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262 A.M. HINZ

2. Smaller alphabets

The six-letter alphabet A can still be reduced by building blocks of three

moves. From Corollary (i) we learn that they must be of the form (a, 7,/?)
with Ç G {£,£}• Only five of these actually do occur:

THEOREM 2. Triples of elements of c form a square-free sequence h over
the five-letter alphabet {A.B.T, À, E} with

A:=(afr,ß), B:=(artfrf
r:=(â,7,/î), A := (art fr), E :=(artfr).

Proof From Corollary (o) we know : if 7 occurs in c with a bar, its

neighbors must be in odd positions and consequently unbarred. All the other

triples turn up, the sequence starting

h (A.B. A, r, A.B. A,E, A.B. A, T, A, E, A,T, A, B, A, T, A, B, A,E,...

Clearly, h is square-free, since any square would lead to a square in c as

well, contradicting Theorem 1.

REMARK, h (and consequently c) is not strongly square-free; can you spot

an abelian square (The existence of a strongly square-free string over a five-
letter alphabet has been established by RA.B. Pleasants [17, Theorem 2].)

Let me finally mention another instance of the TH to emerge as a

microcosmos : it is known that the number of states, i.e. distributions of the

discs among the three pegs, of the TH which can be reached from the initial
state with all discs on peg 0, say, in and in no less than p G No moves, is a

power of 2, namely where ß(p) is the number of non-zero bits of p (see

[13, Proposition 5]). (2^(m) also happens to be the number of odd entries in the

/ith row of Pascal's arithmetical triangle, as was realized by J. W. L. Glaisher

[10, second § 14]; cf. [14, formula (4)].) Denoting ß(fr) mod 2 by mM, we
obtain the Thue-Morse sequence

m:=(0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,...),

which by the subsequent substitution of a for (0,1,1),/? for (0,1), and 7
for (0) leads to the square-free sequence

t :« (a,ß,7, a, 7, ß, a, 7, ß, a,...



SQUARE-FREE TOWER OF HANOI SEQUENCES 263

over the three-letter alphabet {a, /?, 7}. This is, of course, the smallest possible

alphabet with an infinite square-free string (clearly, a square-free word over

a two-letter alphabet will come to an end after three entries) with which the

whole theory started in the work of Axel Thue [19, Satz 3], [20, Sätze 6, 7, 20].

Obviously, t (as in fact any word with more than 7 elements over a

three-letter alphabet) is not strongly square-free. Maybe TH sequences hold

a clue for a more direct approach to the question (cf. [6]), if there is an

infinite strongly square-free string over a four-letter alphabet, which has been

answered positively by V. Keränen [16] employing a computer-aided proof.

(An abelian square of length 2-6 in h starts after position 6.)
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