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In what follows, I' will denote a finitely-presented group. Given a
presentation of I', there is an associated 2-dimensional CW-complex K
which we call the presentation complex. To form it, make a bouquet of circles
indexed by the generators of I'. Attach 2-cells based on the relations of
. (We allow trivial or repeated relations in the presentation.) This is the
presentation complex.

DEFINITION 7. Pur BP(T) = bP(K), bP(T) = bP(K), au(I) = ay(K)
and o(IN) = ay(K).

By Property 4 above, Definition 7 makes sense in that the choice of
presentation of I' does not matter.

As the invariants b3(I), BP(I), a;(I) and ay(T) will play an important
role, let us state explicitly what they measure. First, from Property 5, b(()2)(r)
tells us whether or not I' is infinite. In general, bg”(r) = T%—l Next, from

Property 1, b(lz)(F) tells us whether or not M has square-integrable harmonic
1-forms (or K has square-integrable harmonic 1-cochains). From Property 2,
a(I) tells us whether or not the Laplacian /Ay, acting on functions on M,
has a gap in its spectrum away from zero. In fact, Property 6 is just a
restatement of Corollary 3. Finally, from Property 2, a,(I') tells us whether
or not the spectrum of the Laplacian on A'(M)/Ker(d) goes down to zero.

5.1 BIG AND SMALL GROUPS

Let us first introduce a convenient terminology for the purposes of the
present paper.

DEFINITION 8. The group T is big if it is nonamenable, b(lz)(l“) =0 and
asr(I") = co™. Otherwise, T is small.

We recall that /A, denotes the Laplace-Beltrami operator on the universal
cover M.

PROPOSITION 11.  Let X and M be as above. The group m(X) is small
if and only if 0 € o(Ng) or 0 € a(/\)).

Proof. This follows immediately from Properties 1, 2, 4, 5 and 6 above. []

The question arises as to which groups are big and which are small. Clearly
any amenable group is small.
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PROPOSITION 12. Fundamental groups of compact surfaces are small.

Proof. Suppose that X is a compact surface and I' = m(Z). If £ has
boundary then I" is a free group F; on some number j of generators. If j =0
or j=1 then T is amenable. If j > 1 then HP(T) =j—1> 0.

Suppose now that X is closed. If x(X£) > 0 then I'" is amenable. If x(X) < 0
then bV = —x(X) >0. O

We now extend Proposition 12 to 3-manifold groups. We use some facts
about compact connected 3-manifolds Y, possibly with boundary. (See, for
example, [21, Section 6]). Again, all of our manifolds are assumed to be
oriented. First, ¥ has a decomposition as a connected sum Y = Y #Y,#...#Y,
of prime 3-manifolds. A prime 3-manifold is exceptional if it is closed and
no finite cover of it is homotopy-equivalent to a Seifert, Haken or hyperbolic
3-manifold. No exceptional prime 3-manifolds are known and it is likely that
there are none.

PROPOSITION 13 (Lott-Luck). Suppose that Y is a compact connected
oriented 3-manifold, possibly with boundary, none of whose prime factors are
exceptional. Then m(Y) is small.

Proof. We argue by contradiction. Suppose that 7;(Y) is big. First, m(Y)
must be infinite. If Y has any connected components which are 2-spheres
then we can cap them off with 3-balls without changing m(Y). So we
can assume that 0Y does not have any 2-sphere components. In particular,
x(¥Y) = %X(c‘?Y) < 0. From [21, Theorem 0.1.1],

i 1
2) _ . . o
(5.3) by”(Y)=(r—1) ;:1 A x(Y).

As this must vanish, we have x(¥) =0 and either
1. {m@¥)|}t-, =42,2,1,...,1} or
2. A{|lm()| Y, = o0, 1,...,1}.
It follows that JY is empty or a disjoint union of 2-tori. As there are no

2-spheres in 9Y, if |m;(¥;)| =1 then Y; is a homotopy 3-sphere. Thus Y is
homotopy-equivalent to either

1. RP3#RP3 or

2. A prime 3-manifold Y’ with infinite fundamental group whose boundary
is empty or a disjoint union of 2-tori.
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If Y is homotopy-equivalent to RP3#RP® then 7;(Y) is amenable, which
is a contradiction. So we must be in the second case. Using Property 3, we
may assume that ¥ = Y’. Then as Y is prime, it follows from [24, Chapter 1]
that either Y = S' x D? or Y has incompressible (or empty) boundary. If
Y = S! x D? then m;(Y) is amenable. If Y has incompressible (or empty)
boundary then from (21, Theorem 0.1.5], a»(¥Y) < 2 unless Y is a closed
3-manifold with an R?, Rx S? or Sol geometric structure. In the latter cases,
I is amenable. Thus in any case, we get a contradiction. [

The next proposition gives examples of big groups.

PROPOSITION 14.
1. A product of two nonamenable groups is big.
2. If Y is a closed nonpositively-curved locally symmetric space of dimension

greater than three, with no Euclidean factors in Y, then m(Y) is big.

Proof. 1. Suppose that I' =T xI, with I'; and I, nonamenable. Then
I' is nonamenable. Let K; and K, be presentation complexes with fundamental
groups I'; and I, respectively. Put K = K; X K,. Then I' = m(K). Let
AP(IN{), AP(E) _and A[il?;) denote the Laplace-Beltrami operator on p-

cochains on K, K; and K;, respectively, as defined in Subsection 5.2 below.
Then

inf (o (A1(K))) =min(inf (o (A1(K)))) + inf (o (20(K2))),
inf (o (Lo(K))) + inf (0 (L1(K2)))) > 0.

Using Proposition 11, the first part of the proposition follows.

(5.4)

2. If Y is irreducible then part 2. of the proposition follows from the second
remark after Proposition 7. If Y is reducible then we can use an argument
similar to (5.4). [

REMARK. Let I' be an infinite finitely-presented discrete group with
Kazhdan’s property T. From [6, p. 47], H' (I'; () = 0. This implies that
I' is nonamenable and b(lz)(F) = 0. We do not know if it is necessarily true
that (') = co™.

5.2 TwO AND THREE DIMENSIONS

In this subsection we relate the zero-in-the-spectrum question to a question
in combinatorial group theory. Let K be a finite connected 2-dimensional
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