2. Birkhoff's theorem

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 44 (1998)

Heft 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am:
21.07.2024

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.
that the folds will enclose larger and larger domains. Their areas, however, stay bounded since Γ is an invariant curve on the cylinder. Therefore those additional areas must tend to zero. But this can only happen if Γ has a point of self-intersection, which contradicts its embeddedness.

I would like to thank Patrice Le Calvez for drawing my attention to the fact that Birkhoff's Theorem is not true without the area-preserving assumption, as well as Martin Beibel (from the Institute for Mathematical Stochastics, University of Freiburg) for reading and commenting on a preliminary version. This proof was presented in one of those evening sessions during the Dynamical Systems meeting in Oberwolfach (1997), and I thank everyone in the audience for attending.

2. BIRKHOFF'S THEOREM

We consider a C^{1}-diffeomorphism $\phi: \mathbf{S}^{1} \times \mathbf{R} \rightarrow \mathbf{S}^{1} \times \mathbf{R}$ of the twodimensional cylinder; for the sake of simplicity, we keep the same notation for a lift of ϕ to \mathbf{R}^{2} with coordinates x, y.

DEFIntion. We say that ϕ is a monotone twist mapping if the following three conditions hold:

- $\phi^{*}(d x \wedge d y)=d x \wedge d y$, i.e. ϕ preserves area and orientation.
- $\pi_{y} \circ \phi(x, y) \rightarrow \pm \infty$ as $y \rightarrow \pm \infty$, i.e. ϕ preserves the ends of the cylinder.
- $\left|\partial\left(\pi_{x} \circ \phi\right) / \partial y\right| \geq \delta>0$, i.e. ϕ satisfies a uniform monotone twist condition.
According to the sign of $\partial\left(\pi_{x} \circ \phi\right) / \partial y$, we call ϕ a positive, respectively negative, monotone twist mapping.

The uniformity of the twist condition has the following geometric interpretation ("cone condition"). Let ϕ be a positive monotone twist map, and denote by v_{x} the vertical $\{x\} \times \mathbf{R}$. Then the image $\phi\left(v_{x}\right)$ crosses the vertical through $\phi(x, y)$ in positive direction and stays outside a cone around it with centre $\phi(x, y)$, whose angle depends only on the twist constant δ; see Figure 3.

Note that if ϕ is a positive monotone twist mapping then its inverse ϕ^{-1} is a negative monotone twist mapping.

For the statement of the theorem, recall that a closed continuous curve is embedded if it is homeomorphic to \mathbf{S}^{1}; in particular, it cannot have a point of self-intersection.

Figure 3
The "cone condition"

THEOREM (Birkhoff). Let ϕ be a monotone twist mapping on $\mathbf{S}^{1} \times \mathbf{R}$, and Γ a closed, embedded, homotopically nontrivial curve in $\mathbf{S}^{1} \times \mathbf{R}$ such that $\phi(\Gamma)=\Gamma$.

Then Γ is the graph of a Lipschitz continuous function on \mathbf{S}^{1}. Moreover, the Lipschitz constant can be bounded in terms of the twist constant δ.

The proof of Birkhoff's Theorem will take up the rest of this section. We assume that the monotone twist map ϕ possesses an embedded invariant curve Γ which is not a graph. From this we will conclude that Γ has a point of self-intersection, which contradicts the assumptions. The Lipschitz property will be proved at the very end.

I. Set-up

We lift everything to \mathbf{R}^{2} and keep the same notation. Fix a parametrization $\gamma: \mathbf{R} \rightarrow \mathbf{R}^{2}$ of Γ such that $\gamma(t+1)=\gamma(t)+(1,0)$. This equips Γ with an order inherited from \mathbf{R}, and we can say whether a point on Γ comes before or after another one. That Γ is not a graph means that the continuous function $f=\pi_{x} \circ \gamma: \mathbf{R} \rightarrow \mathbf{R}$ is not injective.

Lemma 1. We have one of the following two cases (or both):

- There are $d<e$ such that $f(d)=f(e)$ and $f(t)>f(d)$ for all $t \in(d, e)$;
- f is constant on some nontrivial interval.

