-163.
[217] von Neumann, J. and B. Tuckerman. Continued fraction expansion of $2^{1 / 3}$. Math. Tables Aids Comput. 9 (1955), 23-24. MR 16-961.
[218] Niederreiter, H. Application of Diophantine approximations to numerical integration. In C. F. Osgood, editor, Diophantine Approximation and its Applications, pages 129-199. Academic Press, New York, 1973. MR 50 \# 9825.
[219] —— Pseudo-random numbers and optimal coefficients. Adv. Math. 26 (1977), 99-181. MR 57 \# 16238.
[220] —— Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Amer. Math. Soc. 84 (1978), 957-1041. MR 80d \# 65016.
[221] —— On a measure of denseness for sequences. In Topics in Classical Number Theory V. II, volume 34 of Colloq. Math. Soc. Janos Bolyai, pages 1163-1208. 1981. MR 86h \# 11058.
[222] —— Number-theoretic problems in pseudorandom number generation. In Proc. Symp. on Applications of Number Theory to Numerical Analysis (Kyoto, 1984), Lecture Notes No. 537, pages 18-28. Research Inst. of Math. Sciences, Kyoto Univ., 1984.
[223] —— Dyadic fractions with small partial quotients. Monatshefte Math. 101 (1986), 309-315. MR $87 \mathrm{k} \# 11015$.
[224] —— Continued fractions with small partial quotients. In Y. Morita, editor, Proc. 1986 Nagasaki Symposium on Number Theory, pages 1-11. Tōhoku Univ., Sendai, Japan, 1987.
[225] —— Rational functions with partial quotients of small degree in their continued fraction expansion. Monatshefte Math. 103 (1987), 269-288. MR 88h \# 12002.
[226] —— The probabilistic theory of linear complexity. In C. G. Günther, editor, Advances in Cryptology-EUROCRYPT '88, volume 330 of Lecture Notes in Computer Science, pages 191-209. Springer-Verlag, 1988.
—— Sequences with almost perfect linear complexity profile. In D. Chaum and W. L. Price, editors, Advances in Cryptology-EUROCRYPT '87, volume 304 of Lecture Notes in Computer Science, pages 37-51. SpringerVerlag, 1988.
[228] Oppenheim, A. The approximate functional equation for the multiple thetafunction and the trigonometric sums associated therewith. Proc. Lond. Math. Soc. 28 (1928), 476-483.
[229] Orevkov, V. P. On the complexity of expansion of algebraic irrationalities in continued fractions. Trudy Mat. Inst. Steklov 129 (1973), 24-29, 267. (In Russian); English translation in Proc. Steklov Inst. Math. 129 (1973), 20-24. MR 55 \# 12647.
[230] Ostrowski, A. Bermekungen zur Theorie der Diophantischen Approximationen. Abh. Math. Sem. Hamburg 1 (1922), 77-98.
[231] Pass, R. P. On the partial quotients of algebraic integers. J. Number Theory II (1979), 14-15. MR 80b \# 10045.
[232] Pavone, M. On the condensation points of the Lagrange spectrum. Rend. Circ. Mat. Palermo 35 (1986), 444-447. MR 89d \# 11056.
[233] —— The Cantor set and a geometric construction. Enseign. Math. 35 (1989), 41-49. MR 90 g \# 11016.
[234] Perron, O. Über die Approximation irrationaler Zahlen durch rationale. Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Abh. 4 (1921), 3-17.
[235] —— Über die Approximation irrationaler Zahlen durch rationale. II. Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Abh. 8 (1921), 1-12.
[236] -- Die Lehre von den Kettenbrüchen. B. G. Teubner, Stuttgart, 1954.
[237] Pethö, A. Simple continued fractions for the Fredholm numbers. J. Number Theory 14 (1982), 232-236. MR $83 \mathrm{k} \# 10015$.
[238] —— On the representation of 1 by binary cubic forms with positive discriminant. In H.-P. Schlickewei and E. Wirsing, editors, Number Theory (Proceedings of the "Journées Arithmétiques" held in Ulm, $F R G$, September 14-18, 1987), volume 1380 of Lecture Notes in Mathematics, pages 185-196. Springer, 1989. MR 90k \# 11027.
[239] Philipp, W. Some metrical problems in number theory. Pacific J. Math. 20 (1967), 109-127. MR 34 \# 5755.
[240] —— Das Gesetz vom iterierten Logarithmus mit Anwendugen auf die Zahlentheorie. Math. Ann. 180 (1969), 75-94. MR 39 \# 1423. Corrigendum, 190: 338, 1971; MR 43 \# 4789.
