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There will certainly be some gaps for algebraic 3-folds. In order to show

this, we prove the following finiteness theorem for families of Kähler
structures :

Theorem 7. Fix a positive constant c. There exist only finitely many
families of 1-connected, smooth projective 3-folds X with H2(X, Z) Z,
w2(X) F 0, and with b3{X) ^ c.

Proof. Let I be a smooth projective 3-fold with Hx (X, Z) {0},
H2(X, Z) Z, and with w2(X) F 0. Clearly Pic (AT) H2(X, Z), and we

can choose a basis e e H2(X, Z) corresponding to the ample generator
of Pic(X).

Let ci(X) c1 e, c2(X) c2s where e2 d8, e(e) 1. If C\ is positive,
then X is Fano, and there are only finitely many possibilities [Mu]. The

case C\ 0 is excluded, so that we are left with C\ < 0, i.e. the canonical
bundle of X is ample.

The Riemann-Roch formula %(X, Fx) 1 - h3(X, (Fx) Ya cxc2

shows that the set of possible Chern numbers cxc2 is bounded from below:

24(1 - c) ^ CjC2. Using Yau's inequality Sci(X)c2(X) ^ 3cfX)3 we find
that d\c\ I3 ^ 64(c - 1), i.e. the degree d and the order of divisibility | cx | of
ci(X) is bounded. Now Kollar's finiteness theorem [Ko2] yields the

assertion.

Example 15. Let X be a 1-connected, smooth projective 3-fold with
H2(X, Z) Z and w2(X) F 0. If b3(X) ^ 2, then h3(X, Fx) ^ 1 and X
must be Fano of index 1 or 3. For b3(X) 4 we have that X is either Fano,

or h3(X, Fx) 2 and X is of general type with d \ cx |3 ^ 64.

Note that the assumption w2 F 0 was only used to exclude Calabi-Yau

3-folds.

5.2 3-folds with b2 — 2

Let X be a 1-connected, closed, oriented, 6-dimensional differentiable
manifold with H2(X, Z) Z2.

We choose a basis ex,e2 for H2(X, Z) and set a0 e\,ax e]e2,a2

eiel, a3 e32; the cubic polynomial / associated to the cup-form
of X is then given by f a0X3 F 3alX2Y + 3a2XY2 + a3Y3. The

discriminant of / is by definition A(/) a20a] - 3a\a\ - 6a0axa2a3

+ 4a0a\ + 4a\a3\ up to a factor it is simply the discriminant of the

Hessian Hf 62[{a0a2 - a\)X2 + (a0a3 - ax a2)XY+ (a{ a3 - a22)Y2\ of

/: A(/) (a0a3 - a{a2)2 - 4(a0a2 - a\)(ax -
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The last identity shows that A (/) is always a square modulo 4, i.e.

A (/) 0, 1 (mod 4).

Proposition 17. Every integer A 0, 1 (mod 4) is realizable as

discriminant of a compact complex 3-fold.

Proof. Consider the projectivization X Pfi(E) of a holomorphic
rank-2 vector bundle E over the plane. In terms of the standard basis

of H2(X, Z)(<?i 7t*/z, e2 Ci(^p(£)(1))) the cubic polynomial associated

to X is given by / (cf - c2)X3 + 3(-c1)X2Y + 3XY2, where cr cfE)
are the Chern classes of E considered as integers. Inserting this into the

discriminant formula yields A (/) c\ — 4c2. Since every pair C\, c2 occurs

as pair of Chern classes of a holomorphic rank-2 bundle on P2, every
integer A 0, 1 (mod 4) can be realized as discriminant of a holomorphic
projective bundle PP2(is).

Recall from section 3.2 that there are 4 different types of ST(2)-orbits
of complex binary cubics: non-singular forms / (with A(/) =£ 0), and three
orbits of singular cubics, represented by the normal forms X2Y,X3, and 0.

Proposition 18. All four types of complex binary cubics are realizable
by complex 3-folds.

Proof. We have seen this already for non-singular cubics. Clearly the
product P1 x P2 realizes the normal form X2Y. The cubics of normal
forms X3 or 0 are degenerate, i.e. their Hessians vanish identically. Therefore

they can only be realized by non-Kählerian 3-folds. To realize X3 one
can blow up a point in an elliptic fiber bundle over a surface Y with
b2(Y) 3; the trivial form occurs for elliptic fiber bundles over a surface
with b2 4.

More detailed investigations of the possible homotopy types of real or
complex manifolds with b2 2 will appear elsewhere [Sch].

Here we only want to illustrate an interesting phenomenon which relates
the ample cone of a projective 3-fold with b2 2 to the Hessian of its
cup-form.

Proposition 19. Let X be a smooth projective 3-fold with
b2(X) 2. The ample cone X'x is contained in the Hesse cone
WF'.= {h e H2(X, R) I det(.F'(/z)) < 0}.

Proof. This is only a special case of our general result in section 4.3.
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Remark 14. The Hessian of a binary form F e S3Hv is identically zero
iff F is degenerate; it is negative semi-definite if F is non-degenerate and

A(F) ^ 0; it is indefinite iff À(F) > 0[Ca]. Only in the indefinite case

A(F)>0 can the closure : {h e HR \ detF1 (h) < 0} of the Hesse

cone be a proper subset of HR.

Example 16. Let P PPi(E) be the projectivization of a rank-2
vector bundle E with Chern classes c, — cz (JE). The cup-form of P
yields the cubic polynomial / (c\- c2)X2 + 3(- cx)X2Y + 3XY2
whose Hessian is Hf=(-c2)X2 + cxXY - Y2. Rewriting Hf as

Hf= - \[{2Y - ClX)* + X*{4c2~ c\)\ =^[(2Y-ClX)2-A(f)X2] we
find 3 possibilities for the Hesse cone:

i) A (/) < 0 : XXf 7/2 (P, R) \ {0}

ii) A(/) 0: H2(PiR)\LCl for a real line LCx depending on
cx (LCl — R(2, cx) in the coordinates X, Y)

iii) A(/)>0:^f/ is an open cone whose angle is determined

by A(/) ((Z + ]/A(f)X) (Z - \/A(f)X) >0 in coordinates

X,Z: 2Y- cjX).

5.3 3-folds with b2 ^ 3

Let X be a 1-connected, compact complex 3-fold with H2(X, Z) Z®3.
The cup-form of X gives rise to a curve Cx of degree 3 in the projective
plane P (H2(X, C)) :

Cx:= {<h> e F(H2(X,C))\h3 0}

A first natural question is which types of plane cubic curves occur in
this way?

Recall that there are 10 types of plane cubics, namely: 1) non-singular
cubics, 2) irreducible cubics with a node, 3) irreducible cubics with a cusp,
4) reducible cubics consisting of a smooth conic and a transversal line,
5) smooth conics with a tangent line, 6) three lines forming a triangle, 7) three

distinct lines through a common point, 8) a double line with a third skew

line, 9) a triple line, 10) the trivial 'cubic' with equation 0.

Lemma 4. If the 3-fold X has a non-trivial Hodge number
h2>Q(X) F 0, then Cx is of type 4), 6) 9) or 10).
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