Proof. Since f is not injective there are $a<b$ with $f(a)=f(b)=h$. If f is not constant on $[a, b]$ then $m=\min _{[a, b]} f<h$ or $M=\max _{[a, b]} f>h$. In the first case, we set $d=\max \{t<a \mid f(t)=m\}$ and $e=\min \{t>a \mid f(t)=m\}$; then $f(d)=f(e)=m$ and $f(t)>m$ for $t \in(d, e)$. In the second case, we put $c=\min \{t>a \mid f(t)=M\}$ and set $d=\max \{t<c \mid f(t)=h\}$ and $e=\min \{t>c \mid f(t)=h\}$; then $f(d)=f(e)=h$ and $f(t)>h$ for $t \in(d, e)$. Note that all numbers are well-defined because f is continuous and $f(t) \rightarrow \pm \infty$ as $t \rightarrow \pm \infty$.

II. The first case

Let us deal with the first case from Lemma 1, and denote by v_{x} the vertical $\{x\} \times \mathbf{R}$. By construction, the points $D_{0}=\gamma(d)$ and $E_{0}=\gamma(e)=\left(x_{0}, y_{0}\right)$ lie on the same vertical $v_{x_{0}}$. Moreover, the part of Γ between D_{0} and E_{0}, together with the part of the vertical $v_{x_{0}}$ between E_{0} and D_{0}, forms an embedded simply closed curve. By the Jordan-Schoenflies Theorem, this curve bounds a domain in \mathbf{R}^{2} which we call Ω_{0}.

There are two alternatives: either D_{0} lies above E_{0} on $v_{x_{0}}$, i.e. $\pi_{y}\left(D_{0}\right)>\pi_{y}\left(E_{0}\right)$, or below. In the first case, we choose ϕ or ϕ^{-1} in such a way that we obtain a positive monotone twist map; the second alternative requires a negative twist map. Without loss of generality, we assume that D_{0} lies above E_{0} and ϕ is a positive monotone twist mapping.

We set $x_{1}=\pi_{x}\left(\phi\left(E_{0}\right)\right)$ and consider the intersection points of $\phi^{-1}\left(v_{x_{1}}\right)$ and $\Gamma ; E_{0}$ is one of them. Let A_{0} be the first intersection point of $\phi^{-1}\left(v_{x_{1}}\right)$ and Γ before D_{0} (with respect to the order on Γ). See Figure 4 by way of illustration.

Lemma 2. The point A_{0} is well-defined.

Proof. The curve $y \mapsto \phi^{-1}\left(x_{1}, y\right)$ separates the plane into two domains and its second coordinate tends to $\pm \infty$ as $y \rightarrow \pm \infty$. The point $D_{0} \in \Gamma$ lies in one of the two domains, more precisely, in $\phi^{-1}\left(\left(x_{1},+\infty\right) \times \mathbf{R}\right)$ because ϕ^{-1} is a negative monotone twist map and D_{0} lies above E_{0}.

Recall that Γ is parametrized by γ such that $\gamma(t+1)=\gamma(t)+(1,0)$. Therefore one of the points $\gamma(d-k)=D_{0}-(k, 0)$ with $k \geq 1$ lies in the other domain $\phi^{-1}\left(\left(-\infty, x_{1}\right) \times \mathbf{R}\right)$. Since Γ is homotopically nontrivial, $\left.\gamma\right|_{[d-k, d]}$ is a connecting path between them. Hence Γ must intersect $\phi^{-1}\left(v_{x_{1}}\right)$.

Finally, we claim that there is a first intersection point on Γ before D_{0}; this will be our A_{0}. If not, there is a sequence of intersection points between $\phi^{-1}\left(v_{x_{1}}\right)$ and Γ accumulating at D_{0}, and so, by continuity, $D_{0} \in v_{x_{0}}$ belongs
also to $\phi^{-1}\left(v_{x_{1}}\right)$. But then $\phi\left(v_{x_{0}}\right) \cap v_{x_{1}}$ contains two points, in contradiction to the twist property.

Let us define the pre-image $\phi^{-1}\left(E_{1}\right)$ of $E_{1}=\left(x_{1}, y_{1}\right) \in v_{x_{1}}$ to be the last intersection point of Γ and $\phi^{-1}\left(v_{x_{1}}\right)$ before A_{0} (with respect to the natural order on $\phi^{-1}\left(v_{x_{1}}\right)$ inherited from that on $\left.v_{x_{1}}\right) . \phi^{-1}\left(E_{1}\right)$ is different from A_{0}, since otherwise it would be a point of self-intersection for Γ, which is excluded by our assumption that Γ is embedded. Of course, it may happen that $\phi^{-1}\left(E_{1}\right)$ and E_{0} are one and the same point on Γ, but in general $\phi^{-1}\left(E_{1}\right)$ comes after E_{0}.

