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3. The intrinsic theory: genus zero

From the intrinsic point of view we start with a pair of holomorphic
involutions tp T -> T, i= 1,2, on an abstract Riemann surface T. The

quotient spaces T/t7 T, have natural analytic structures [4], and t/ is the

covering involution for the branched covering n,-: T T/. If

(3.1) t2 PTi p

for an anti-holomorphic involution p on T, then there exists an anti-

biholomorphic map p: Fi -> T2 with p o nx n2 ° p. We are mainly
concerned with the case Ti T2 c Pi, although one could study real analytic

curves on an arbitrary Riemann surface Tx. If T is compact, and Tx Pl5
then T is hyperelliptic. The existence of the two functionally independent
2-fold branched coverings ti,: T -> Pi forces T to be either an elliptic or
rational curve [4]. We shall restrict to these two cases, in this paper.

In the genus zero case, T Pi, which we consider in this section, the

holomorphic involutions are fractional linear maps. A single one x{t) can
be normalized so that its fixed points are t 0, oo, and hence has the

form x(t) - t. The theory of a pair of such involutions is still elementary,
but somewhat involved, so we shall refer to [8] for some details.

For a pair of holomorphic involutions Tj, x2, let the fixed-point sets be

(3.2) FP(Ti) {pH Qi}, i 1,2.

If ti and t2 have the same fixed-point sets, they are equal. They have a

single common fixed point in the parabolic case. We first consider the general
case in which the four points {px ,qx,p2,q2) are all distinct. We may form
their cross ratio,

(3.3) k «
(Pi - qi) (qi - Pi)

Interchanging ii and t2, or px with qx, or p2 with q2 results in (at most)
the change k ^ 1/k. Thus, the conditions k > 0, k < 0, ReK 0, kk 1,

for example, are intrinsic conditions on the pair t/. The first two occur
when Tj and i2 are intertwined by an anti-holomorphic involution p.
The significance of the second two conditions is still rather mysterious
at this point.

The maps Ti,t2 may be represented in homogeneous coordinates
(£, h) g C2 for P! by a pair of linear involutions. As in section 2 of [8]
they may chosen as follows,
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Tia,ti) (Xn,x-1o, T2(Ç,ÎI) (X-'ti.X^),
o(^Tl) *= (n4. H ~ 1 Tl), H x2.

In the non-homogeneous coordinate Ç/r|,

(3-5) Tl (0 - I2(f) — O(0
t

Since

(3.6) FP(t,) {X, -X},FP(t2)-X"1}
we have

(3.7) K

2

An anti-holomorphic involution p of Pi is given by reflection in some
circle, which is anti-linear in homogeneous coordinates. Thus, lemma 2.2

of [8] applies directly to give the following.

Lemma 3.1. The normal form for the triple Ti, t2, p, with x2p pxi,
falls into two cases. The x, are still given by (3.4) or (3.5), while

(3.9) XX 1, 0 < arg X < n/2, p(£, rj) (Ç, ti), p(t) t

(3.11) is the elliptic case with k > 0. (3.12) is the hyperbolic case, where

k < 0.

Next we consider the problem of realizing the data T/ by means of an

analytic curve,

(3.10) z n1(t), w n2(t), nt o t/ tu,-

This amounts to finding suitable functions ttz- invariant under T/. We

shall also impose the reality condition

(3.11) 7l2 7t! o p

In general we can try 71/ / + / c x,-, for any analytic or meromorphic
function /. Taking /(/) / leads to the "Zhukovsky functions",

(3.8) X=X>1, P(4, Tl) (Tl, 4), p(0 1 /t,
or

(3.12)
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where a, ß are constants. Computing z2,w2,zw, and eliminating t leads

to the equation

<3-13) "(""if
Next we choose the constants so that (3.11) holds. For the case (3.8) we

take ß ap, a 1, so that

(3.14)
1 I h\ h I, 1 \

z — - 11 + — 1 w - 11 + — I

2 I 2 l Vit)

and (3.13) becomes (2.6) with

4(1 + p2) 4p 4
(3.15) B — — A B-2A

(1-p2)2 (1-h2)2 1 + p2

Since the last two numbers are positive, we have an ellipse with foci on
the real axis.

For the case (3.9) we choose ß et, and a X, so that the coefficients of
z2 and w2 in (3.16) are equal. We get

<3 i6> z=f ('+^ -1 (r+-
and equation (2.6) with

(3.17) B —
+ -,A - + Ë ~2)

(H-u)2 (li-li)2 (li-|J.)2
It follows that A < 0, and B - 2A > 0, since - 2<p + p<2, by (3.9).

Thus we have a hyperbola with foci on the real axis.
In the parabolic case we may assume that qx q2 00, and px 1,

p2 - ~ 1
• Then

(3.18) Ti(t)= — t + 2, — t — 2.
If we take

(3.19) p

then x2 pxip. We can satisfy (3.13) and (3.14) if we take m « + / o T,,
where / op ~f.Thuswe take f(t) at2, ct,

(3-20) z 2a(t-l)2,l)2
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Adding and subtracting to eliminate t gives

(3.21) r(z, w) (z - w)2 - 16a(z + w) + 64a2 0

which is (2.18) with a 4a.

Remark. In the above examples we chose the simplest non-trivial
rational functions f(t), which led us back to the examples of section 2.

Other choices of / would lead to more complicated rational curves.

4. RiemAnn maps

The deeper geometric and analytic properties of a simply connected

proper subdomain D C C are brought out in the problem of mapping it
conformally onto the unit disc A, or right half plane H. In this section we

shall indicate by example what role double valued reflection plays in this

problem.
Thus, let the boundary 8D be a branch of a real algebraic curve admitting

double valued reflection. The Riemann map, f:D~+ A, continues to some

neighborhood of the closure D, and so maps a curve with double valued

reflection to one with single valued reflection. This forces / to possess

additional symmetry properties. Roughly speaking, if / could be continued

globally, then the two reflected points of any point z would have to map
to the single reflected point of f(z). This is decisive in determining an

explicit expression for /.
We first consider the domain D inside the ellipse (2.2). The first map,

z 7ii(0> in (3.14) takes the annulus A\ {1 < 11 \ < p} onto D, as a

two fold covering

(4.1)

branched at the points t ±X e A \ We have

(4.2) 7i-*(y) dA^ Yi u

where ji is the fixed point set of p, and y^ Ti(yO is the fixed point
set of p^ Ti pTi

(4.3) p(0 l/t, p^(0 n/t
The Riemann map,

(4.4) f:D->H, f(z)
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