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We can resolve the singularity by letting Z' be defined by the ideal in

R[X, Y] generated by t2-w3,uX-tY,X2- The fiber Z's in this case

is Proj(k[X,T]/(X2)).
Finally, we consider the case where q is the determinantal ideal in R of

dimension 4 generated by wu — t2, wv — tu, and tv — u2. In this case the

resolution can be found by taking the ideal I in R[X, F, Z, W] generated by

the following elements:

Z2 - YW,YZ-XW,Y2- XZ,uW - vZ, uZ - vY, uY - vX,
2 -

tW — vY, tZ — vX, tY — uX, tu — wv, t2 — wu, wW — vX, wZ — uX, wY — tX.

The fiber over the maximal ideal is a determinantal subvariety of dimension

1,

In a later section we will return to these examples and consider the question

of computing the Euler characteristics Xes(Pz's,M) for sheaves M defined

as above by certain prime ideals p of R.

5. Hilbert polynomials of bigraded modules

In section 2 we showed how the Serre spectral sequence can be used to

express the Euler characteristic defined by a Koszul complex in terms of the

Samuel multiplicity. In this section we show that similar results hold in the

present situation. We now let C denote the bigraded ring which we previously
denoted grj(A) ®Rk, where C/j consists of the elements of (F/P+l) ® k of
degree i. Thus in our present notation, Es — Proj(C), where the grading on
C is that in the first coordinate. Let Co denote the subring ®/(C/;o). Let r
be the rank of I/I2, and let M be a bigraded module defining a sheaf A4

on Es of dimension at most r ; we define the dimension of M to be the

dimension of the associated sheaf. We consider the question of computing the
Euler characteristic Xes(Pz's,A4), which we also denote x(Co,M).

Let
0 - Fk ^ Fx - Fo - C0 -* 0

be a complex of bigraded modules which defines a locally free resolution of
C0 over C. For any finitely generated bigraded module N, we let PN(m,ri)
by the Hilbert polynomial of N\ more precisely, we define PN to be the

polynomial in two variables such that

n-1
PN(m, n)^2lengthi=0
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for large m and n. The degree of Pn is equal to the dimension of N (that
is, the dimension of the sheaf defined by N on Es). Let M be a bigraded
module of dimension at most r as above. Then M 0 Ft has dimension at

most r, and we have that the alternating sum of Pm^Fi is constant with value

equal to x(Cb,M).
We will prove this in a special case below (and reduce the non-negativity

conjecture to this special case in the next section). We first briefly consider
the question of constructing a resolution Fm of Q. One method is to take

the E1 term of the Serre spectral sequence as defined in the previous section,

starting from a locally free resolution of A/7 over A. However, even though

A/1 has a nice resolution by sums of shifts of A, the resulting locally free
sheaves in the resolution over the associated graded ring will not be so simple.
An alternative approach is to take a global Kozsul complex

• • • A2(I/I2)®gn(A) -v A1 (I/I2) ® —> —> 0

The resolution over C can then be obtained in either of these constructions by
tensoring with k. This resolution gives an expression for the Euler characteristic
in terms of the Chern classes of 7/72, but again it is not easy to see how to

use this information to compute Euler characteristics.

For the remainder of this section we assume that 7/120/?fc is a sum of copies
of Oz's(—ki) for various &/, so that C is a polynomial ring Cq[T\, Tr\ over
Co, where 7) has degree (k-n 1) in the bigrading on C. As mentioned above,

the non-negativity conjecture will be reduced to this situation in the next
section. In this case the resolution is the usual Koszul complex on 7),..., Tr,
and the Hilbert polynomial of M 0 7q is a sum of Hilbert polynomials of
M with shifts in the degrees. Furthermore, the Koszul complex on T\,..,, Tr

is a tensor product of Koszul complexes on the individual 7), and we can

compute the Hilbert polynomial of the tensor product Km{T\,..., Tr) 0M by
tensoring by each factor K.(7)) in turn and keeping track of the result. As

above, assume that the dimension of M is at most r, and let QrM(m,ri) be the

component of PM(m,ri) of degree r. Let 7) have degree (k, 1), and consider

the Hilbert polynomial obtained by tensoring with the complex

0 - C[(-k,-l)]0.