Figure 4
The first step of the iteration procedure

Again, the part of Γ between A_{0} and $\phi^{-1}\left(E_{1}\right)$, together with that of $\phi^{-1}\left(v_{x_{1}}\right)$ between $\phi^{-1}\left(E_{1}\right)$ and A_{0}, bounds a domain; its image under ϕ will be denoted by Ω_{1}. The vertical segment between E_{0} and D_{0} lies completely in $\phi^{-1}\left(\Omega_{1}\right)$ and divides it into two domains, Ω_{0} and $\phi^{-1}\left(\Omega_{1}\right) \backslash \Omega_{0}$.

IIa. Applying ϕ ONCE
Now we apply ϕ to the whole picture. $\phi^{-1}\left(v_{x_{1}}\right)$ will be mapped onto the vertical $v_{x_{1}}$ through $D_{1}=\phi\left(A_{0}\right)$ and E_{1}, where D_{1} lies above E_{1} because ϕ preserves the orientation. If we just look at the part of Γ between D_{1} and E_{1} and that of $v_{x_{1}}$ between E_{1} and D_{1}, we are in the same topological situation as before - together, they enclose the domain Ω_{1}. It does not matter that the
part of Γ may curl and intersect $v_{x_{1}}$ again. What is important, however, is the fact that the area of the new Ω_{1} has increased:

$$
\left|\Omega_{1}\right|=\left|\Omega_{0}\right|+\left|\phi^{-1}\left(\Omega_{1}\right) \backslash \Omega_{0}\right|
$$

We need an estimate from below for that additional area. To do so, we choose a ray r_{0}, centred at E_{0} and pointing into the second quadrant, such that $\phi^{-1}\left(v_{x_{1}}\right)$ does not intersect the open half cone between r_{0} and $\left\{x_{0}\right\} \times\left[y_{0},+\infty\right)$; see Figure 4. That this is possible follows from the above-mentioned "cone condition" for a monotone twist map. We point out that the angle of the corresponding half cone can be chosen independent of the base point on Γ.

We define B_{0} to be the first intersection point of r_{0} and Γ before D_{0} (with respect to the order on Γ), and B_{0}^{\prime} to be the last intersection point of Γ and r_{0} before B_{0} (with respect to the natural order on r_{0}). The existence of B_{0} and B_{0}^{\prime} is guaranteed by the same reasoning as in the proof of Lemma 2. Moreover, B_{0}^{\prime} is different from B_{0} because, otherwise, Γ would have a self-intersection. Note that it is possible that $B_{0}^{\prime}=E_{0}$.

We call Δ_{0} the domain bounded by the parts of Γ between B_{0} and D_{0}, and E_{0} and B_{0}^{\prime}, as well as r_{0} between B_{0}^{\prime} and B_{0}, and $v_{x_{0}}$ between D_{0} and E_{0}. Then we have

$$
\left|\Omega_{1}\right| \geq\left|\Omega_{0}\right|+\left|\Delta_{0}\right| .
$$

IIb. Applying ϕ MANY times

Now we iterate the above procedure. For this, we set $x_{2}=\pi_{x}\left(\phi\left(E_{1}\right)\right)$ and define A_{1} and $\phi^{-1}\left(E_{2}\right)$ as intersection points of $\phi^{-1}\left(v_{x_{2}}\right)$ and Γ in a completely analogous way as before. After one application of ϕ, we obtain a new domain Ω_{2} whose area can be estimated by

$$
\left|\Omega_{2}\right| \geq\left|\Omega_{1}\right|+\left|\Delta_{1}\right| \geq\left|\Omega_{0}\right|+\left|\Delta_{0}\right|+\left|\Delta_{1}\right|
$$

After n iterations, we obtain

$$
\left|\Omega_{n}\right| \geq\left|\Omega_{0}\right|+\sum_{k=0}^{n-1}\left|\Delta_{k}\right|
$$

Note that $\phi^{n}(\Gamma)=\Gamma$ is fixed for all n and contained in some strip $\mathbf{R} \times[-R, R]$. Let us call L the horizontal diameter of the "fundamental part" $\left.\gamma\right|_{[0,1]}$ of Γ. Then $\sup _{n \geq 0}\left|\Omega_{n}\right| \leq 2 R \cdot L$, and hence

$$
\left|\Delta_{n}\right| \rightarrow 0
$$

as $n \rightarrow \infty$.

