Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 42 (1996)

Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: ON THE GAUSS-BONNET FORMULA FOR LOCALLY SYMMETRIC

SPACES OF NONCOMPACT TYPE

Autor: Leuzinger, Enrico

Kapitel: 3. ESTIMATES FOR THE BOUNDARY SUBPOLYHEDRA

DOI: https://doi.org/10.5169/seals-87876

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Siehe Rechtliche Hinweise.

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. See Legal notice.

Download PDF: 06.02.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Each polyhedron V(s) is homotopically equivalent to V. More precisely we have

PROPOSITION 2.3. For every sufficiently large s the locally symmetric space V is homeomorphic to the interior of the polyhedron V(s) in V, and V(s) is a strong deformation retract of V.

For the proof see [L3], Theorems 5.2 and 5.5.

3. ESTIMATES FOR THE BOUNDARY SUBPOLYHEDRA

We wish to apply Proposition 1.1 to the polyhedra V(s) in the above exhaustion and then take the limit for $s \to \infty$. To that end we need estimates for the second fundamental forms and the volumes of the (lower dimensional) boundary polyhedra.

For each Siegel set $S_i := q_i S$ which is part of the fundamental set Ω we have its truncated part

$$S_i(s) := S_i - \bigcup_{\alpha \in \Delta} (B_{i\alpha}(s) \cap S_i).$$

The top dimensional boundary faces of $S_i(s)$ in S_i (resp. of $\Omega(s)$ in Ω) are subsets of horospheres:

$$\mathcal{H}_{i\alpha}(s) := \{ \tau_{\alpha}^{-1} \tilde{h}_{i\alpha} = -s \} \cap \mathcal{S}_{i}(s) , \quad \alpha \in \Delta .$$

The "horospherical" pieces $\mathcal{H}_{i\alpha}(s)$ together with their Γ -translates form the boundary of the manifold with corners X(s) in X. For any nonempty subset Θ of Δ we set

$$\mathcal{H}_{i\Theta}(s) := \bigcap_{\alpha \in \Theta} \mathcal{H}_{i\alpha}(s) \subset \mathcal{S}_i(s)$$
.

The various boundary subpolyhedra of V(s) are then unions of projections of the pieces $\mathcal{H}_{i\Theta}(s)$ under the canonical projection $\pi: X \to V$. More precisely, as explained in Section 2, for any subset $\Theta \subset \Delta$, we have the equivalence relation on the set $I = \{1, \ldots, m\}$

$$j\sim_{\Theta}l$$
 if and only if $\Gamma q_{j}P_{\Theta}=\Gamma q_{l}P_{\Theta}$

(the q_i are as in Proposition 2.1). This relation \sim_{Θ} induces a partition, $I(\Theta)$, of the set I whose components will be denoted by E. Let $n = \dim X = \dim V$, let k be the cardinality of Θ and let $E \in I(\Theta)$. Then $V_E^{n-k}(s) := \pi \left(\bigcup_{i \in E} \mathcal{H}_{i\Theta}(s)\right)$ is a (n-k)-dimensional boundary polyhedron of V(s); and moreover, any boundary polyhedron arises in this way (see [L3] §4).

REMARK. The minimal possible dimension which occurs is n-q where q is the \mathbb{Q} -rank of \mathbf{G} . It is also interesting to note (though not needed below) that the outer angles are isomorphic to \mathbb{Q} -Weyl chambers and their walls at infinity.

We shall use the following well-known fact about Jacobi fields in symmetric spaces (see [K] Theorem 2.2.9). A Jacobi field along a geodesic ray is called *stable* if its length is bounded.

LEMMA 3.1. Let $r:[0,\infty) \to X$ be a unit-speed geodesic ray in the symmetric space X (of noncompact type). Set p=r(0). Then the unique stable Jacobi field $J_u(s)$ along r(s) with $J_u(0)=u\in T_pX$ can be written as

$$J_u(s) = \sum_j e^{-\lambda_j s} a_j E_j(s)$$

where $\{E_j(s)\}$ is an orthonormal frame of parallel fields along r, the λ_j are non-negative (uniform) constants and $u = \sum_j a_j E_j(0)$.