[241] —— Some metrical theorems in number theory, II. Duke Math. J. 37 (1970), 447-458. MR 42 \# 7620. Errata, 37 (1970), 788. MR 43 \# 177.
[242] —— Mixing Sequences of Random Variables and probabilistic Number Theory. Number 114 in Memoirs Amer. Math. Soc. American Math. Soc., Providence, Rhode Island, 1971. MR 55 \# 10411.
[243] —— A conjecture of Erdös on continued fractions. Acta Arith. 28 (1976), 379-386. MR 52 \# 8069.
[244] Philipp, W. and O. P. Stackelberg. Zwei Grenzwertsätze für Kettenbrüche. Math. Ann. 181 (1969), 152-156. MR 39 \# 5503.
[245] Pollington, A. D. The Hausdorff dimension of a set of non-normal well approximable numbers. In M. B. Nathanson, editor, Number Theory (Carbondale, 1979), volume 751 of Lecture Notes in Mathematics, pages 256-264. Springer-Verlag, 1979. MR 81j \# 10082.
van der Poorten, A. J. An introduction to continued fractions. In J. H. Loxton and A. J. van der Poorten, editors, Diophantine Analysis, pages 99-138. Cambridge University Press, 1986. MR 88d \# 11006.
[247] -- Remarks on the continued fractions of algebraic numbers. In Groupe de Travail en Théorie Analytique et Elémentaire des Nombres, Publications Mathématiques d'Orsay, 88-01, pages 89-90. 1988.
[248] van der Poorten, A. J. and J. Shallit. Folded continued fractions. J. Number Theory 40 (1992), 237-250.
[249] Prasad, K. C. On gaps of Lagrange spectrum. J. Indian Math Soc. 53 (1988), 251-255. MR 90i \# 11070.
[250] Proinov, P. D. Points of constant type and upper bounds of the square deviation for a class of infinite sequences. C. R. Acad. Bulgare Sci. 35 (1982), 753-755. MR 85 g \# 11064.
[251] —— Estimation of L^{2} discrepancy of a class of infinite sequences. C. R. Acad. Bulgare Sci. 36 (1983), 37-40. MR 86a \# 11030.
[252] —— On the L^{2} discrepancy of some infinite sequences. Serdica. Bulg. Math. Publ. 11 (1985), 3-12. MR 87a \# 11071.
[253] RAMHARTER, G. Some metrical properties of continued fractions. Mathematika 30 (1983), 117-132. MR 85c \# 11058.
[254] —— Eine Bemerkung über gewisse Nullmengen von Kettenbrüchen. Ann. Univ. Sci. Eötvös Sect. Math. 28 (1985), 11-15. MR 88a \# 11072.
[255] RaND, D. A. Global phase space universality, smooth conjugacies and renormalization I. The $C^{1+\alpha}$ case. Nonlinearity 1 (1988), 181-202. MR 89 g \# 58109.
[256] Raney, G. N. On continued fractions and finite automata. Math. Ann. 206 (1973), 265-283. MR 49 \# 4922.
[257] RÉNYi, A. Representations for real numbers and their ergodic properties. Acta. Math. Acad. Sci. Hungar. 8 (1957), 477-493. MR 20 \# 3843.
[258] Richert, N. Hypocycloids, continued fractions, and distribution modulo one. Amer. Math. Monthly 98 (1991), 133-139.
[259] Richtmyer, R. D. Continued fraction expansion of algebraic numbers. $A d v$. Math. 16 (1975), 362-367. MR 51 \# 8020. Also appeared in Surveys in Applied Mathematics (Proc. First Los Alamos Sympos. Math. in Natural Sci., Los Alamos, N. M., 1974), N. Metropolis, S. Orszag, and G.-C. Rota, eds., Academic Press, New York, pages 117-122. MR 58 \# 27727.
[260] Richtmyer, R. D., M. Devaney and N. Metropolis. Continued fraction expansions of algebraic numbers. Numer. Math. 4 (1962), 68-84. MR 25 \# 44.
[261] Rieger, G. J. Die metrische Theorie der Kettenbrüche seit Gauss. Abh. Braunschweig. Wiss. Gesell. 27 (1977), 103-117. MR 58 \# 21996.
[262] Rogers, C. A. Some sets of continued fractions. Proc. Lond. Math. Soc. 14 (1964), 29-44. MR 28 \# 1420.
