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2. Basic material

For more details in this section see [A], for example.

(2.1) Recall that G is a compact connected Lie group with maximal torus T,

having respective Lie algebras g and t. The Weyl group is the finite group
W ~ N/T, where N is the normalizer in G of T. Since G is compact, there

is an Ad(G)-invariant inner product < > on g, obtained by averaging any
inner product over G. Let m be the orthogonal complement of t in g with

respect to this inner product, so

g t © m (orthogonal)

The infinitesimal version of invariance of the inner product is the identity

< [X, Y], Z) + (Y, [X,Z]> 0,

for X,Y,Z e g.

(2.2) The exponential map exp:g-*G is surjective, since G is compact.
This is one of the deeper theorems in a first course on Lie groups. We actually
only need this surjectivity for exp:t T, which is clear.

The Lie algebra t is abelian (the bracket is zero); in fact t is a maximal
abelian subalgebra of g. In particular, no nonzero vector in m has zero bracket
with all of t. Likewise, Ad(T) has no nonzero invariant vectors in m.

Now a torus is a topologically cyclic group. That means there exists a

generic element t0 e T whose powers form a dense subgroup of T. It follows
that the single operator Ad(t0) can have no invariants in m. Likewise in the

group G, it can be shown that a maximal torus is its own centralizer, so
the centralizer in G of t0 is just T. There is a similar notion in the Lie
algebra. A regular element of t is one whose Ad{G)~centralizer is exactly
Ad(T). To find one, take any H0 e t such that exp H0 t0.

(2.3) The group G acts on g via Ad, and this induces an action of W
on t. No element of Wacts trivially, and the image of Win GL(t) is generated
by reflections about certain hyperplanes defined as follows.

Since the nontrivial irreducible representations of a torus are given
by two dimensional rotations, we have an orthogonal decomposition
m mi © • • • © mv, where each ttu is two dimensional and there is a
finite set of nonzero linear functional A+={ai,...,av}Ct*, called
positive roots such that for H et, the eigenvalues of AdtxpH on m,- are
exp(± )/- 1 a,-(//)). We determine the signs as follows. Fix a regular
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element Hq, et. We may and shall choose the positive roots so that they take

strictly positive values on H0. The action of W on t is generated by
reflections about the kernels of the positive roots.

Since each m, is also preserved by ad(t), we can choose an orthonormal
basis {Xi,Xv + i} of m, such that, for H et, the matrix of ad(H) |m. with
respect to this basis is

0 a(H)\
-a (H) 0 /

Note that the «^-invariance of the inner product < > implies, for all
1 ^ i ^ v, all 1 < j ^ 2v and all H e t that

<//, [Xi9Xj]> {[H,Xi\,Xj) - ai(H)(Xi + v,Xj)
By orthonormality, this last pairing can only be nontrivial if j i + v.
Hence if j =£ i + v, we have [Xt, Xj ] em. The same thing happens if
i > v and j ^ i - v.

On the other hand, for 1 ^ i ^ v, set Ht [Xt ,Xv + i]. This is

Ad{T)~invariant, so Ht e t, and ad(Hi)mi Q m,. It follows that the span
of Xi,Xi + v, Hi is a Lie subalgebra of g. It is always isomorphic to §u(2).

3. Invariant Theory

All proofs missing from this section may be found in the textbook [H],
the expository article [F], or [Bk].

(3.1) Let

oo /

@ <Xp and A ® (/ dimt)
p 0 q 0

be the symmetric and exterior algebras on t*, respectively. The adjoint action

of W on t induces representations of W on 9* and A by degree-preserving

algebra automorphisms. For example, the action of IF on A7 is multiplication
by the sign character

e:W^{± 1} given by e(w) detAd(w)t

Note that s(w) is the parity of the number of reflections needed to express

Ad(w)t.
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