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358 J. LOTT

2. If M is an irreducible noncompact globally symmetric space G/K, with
G Isom(M) and K a maximal compact subgroup, then one can say more

about the bottom of the spectrum. If rk(G) rk(K) then Ker «M)j is

infinite-dimensional and the spectrum of A is bounded away from zero
otherwise. If rk(G) > rk(K) then Ker(A) 0 and 0 G a(Ap) if and only
if

dim(M) rk(G) - rk(K) dim(M) rk(G) - rk{K)
2 2 '

/

[19, Section VIIB].

Finally, we state a result about uniformly contractible Riemannian
manifolds.

DEFINITION 6 [15, p. 29]. A metric space Z has finite asymptotic dimension

if there is an integer n such thatfor any r > 0, there is a covering Z IJi<ei Q
of Z by subsets of uniformly bounded diameter so that no metric ball of radius

r in Z intersects more than n + 1 elements of {C/}/G/. The smallest such

integer n is called the asymptotic dimension asdim+(Z) of Z.

PROPOSITION 8 (Yu [33]). If M is a uniformly contractible Riemannian

manifold with finite asymptotic dimension then 0 G cr(Ap) for some p.

The proof of Proposition 8 uses methods of coarse index theory [28].

4. Very Low Dimensions

In this section we show that the answer to the zero-in-the-spectrum question

is "yes" for one-dimensional simplicial complexes and two-dimensional
Riemannian manifolds.

4.1 One Dimension

As a one-dimensional manifold is either Sl or R, zero is clearly in the

spectrum.
A more interesting problem is to consider a connected one-dimensional

simplicial complex K. Let V be the set of vertices of K and let E be the set

of oriented edges of K. That is, an element e of E consists of an edge of
K and an ordering (se,te) of de. We let — e denote the same edge with the
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reverse ordering of de. For x G V, let mx denote the number of unoriented

edges of which x is a boundary. We assume that mx < oo for all x. Put

Then C°(K) and Cl{K) are Hilbert spaces. The weighting used to define

C°(K) is natural in certain respects [8].

There is a bounded operator d : C°(K) —» Cl(K) given by (df)(e)
f(te) — f(se)> Define the Laplace-Beltrami operators by Ao d*d and

Ai dd*. An element of Ker(Ai) is an F G Cl(K) such that for each

vertex x the total current flowing into x vanishes, i.e. J2eeE-t 0-

The next proposition is essentially due to Gromov [15, p. 236], who proved
it in the case when {mx}xev is bounded.

Proposition 9. 0 e a(A0) or 0 g <j(Ai).

Proof. As the nonzero spectra of d*d and dd* are the same, for
our purposes it suffices to consider a{Af) and Ker(Ai). We argue by
contradiction. Suppose that 0 ^ cr(A0) and Ker(Ai) 0. First, K must
be infinite, as otherwise Ker(A0) 7^ 0. Second, K must be a tree, as if K
had a loop then we could create a nonzero element of Ker(Ai) by letting a

current of unit strength flow around the loop.
We now show that K has lots of branching. For x, y G F, let [x, y] be

the geodesic arc from x to y and let (x,y) be its interior. Let d(x,y) be the
number of edges in [x,y].

Lemma 5. There is a constant L > 0 such that if d{x,y) > L then there
is an infinite subtree of K which intersects (x,y) but does not contain x
or y.

Proof. If the lemma is not true then for all iV > 1, there are vertices x and

y such that d(x, y) > N but there are no infinite subtrees as in the statement
of the lemma. In other words, the connected component C ofK — {x} — {y}
which contains (x,y) is finite. As F is a tree, x is only connected to the
vertices in C by a single edge, and similarly for y (see Fig. 5). Define

/ 6 C°(K)by

C°(K) {f: V—> C such that S"/»v/(.v) < oo},

(4.1) C\K) {F:ECsuch that
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(4.2)
1 if v e

0 otherwise.

Then

(4.3)
W, df) <

2

{/,/) - 2(d(x,y)-lAT

As A can be taken arbitrarily large, this contradicts the assumption that
0 ^ <T(Ao).

It follows that K contains a subtree K' which is topologically equivalent
to an infinite triadic tree, with the distances between branchings at most L
(see Fig. 6). We can create a nonzero square-integrable harmonic 1-cochain
F' on K' by letting a unit current flow through it, as in Fig. 6. Let F G Cl(K)
be the extension of F' by zero to K. If x is a vertex of K' then the total
current flowing into x is still zero, as no new current comes in along the

edges of K — K'. Thus Ker(Ai) ^ 0, which is a contradiction.

Figure 5

Figure 6
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