[263] - Hausdorff Measures. Cambridge Univ. Press, 1970, pp. 135-147; MR 43 \# 7576.
[264] Rosen, D. and J. Shallit. A continued fraction algorithm for approximating all real polynomial roots. Math. Mag. 51 (1978), 112-116. MR 58 \# 8219.
Roth, K. F. Rational approximations to algebraic numbers. Mathematika 2 (1955), 1-20. Corrigendum, 2 (1955), 168. MR 17-242.

Ryll-Nardzewski, C. On the ergodic theorems (II). Studia Math. 12 (1951), 74-79. MR 13-757.
Šalát, T. Bermerkung zu einen Satz von P. Lévy in der metrischen Theorie der Kettenbrüche. Math. Nachrichten 41 (1969), 91-94. MR 40 \# 98. 133-137. MR 89b \# 11013.
[269] Schmidt, W. M. On badly approximable numbers. Mathematika 12 (1965), 10-20. MR 31 \# 5838.
[270] —— On badly approximable numbers and certain games. Trans. Amer. Math. Soc. 123 (1966), 178-199. MR 33 \# 3793.
[271] —— Badly approximable systems of linear forms. J. Number Theory 1 (1969), 139-154. MR 40 \# 1344.
[272] —— Diophantine Approximation. Volume 785 of Lecture Notes in Mathematics. Springer-Verlag, 1980. MR 81j \# 10038.
[273] Schneider, T. Einführung in die Transzendenten Zahlen. Volume 81 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1957.
[274] Schoissengeier, J. An asymptotic expansion for $\Sigma_{n \leqslant N}\{n \alpha+\beta\}$. In H. Hlawka and R. F. Tichy, editors, Number-Theoretic Analysis, volume 1452 of Lecture Notes in Mathematics, pages 199-205. SpringerVerlag, 1990.
[275] Shallit, J. Simple continued fractions for some irrational numbers. J. Number Theory 11 (1979), 209-217. MR 80k \# 10006.
[276] —— Explicit descriptions of some continued fractions. Fibonacci Quart. 20 (1982), 77-81. MR 83j \# 10012.
[277] —— Simple continued fractions for some irrational numbers, II. J. Number Theory 14 (1982), 228-231. MR 84a \# 10035.
[278] —— Some facts about continued fractions that should be better known. University of Waterloo, Dept. of Computer Science, Technical Report CS-91-30, July 1991.
[279] Shorey, T. N. Divisors of convergents of a continued fraction. J. Number Theory 17 (1983), 127-133. MR 85d \# 11068.
[280] Siegel, C. Approximation algebraischer Zahlen. Math. Zeitschift 10 (1921), 173-213.
[281] —— Über den Thueschen Satz. Norske Vid. Selsk. Skr. 16 (1921), 1-12.
[282] Sinai, Ya. G. and K. M. Khanin. Smoothness of conjugacies of diffeomorphisms of the circle with rotations. Uspekhi Math. Nauk 44 (1989), 57-82. (In Russian); English translation in Russian Math. Surveys 44 (1989), 69-99.
[283] Stackelberg, O. P. On the law of the iterated logarithm for continued fractions. Duke Math. J. 33 (1966), 801-819. MR 36 \# 6369.
[284] Stark, H. M. An explanation of some exotic continued fractions found by Brillhart. In A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory, pages 21-35. Academic Press, 1971. MR 49 \# 2570.
[285] Stark, J. Smooth conjugacy and renormalization for diffeomorphisms of the circle. Nonlinearity 1 (1988), 541-575. MR 90b \# 58246.
[286] Stewart, M. Irregularities of uniform distribution. Acta Math. Acad. Sci. Hungar. 37 (1981), 185-221. MR 82k \# 10072.
[287] Stolarsky, K. B. Beatty sequences, continued fractions, and certain shift operators. Canad. Math. Bull. 19 (1976), 473-482. MR 56 \# 2908.
[288] Strauch, O. Two properties of the sequence $n \alpha(\bmod 1)$. Acta Math. Univ. Comenian. 44/45 (1984), 67-73. MR 86d \# 11057.
[289] SzÜsz, P. Über einen Kusminschen Satz. Acta. Math. Acad. Sci. Hungar. 12 (1961), 447-453. MR 27 \# 124.
[290] —— On Kuzmin's theorem, II. Duke Math. J. 35 (1968), 535-540. MR 37 \# 1336.
[291] Thue, A. Über Annäherungswerte algebraischer Zahlen. J. Reine Angew. Math. 135 (1909), 284-305.