LEMMA 3.2. Let $s \ge 0$. The second fundamental forms of every boundary polyhedron $V_E^{n-k}(s)$ with respect to outer angles in V(s) are uniformly bounded by a constant independent of E, k and s.

Proof. Since the claim is local we can work in the universal covering space X. As we noted above the preimage of $V_E^{n-k}(s)$ in X under the projection π is the union of a *finite* number of horospherical sets

$$\mathcal{H}_{i\Theta}(s) = \bigcap_{\alpha \in \Theta} \mathcal{H}_{i\alpha}(s) \subset \bigcap_{\alpha \in \Theta} \{ \tau_{\alpha}^{-1} \tilde{h}_{i\alpha} = -s \},$$

where Θ is a subset of Δ with k elements. The (inner) unit normal field of the horosphere $\{\tau_{\alpha}^{-1}\tilde{h}_{i\alpha}=-s\}$ is given by $Z_{i\alpha}:=-\mathrm{grad}\ \tilde{h}_{i\alpha}$ (see e.g. [HI] Proposition 3.1). Using $d\pi$ any element in the outer angle $O(\pi(p))$ of $V_E^{n-k}(s)$ at a point $\pi(p) \in V_E^{n-k}(s)$ can then be identified with a positive linear combination (of norm 1) of the radial fields $Z_{i\alpha}(p)$, $\alpha \in \Theta$. It therefore suffices to show that for any pair (i,α) the second fundamental form of $V_E^{n-k}(s)$ relative to $d\pi Z_{i\alpha}$ is uniformly bounded. We fix i and α and write Z for $Z_{i\alpha}$. For $p \in X$ let $\langle ., . \rangle_p$ denote the Riemannian metric of X at p. Let $u,v\in T_pX$ be such that $d\pi(u),d\pi(v)\in T_{\pi(p)}V_E^{n-k}(s)$. Using the above identifications the second fundamental form of $V_E^{n-k}(s)\subset V(s)$ with respect to Z can be written as

$$II_Z(u,v)(p) = \langle D_u Z, v \rangle_p$$
.

According to [HI], Proposition 3.1, we have $D_u Z(p) = J_u'(0)$ where J_u is the stable Jacobi field along the (unique) geodesic ray, say r, in X which joins p to $c_{i\alpha}(\infty) \in \partial_\infty X$ and with initial value $J_u(0) = u$. By Lemma 3.1 there are orthonormal parallel fields $E_j(s)$ along r and constants $\lambda_j \geq 0$ such that $J_u(s) = \sum_j e^{-\lambda_j s} a_j E_j(s)$ with $u = \sum_j a_j E_j(0)$. Consequently we get $J_u'(0) = -\sum_j \lambda_j a_j E_j(0)$ and finally, for $v = \sum_j b_j E_j(0)$, $|II_Z(u,v)(p)| = |-\sum_j \lambda_j a_j b_j| \prec ||u|| ||v||$. \square

We next estimate the volumes of the boundary polyhedra. Recall from Section 2.1 the parametrization of X by horocyclic coordinates

$$\mu \colon Y = U \times Z \times A \longmapsto X \; ; \; (u, \tau(m), a) \longmapsto uma \cdot x_0 \; .$$

Let dx^2 be the G-invariant Riemannian metric on X induced by the Cartan-Killing form of the Lie algebra $\mathfrak g$ of G and let dz^2 be the invariant metric on Z. Further let da^2 (resp. du^2) be the left-invariant metric on A (resp. U). Finally set $dy^2 := \mu^* dx^2$.

LEMMA 3.3. Let dv_Y , dv_U , dv_Z and dv_A denote the volume elements of the metrics dy^2 , du^2 , dz^2 and da^2 . Then at the point $(u, z, a) \in Y$ we have

$$2^e dv_Y = \rho(a)^{-1} dv_U \wedge dv_Z \wedge dv_A$$

where $e = \frac{1}{2} \dim U$ and ρ is the sum of all positive roots (counted with multiplicity); it can be written in the form $\rho = \sum_{\alpha \in \Delta} c_{\alpha} \alpha$, $c_{\alpha} > 0$.

For the proof see [B2] Corollary 4.4.

