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L'Enseignement Mathématique,t.41 (J103-110

CONCERNING A REAL-VALUED CONTINUOUS FUNCTION

ON THE INTERVAL WITH GRAPH OF HAUSDORFF DIMENSION 2

by Peter Wingren

Abstract. A real-valued continuous nowhere-differentiable function

on [0, 1] is constructed. Its graph Fis proved to have the following property.

If B is a Borel subset of F and if the projection of B on [0, 1] has positive

Lebesgue measure, then the Hausdorff dimension of B is two.

0. Introduction

In 1903 Takagi [TAK, p. 176] gave an extremely simple construction of
a nowhere differentiable real-valued continuous function on [0, 1]. Takagi's

construction is
00

(1) T(X) £ 2-Pdist(2"x,Z)
p 0

where each term is a scaled version of the sawtooth function

(2) dist (x, Z) : inf {| x - y | : y e Z}

Later, in 1930, van der Waerden [WAE] gave a similar example, which
de Rham [RHA], in 1957, improved to an example identical with Takagi's.

It follows from a proof of Mauldin and Williams [M-W, pp. 795-797] that
the graph of the Takagi function has a o-finite linear Hausdorff measure
and hence is of Hausdorff dimension 1.

In 1937 Besicovitch and Ursell [B-U, p. 29] constructed for an
arbitrary a, 1 < a < 2, a real-valued nowhere-differentiable function in C[0, 1]

with graph of Hausdorff dimension a. They too used the sawtooth function
dist(x, Z) as a building block in their construction.

In this paper we construct a real valued continuous function /(x), x e [0,1],
whose graph has an optimal property with respect to Hausdorff dimension
and measure.
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We prove that for an arbitrary a, 1 < a < 2, /(x) has the property

^(a): Every Borel subset B C graph (/), with projection on the x-axis
of positive Lebesgue measure m(J?ro]{B)) > 0, has infinite a-dimensional
Hausdorff measure

(3) Ha(B) + oo

It is easy to see that

.^(a)Va < 2 * &
where

& : Every Borel set B C graph (/) with m (Proj (B)) > 0 has Hausdorff
dimension equal to two.

Rather than establish a general theorem valid for a class of functions we

shall construct a single function with the desired property. The rationale
is to provide a simple construction accompanied by a short, clear and

instructive proof.
Our function is

oo

(4) f(x)£ 2 ~pdist(22Px,Z)
p 0

Even though 2P is established for only a single function /, the proof
contains general methods extracted as Lemma 1 and Lemma 2. It appears
that Lemma 1 is well known in more general cases than ours; compare
[P-U, p. 159, the beginning of the proof of their Lemma 1]. However the

proof is included here for completeness and because in the present case it is

particularly simple.
The author is grateful to Professor V.P. Havin [HAV] for suggesting the

investigation of fractal graphs with respect to .^(a), a 1.

Problem. We believe that the following problem is unsolved.

Part 1: Construct a real valued function in C[0, 1] with graph of
Hausdorff dimension 1 and with property £P{a) for a 1.

Part 2: Determine the optimal smoothness in terms of the second

difference of such a function.

Notation. The diameter of U is denoted by | U\ and the Z^-norm
of g eL(R) by || g ||. If / is a real valued function in C[0, 1], we write

f(x) for (x, /(x)). The notation Ha(F) stands for a-dimensional Hausdorff
measure of a set F C R2 and Ma(F) is the a-dimensional net measure of F



A REAL-VALUED CONTINUOUS FUNCTION 105

constructed by closed dyadic cubes. The graph of a real valued function

/ e C[0, 1] is denoted by graph (/). By a dyadic cube we mean a cube which
is the Cartesian product of dyadic intervals. If Q is an arbitrary dyadic closed

cube, then the band of type {(x,y): (x, z) e Q for some zeR) is called a

dyadic band. In our construction the dyadic bands of width 2~2/7 play a

special role. They are called bands of generation p,p 0, 1, 2,

Acknowledgement. We would like to thank the referee for helpful
suggestions.

1. A Lemma about mass distribution

By a mass distribution on a subset A of R2 we mean a measure p on A
such that 0 < p(A) < oo.

Lemma 1. Let f be a real valued measurable function defined
on [0,1]. Then there is a mass distribution p on F: graph (/)
such that

1) for any two subintervals I and I' of [0,1], with m(I) m(I')9

p(/x R) p(/' x R)
and

2) iffor two Borel sets Bx and B2 in [0, 1] x R there exists (x0,y0)eR2
such that

Bi n F + (x0, yo) B2 n F
then

p(Bx) p(B2)

Proof Let B be an arbitrary Borel set in R2. Define

(5) HB) m(f~'(S))
Then it is obvious that p is a mass distribution on graph (/) and 1) and 2)

follow from the translation invariance of the Lebesgue measure.

2. A Lemma about mass distribution
AND SUCCESSIVE TRANSLATIONS

Lemma 2. Let g(y) ^ 0 and g(y) e L1 (R)- If / is a finite interval
and d is a positive real number then

(6) E S(y ~ nd)dy < (l + int
J -00 \ d


	0. Introduction