[292] Thull, K. Approximation by continued fraction of a polynomial real root. In EUROSAM 84 (Cambridge, 1984), volume 174 of Lecture Notes in Computer Science, pages 367-377. Springer, Berlin, 1984.
[293] Veech, W. A. Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2. Trans. Amer. Math. Soc. 140 (1969), 1-33. MR 39 \# 1410.
[294] Vincent, A. J. H. Sur la résolution des équations numériques. J. Math. Pures Appl. 1 (1836), 341-372.
Vinogradov, A. M., B. Delone and D. Fuks. Rational approximations to irrational numbers with bounded partial quotients. Dokl. Akad. Nauk SSSR (N.S.) 118 (1958), 862-865. MR 21 \# 40.
Vroedt, C. de. Measure-theoretical investigations concerning continued fractions. Proc. Konin. Neder. Akad. Wet. 65 A (1962), 583-591. (=Indag. Math. 24). MR 27 \# 2483.

- Metrical problems concerning continued fractions. Compositio Math. 16 (1964), 191-195. MR 30 \# 3058.
[298] Walfisz, A. Über einige trigonometrische Summen. Math. Zeitschift 33 (1931), 564-601.
[299] —— Über eine trigonometrische Summe. J. London Math. Soc. 6 (1931), 169-172.
[300] —— Über einige trigonometrische Summen. (Zweite Abhandlung). Math. Zeitschift 35 (1932), 774-788.
[301] Wilson, S. M. J. Limit points in the Lagrange spectrum of a quadratic field. Bull. Soc. Math. France 108 (1980), 137-141. MR 82m \# 10056.
[302] Wiman, A. Über eine Wahrscheinlichkeitsaufgabe bei Kettenbruchentwicklungen. Öfversigt af Kongl. Vetenskaps-Akademiens Förhandlingar (Stockholm) 57 (1900), 829-841.
[303] Wirsing, E. On the theorem of Gauss-Kusmin-Lévy and a Frobenius-type theorem for function spaces. Acta Arith. 24 (1974), 507-528. MR 49 \# 2637.
[304] Wolfskill, J. A growth bound on the partial quotients of cubic numbers. J. Reine Angew. Math 346 (1984), 129-140. MR 85f \# 11050.
[305] WU, T. On the proof of continued fraction expansions for irrationals. J. Number Theory 23 (1986), 55-59. MR 87h \# 11066.
[306] Zaremba, S. K. Good lattice points, discrepancy, and numerical integration. Ann. Mat. Pura Appl. 73 (1966), 293-317. MR 36 \# 1107.
[307] —— La méthode des «bons treillis» pour le calcul des intégrales multiples. In S. K. Zaremba, editor, Applications of Number Theory to Numerical Analysis, pages 39-119 Academic Press, New York, 1972. MR 49 \# 8271.
Hensley, D. A polynomial time algorithm for the Hausdorff dimension of continued fraction Cantor sets. Manuscript.
[309] - Continued fraction Cantor sets, Hausdorff dimension, and functional analysis. Manuscript.
[310] Steinhaus, H. Nowa własność mnogości G. Cantora. Wektor 6 (1916/17), 105-107. Reprinted in Hugo Steinhaus: Selected papers, Polish Scientific Publishers, 1985.
[311] Larcher, G. A new extremal property of the Fibonacci ratio. Fib. Quart. 26 (1988), 247-255.
[312] —— A convergence problem connected with continued fractions. Proc. Amer. Math. Soc. 103 (1988), 718-722.
[313] Kraaikamp, C. and P. Liardet. Good approximation and continued fractions. Pro. Amer. Math. Soc. 112 (1991), 303-309.
[314] Schoissengeier, J. Abschätzungen für $\sum_{n \leqslant N} B_{1}(n \alpha)$. Monatshefte Math. 102 (1986), 59-77.
[315] Hensley, D. The distribution $\bmod n$ of fractions with bounded partial quotients. Manuscript.
(Reşu le 4 juin 1991)

Jeffrey Shallit
Department of Computer Science
University of Waterloo
Waterloo, Ontario
Canada N2L 3G1

[^0]: Supported in part by NSF Grant CCS-8817400, a Walter Burke Award from Dartmouth College and NSERC Canada.

[^1]: ${ }^{1}$) Actually, Davenport's results apply to all irrational numbers, not just algebraic numbers. Also see Mendès France [206].

[^2]: ${ }^{1}$) Note this is not same person as E. Hlawka!