LEMMA 3.4. For the (n-k)-dimensional volume of each boundary polyhedron $V_E^{n-k}(s)$ of V(s) one has the estimate

$$\operatorname{Vol}(V_E^{n-k}(s)) \prec s^{q-k}e^{-cs}$$
,

where $q = \dim A$ is the \mathbb{Q} -rank of \mathbf{G} and c > 0 is a constant (independent of E, k and s).

Proof. We again consider the preimage of $V_E^{n-k}(s)$ in X under the map π . We need to estimate the volume of each horospherical piece

$$\mathcal{H}_{i\Theta}(s) = \bigcap_{\alpha \in \Theta} \{ \tau_{\alpha}^{-1} \tilde{h}_{i\alpha} = -s \} \cap \mathcal{S}_{i}(s), \quad i \in E.$$

It clearly suffices to carry out the estimates for i=1; note that $q_1=e$. For the horocyclic coordinate map $\mu:Y\to X$ and the canonical projection

 $\pi_A: Y \to A$ we set $A_{\Theta}(s) := \pi_A \circ \mu^{-1} \left(\mathcal{H}_{1\Theta}(s) \right) \subset A$. The set $A_{\Theta}(s)$ is contained in an "affine" subspace of A of the form $a_1 a_*(s) A^{q-k}$ where $a_1 a_*(s) \in A$ and A^{q-k} is a q-k-dimensional subgroup of A (see Sections 3 and 4 of [L2]). We denote the restriction of dv_A to A^{q-k} by $dv_{A^{q-k}}$; for k=q we have $A^0=e$ and we set $dv_{A^0}\equiv 1$. By Lemma 3.3 we have (for k equal to the number of elements of Θ)

$$\operatorname{Vol}(V_E^{n-k}(s)) \prec \int_{\mu^{-1}(\mathcal{H}_{1\Theta}(s))} \rho(a)^{-1} dv_U \wedge dv_Z \wedge dv_{A^{q-k}}.$$

Since the horospherical piece $\mathcal{H}_{1\Theta}(s)$ is part of a Siegel set $\mathcal{S}_{\omega,\tau}$ with ω relatively compact (and hence of finite volume) in UM we get

$$\int_{\mu^{-1}(\mathcal{H}_{1\Theta}(s))} \rho(a)^{-1} dv_U \wedge dv_Z \wedge dv_{A^{q-k}} \prec$$

$$\prec \int_{\omega} dv_U \wedge dv_Z \int_{A_{\Theta}(s)} \rho(a)^{-1} dv_{A^{q-k}} \prec \int_{A_{\Theta}(s)} \rho(a)^{-1} dv_{A^{q-k}}.$$

Also by definition of a Siegel set we have $\alpha(a) \geq \tau \succ 1$ for all $\alpha \in \Delta$. Moreover, the computations in the proof of Lemma 4.1 (and Lemma 3.5) in [L2] show that for all $\alpha \in \Theta$ one has $\alpha(a_1a_*(s)) \succ e^{\mu_{\alpha}s}$ with $\mu_{\alpha} > 0$. Hence, as $\Theta \subset \Delta$ is not empty and since $\rho = \sum_{\alpha \in \Delta} c_{\alpha}\alpha(c_{\alpha} > 0)$, there is a uniform constant c > 0 such that $\rho(a)^{-1} \prec e^{-cs}$ for all $a \in A_{\Theta}(s)$. As noted above the set $A_{\Theta}(s)$ is contained in a (q - k)-dimensional affine cone in A. It is similar (in the sense of Euclidean geometry) to $A_{\Theta}(0)$ with similarity factor s (see the proof of Lemma 4.1 in [L2]). Hence we eventually get $\int_{A_{\Theta}(s)} dv_{A^{q-k}} \prec s^{q-k}$ and the Lemma follows. \square

4. A NEW PROOF OF THE GAUSS-BONNET FORMULA

In this section we present a new simplified proof of the Gauss-Bonnet theorem for higher rank locally symmetric spaces.

THEOREM 4.1. Let X be a Riemannian symmetric space of noncompact type and \mathbb{R} -rank ≥ 2 and let Γ be an irreducible, torsion-free (non-uniform) lattice in the group of isometries of X. Then for the locally symmetric space $V = \Gamma \backslash X$ the Gauss-Bonnet formula holds:

$$\chi(V) = \int_{V} \Psi \, dv \,.$$