IIc. THE GRAPH PROPERTY

From the previous discussion, we will now derive that Γ must have a self-intersection, which contradicts the assumption that Γ is embedded. We define the points $B_{n}, B_{n}^{\prime}, D_{n}$ and E_{n} on Γ exactly as before. Call Γ_{n} the part of Γ between B_{n} and D_{n}, and Γ_{n}^{\prime} that between E_{n} and B_{n}^{\prime} (which may reduce to the single point $E_{n}=B_{n}^{\prime}$). We distinguish two cases.

If $\operatorname{dist}\left(\Gamma_{n}, \Gamma_{n}^{\prime}\right) \rightarrow 0$, then there are points $C_{n} \in \Gamma_{n}$ and $C_{n}^{\prime} \in \Gamma_{n}^{\prime}$ such that $\operatorname{dist}\left(C_{n}, C_{n}^{\prime}\right) \rightarrow 0$, and we may assume that all of them lie in $[0,1] \times \mathbf{R}$. This means that (on subsequences) C_{n} and C_{n}^{\prime} converge to one and the same point on Γ. This is a point of self-intersection, because the part of Γ between C_{n} and C_{n}^{\prime} is always part of the boundary of a domain whose area is at least $\left|\Omega_{0}\right|$.

Ignoring subsequences, the other case is when $\operatorname{dist}\left(\Gamma_{n}, \Gamma_{n}^{\prime}\right) \geq \epsilon>0$. Then we can put an open ball of diameter ϵ between Γ_{n} and Γ_{n}^{\prime}. The area of Δ_{n} is at least that of the ball, intersected with the half cone between the rays from E_{n} through D_{n} (the upper part of the vertical $v_{x_{n}}$), and from E_{n} through B_{n} (which is r_{n}). Consider, in general, the area of the intersection of a half cone with a ball whose centre lies inside that half cone; this area becomes smallest if we put the centre of the ball right at the corner. In our situation, the crucial point is that the angle at the corner E_{n} is fixed for all n. Therefore the area of the above disk segment is a lower bound for all $\left|\Delta_{n}\right|$. But this contradicts $\left|\Delta_{n}\right| \rightarrow 0$, so this case cannot happen.

Thus our assumption that Γ is not a graph leads to a contradiction.

IId. The LIPSCHITZ PROPERTY

We want to show that Γ is the graph of a Lipschitz function, whose Lipschitz constant can be estimated in terms of the twist constant δ. Pick any point P on Γ, and consider the ray r_{P} constructed in the same way for P, as r_{0} had been constructed for E_{0} in Section IIa. In particular, the angle between r_{P} and the vertical through P depends only on δ. If Γ intersects r_{P} in a second point different from P, then the pre-image of the vertical through $\phi(P)$ must intersect Γ in a second point, too; see Figure 5. This follows from the same arguments as in the proof of Lemma 2. But now one application of ϕ shows that the vertical through $\phi(P)$ intersects Γ in at least two points, which is impossible since Γ is a graph. Therefore Γ cannot intersect any of the r_{P} 's, hence it is a Lipschitz graph with Lipschitz constant only depending on δ.

Figure 5
Why Γ must be a Lipschitz graph

III. The second case

Finally, the same remark can be applied in the second of the two cases from Lemma 1 where Γ contains a whole vertical interval. For we may take P to be the midpoint of that interval and apply ϕ once - the vertical through $\phi(P)$ will intersect Γ in two isolated points D_{0} and E_{0}, and we are back in the first situation we already dealt with.

The proof of the theorem is complete.

3. CONCLUDING REMARKS

For the sake of clarity, we did not prove the most general result that can be obtained by our method. Here we just indicate possible generalizations.

First of all, our proof does not require the monotone twist condition but only a sort of "cone condition on Γ ". Namely, what we really need is the requirement that all (pre-)images of verticals lie outside certain cones centred at points on Γ; we do not use the much more restrictive fact that they are graphs. (This subtle point might be the reason why we have not succeeded in proving a well-known generalization of Birkhoff's Theorem to boundaries of invariant annuli $[\mathrm{Fa}, \mathrm{He}, \mathrm{KH}]$ by our method.)

