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If F is homotopy-equivalent to RjP3#RP3 then 7Ti(F) is amenable, which

is a contradiction. So we must be in the second case. Using Property 3, we

may assume that Y Yf. Then as Y is prime, it follows from [24, Chapter 1]

that either Y S1 x D2 or Y has incompressible (or empty) boundary. If
Y S1 x D2 then tti(F) is amenable. If Y has incompressible (or empty)

boundary then from [21, Theorem 0.1.5], a2(Y) < 2 unless F is a closed

3 -manifold with an R3, R x S2 or Sol geometric structure. In the latter cases,

T is amenable. Thus in any case, we get a contradiction.

The next proposition gives examples of big groups.

Proposition 14.

1. A product of two nonamenable groups is big.

2. If Y is a closed nonpositively-curved locally symmetric space of dimension

greater than three, with no Euclidean factors in Y, then it\(Y) is big.

Proof. 1. Suppose that T T\ xT^ with Ti and T2 nonamenable. Then

T is nonamenable. Let K\ and K2 be presentation complexes with fundamental

groups Ti and r2, respectively. Put K K\ x K2. Then T — Let

AP(K), AP(K\) and AP(K2) denote the Laplace-Beltrami operator on p-
cochains on K, K\ and K2, respectively, as defined in Subsection 5.2 below.
Then

^
inf(cr(Ai(^))) =min(inf(<7(AI(^i))) + inf(a-(A0(^2))),

inf(cr(Ao(^i))) + inf(a(Ai(AT2)))) >0.

Using Proposition 11, the first part of the proposition follows.

2. If F is irreducible then part 2. of the proposition follows from the second
remark after Proposition 7. If F is reducible then we can use an argument
similar to (5.4).

Remark. Let T be an infinite finitely-presented discrete group with
Kazhdan's property T. From [6, p. 47], lF(r:/:(T)) 0. This implies that
T is nonamenable and b'\HT) 0. We do not know if it is necessarily true
that onlf) oo+.

5.2 Two and Three Dimensions

In this subsection we relate the zero-in-the-spectrum question to a question
in combinatorial group theory. Let Kbea finite connected 2-dimensional
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CW-complex. Let K be its universal cover. Let C*(K) denote the Hilbert
space of square-integrable cellular cochains on K. There is a cochain complex

(5.5) 0 —» C°(K) -A C\K)-A— 0.

Define the Laplace-Beltrami operators by A0 d^do, A] J0^o + d\d\
and A2 d\d*. These are bounded self-adjoint operators and so we can talk
about zero being in the spectrum of K.

PROPOSITION 15. Zero is not in the spectrum of K if and only if (K)
is big and x(K) — 0-

Proof Suppose that zero is not in the spectrum of K. From the analog
of Proposition 11, T must be big. Furthermore, from Properties 1 and 7,

x® o.

Now suppose that tt\ (K) is big and x(K) 0. From the analog of
Proposition 11, 0 ^ 0"(AO) and 0 ^ cr(Ai). In particular, Ker(Ao)
Ker(Ai) 0. From Properties 1 and 7, Ker(A2) 0. As C2(K)

Ker(A2) %d\Cl(K), we conclude that 0 f cr(A2).

Let T be a finitely-presented group. Consider a fixed presentation of

r consisting of g generators and r relations. Let K be the corresponding
presentation complex. Then y® 1 — g + r. Thus zero is not in the spectrum
of K if and only if m (K) is big and g — r 1.

Recall that the deficiency def(T) is defined to be the maximum, over all
finite presentations of T, of g — r. If bf\T) 0 then from the equation

(5.6) X(K)1 - g+ rb{2\V-bf\T) +

we obtain def(r) < 1. This is the case, for example, when T is big or when

r is amenable [5].
As any finite connected 2-dimensional CW-complex is homotopy-

equivalent to a presentation complex, it follows from Proposition 15 that
the answer to the zero-in-the-spectrum question is "yes" for universal covers
of such complexes if and only if the following conjecture is true.

Conjecture 1. If T is a big group then def(T) < 0.

Remark. If rcfK) has property T then the ordinary first Betti number of
K vanishes [6], and so %(X) 1 +&2(X) > 0. Thus zero lies in the spectrum
of K.
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Now let F be a 3-manifold satisfying the conditions of Proposition 13. If
<97 / 0, we define Ap on Yusing absolute boundary conditions on <97.

PROPOSITION 16. Zero lies in the spectrum of Y.

Proof. This is a consequence of Propositions 11 and 13.

5.3 Four Dimensions

In this subsection we relate the zero-in-the-spectrum question to a question

about Euler characteristics of closed 4-dimensional manifolds.

If M is a Riemannian 4-manifold then the Hodge decomposition gives

(5.7) A°(M) Ker(Ao) © A°(M)/ Ker

A'(M) Ker(Ai) © dX°(M)© A Ker(rf),

A2(M) Ker(A2) © IXHM)©
A3 (M) * Ker(A © *dX°(M)© * A1 (M)/ Ker(J)),

A4(M) * Ker(Ao) © *(A°(M)/ Ker(d)).

Thus for the zero-in-the-spectrum question, it is enough to consider Ker(Ao),
Ker(Aj), cr(A0 on A°/Ker(d)), cr(Ai on A^Ker^O) and Ker(A2).

Let r be a finitely-presented group. Recall that F is the fundamental

group of some closed 4-manifold. To see this, take a finite presentation of
T. Embed the resulting presentation complex in R5 and take the boundary of
a regular neighborhood to get the manifold.

Now consider the Euler characteristics of all closed 4-manifolds X with
fundamental group T. Given X, we have x(^#CP2) — y(I) + 1. Thus it is

easy to make the Euler characteristic big. However, it is not so easy to make

it small. From what has been said,

{x(A): A is a closed connected oriented 4-manifold with

(5.8) 7Tl(X) F} {neZ:n> q(F)}

for some g(r). A priori q(F) <G Z U {-oo}, but in fact g(r) G Z
[17, Theorem 1]. (This also follows from (5.9) below.) It is a basic problem
in 4-manifold topology to get good estimates of g(r).

Suppose that 7Fi(X) F. From Properties 4, 7 and 8 above,

(5.9) \(.Y) 2h®(T) - 2bf\T) + bf\X).
In particular, if bf\r) 0 then y(X) > 0 and so q(Y) > 0. This is the case,
for example, when F is big or when F is amenable [5].


	5.2 Two and Three Dimensions