The Hilbert polynomial of the resulting complex K.{Ti) 0 M will be given

by the polynomial whose value at (m, n) is PM(m, n) — PM(m — k^n— 1). We

compute this difference for a monomial mlnj and obtain

mlni — (m — k)\n — 1); mlnj — (ml — ikml~l + )(nj —jn^~l +

mlnj — mlni + ikml~lnj + jmln^~l +••. ikm!~lnj + jmlnj~l +
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where the remaining terms have lower degree. Since we are concerned with

the component of highest degree, this suffices for our computation. We note

that we can express this result by the formula

_sa_+ki>KfJK.nxu - Sn 9m

Iterating this process, where we let 7) have degree (&;, 1) for each i, we

have

x<a,«)=n
i= 1 v 7

In this formula Q'M could be replaced with PM.

THEOREM 3. Let C C0[Ti,..., Tr\, where 7} has degree (kfl) as

above, and let M be a bigraded C -module of dimension at most r.

(i) If dim(M) < r, then x(Qb^0 0.

(ii) If k( > 0 for all i, then x(Ql^0 > 0.

(iii) If hi =: 0 for all i, then x(C0,M) > 0 if and only if the coefficient of nr

in Pm is non-zero.

(iv) If hi > 0 for all i and dim(M) r, then x(Q), M) > ^ •

Proof If the dimension of M is less than r, its Hilbert polynomial has

degree less that r, so the result of taking r partial derivatives is zero. Thus

(i) holds.

We prove (ii) and (iv) by induction on r. By taking a filtration of M, we

may assume that M is of the form (C/p)[(iJ)], where p is a bigraded prime
ideal of C and [(zj)] denotes a shift in degrees. Suppose some 7) is not
in p. Then 7) is a non-zero divisor on M, and we can tensor with the Koszul

complex on 7/, replacing M with M/TiM and reducing r by one. Thus the

result follows by induction. If all Tt are in p, then its Hilbert polynomial is

constant with respect to n, so we have Qr(m,ri) — am1' for some a > 0.
Hence the above formula states that

X(C0,M) kikt-'.kr(r\)a.
If all the hi are greater than or equal to zero, we thus have x(Ql^0 > 0.
If all the kf are greater than zero and M has dimension r, then a > 0 and

X(Co,M) > 0. This proves (ii) and (iv).
If all the kj are zero, then x(Cb,Af) is simply the rth derivative of PM, so

it is positive if and only if the coefficient of nr is positive. On the other hand,
this coefficient gives the length of the module ©•=/ MmJ for sufficiently large
n up to terms of lower degree in n, so it cannot be negative.
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The graded ring obtained from the original situation will be of the form
considered here when 7 is globally defined by a regular sequence, and the

ki will then be the degrees of the generators. We give an example to show
that the condition that M has dimension r does not suffice for %(Co,M) to
be positive. Let R have dimension 3 and let t,u,v be a regular system of
parameters. Let q be the ideal generated by v, and let 7 be the ideal of 7?[X, Y]

generated by v and uX — tY. Then the fiber over the closed point is projective
space of dimension one, Co k[X, Y], and C C0IX1, T2] with k\ 0 and

k2 1. Then if M — CjT\, M has dimension 2 and x(Co,M) 0.

Exercise. Prove (without using the Serre positivity conjecture) that the

module M in the previous paragraph could not arise from a prime ideal p
such that R/p <g> R/q has finite length and dim(i?/p) + dim(7?/q) dim(R).

6. Gabber's proof of non-negativity

In this section we complete Gabber's proof of the non-negativity of
intersection multiplicities. We have seen in the last section that if grj(A) 0# k

is a polynomial ring over (A/7) 0# k generated by elements of non-
negative degree, then non-negativity follows. We show here that we can
embed (777(A) 0# k into a polynomial ring of this type. Let Ao denote

A/I®Rk. Actually, we show instead that we can embed the symmetric algebra

SymA ((7//2) 0/? k) into a polynomial ring by a locally flat map. Since I/I2
is locally free, the map from the symmetric algebra to the associated graded

algebra defines an isomorphism of schemes, so this suffices to prove the result.

Let 5 SymAo((I/I2) ®R k).

Let Es denote Proj((/r/(A) ®R k) Proj(SymAo((///2) ®R as above.

Let W Proj(Ao[7"i,..., 7>]) for 7) of degree (ki, 1) for some integer r'.
Suppose that/ is a map from S into the polynomial ring A$[T\,... ,Trt] such

that the map <fi induced by / from W to Es is flat of relative dimension

r' — r, where r is the rank of I/I2. Then we have a commutative diagram

5 A0 [TU

\ /
Ao
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