
5. FACTORING THE GROUP DETERMINANT BY
REPRESENTATION THEORY

Objekttyp: Chapter

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 44 (1998)

Heft 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

PDF erstellt am: 21.07.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch



THE ORIGIN OF REPRESENTATION THEORY 375

The "if" direction did not need O to be irreducible. It can also be removed

as a hypothesis in the "only if" direction by weakening the conclusion to O

dividing a power of 0.
Theorem 3 allowed Frobenius to establish a conjecture of Dedekind [10,

p. 422], which said that the linear factors of 0, monic in Xe, are related

to the characters of the abelian group G/[G,G]. More precisely, Frobenius

showed the linear factors of 0, monic in Xe, are exactly the polynomials

Ep x(9)Xg » where x: G -> Cx is a character, and each such linear factor

arises exactly once in the factorization of 0. (Since we already showed such

polynomials are factors, only the "if" direction of Theorem 3 is needed and

therefore Lemma 1 is not required for this.) The reader is referred to the

paper of Frobenius [22, Sect. 2] or Dickson [11, Sect. 6] for details of this

argument.

It is of interest to see what is mentioned about the group determinant

in Thomas Muir's The Theory of Determinants in the Historical Order of
Development, which aimed to describe all developments in the subject up
until 1900. In the preface to the final volume, Muir expresses the hope
that "little matter of any serious importance has been passed over that was
needed for this History." There are many references to the circulant, one to
Dedekind's calculation of ©(S3), but there is no mention of any work on the

group determinant by Frobenius. However, his List of Writings in the 1907

Quart. J. Pure Appl. Math, shows he was aware of such papers.

5. Factoring the group determinant by representation theory

We now use representation theory to completely factor the group determinant.

As in the second proof of Theorem 2, let's compute the matrix for left
multiplication in C[G] by an element Y^ag9^ with respect to the basis G of
C[G]. Since

(53 a3g)hLAa-'S,
9 9

the matrix for left multiplication by Jfag9 is ißgh-0- Hence

àtt{agh-\) NC[G]/c(E^) '

g

Since C[G] decomposes into a product of matrix algebras, this norm will
decompose into a product of determinants. More specifically, let {(p, Vp)} be
a full set of mutually nonisomorphic irreducible representations of G (over
the complex numbers). Then the map
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C[G] -h. J] Endc(V'p),
p irred

given by

—' —* / p irred
geG geG

is an isomorphism of C-algebras. Thus

NC[G]/Cfa9gjIf NEndc(v0)/c fn
9 p irred g

-|—«r /^—-v \ ^e§(p)

11 det(l
p irred g

This last equation arises from the fact that in the endomorphism ring End(V)
of an m-dimensional vector space V, left multiplication by an element is a

linear map End(V) —» End(V) whose determinant is equal to the ra-th power
of the usual determinant of the element. Therefore

T—T fX—"V \0(G) det(XsA-i)= [f det^XsP(ff)j
p irred g

Note dziQ2gXgP(g)) is a homogeneous polynomial of degree deg(p), monic
in Xe.

We now show that the irreducible factors of 0(G) (which are monic in Xe

can be put in a one-to-one correspondence with the irreducible representations
of G by proving

THEOREM 4. For an irreducible complex representation p of G,

(i) the polynomial detQ2gXgp(g)) G irreducible and

(ii) p is determined by detÇf2gXgp{g)).

We begin with a lemma originally due to Burnside [4].

LEMMA 2. If (p, V) is an irreducible representation of G, then the

C-algebra map C[G] -* Endc(V) givenby *-> «
onto. That is, the transformations p(g) linearly span Endc(E).

Proof. This map is basically a projection of C[G] onto one of its simple
C[G]-submodules, so it is onto. Alternatively, for a proof that works for
representations over any algebraically closed field, even one with characteristic

dividing the size of G, see [33].
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Lemma 3. Let p:G->GLd(C) be a representation. Write

^Xsp(5) (L,7),

geG

where the Lij's are linear polynomials in the Xg's. If p is irreducible then

the Lij's are linearly independent over C.

Proof By Lemma 2, any set of d2 complex numbers (z7y) arises as

J2agP(ô0 (Ljj(ag)) for some vector (ag) in Cn. So

]TCijLij 0 in C[X5] => ^djLijiag) 0 for all (^) G C"

=> cüzÜ 0 for a11 fey) G

=> all Cjj 0.

Proof of Theorem 4. (i) By Lemma 3, choose n-deg(p)2 homogeneous

linear polynomials Lk such that {Ljj,Lk} is a basis of the homogeneous

linear polynomials in C[Xg]. Then we can move between the sets {Xg} and

{Lij,Lk} by a linear change of variables. This gives a C-algebra automorphism
of C[Xg], so the set {L?y,L^} consists of algebraically independent elements

over C. In particular,

det^X^p)) det(Ly)
gee

is the determinant of a matrix whose entries are algebraically independent.
It is a standard fact (see [36, p. 96] for an elementary proof) that such a

determinant is irreducible in C[L,y], so it is also irreducible if we append the

extra algebraically independent variables {Lk} to the ring, so this polynomial
is irreducible in C[L/y,L^] C[Xg].

(ii) We need to show that p is determined by det(ffXgp(g)). It is enough
to show the corresponding character Xp *s determined, and that is what we
will do.

The number xpiß) *s the degree of the homogeneous polynomial

detQfXgpig)). For h e, we will recover Xpfe) as the coefficient of
^deg(p)—• To see this, we ignore all variables besides Xe and X/7 by setting
Xg equal to 0 for g ^ e, h. Then our polynomial becomes det(XeI +Xhp(h)).
We want to know the coefficient of X?eg(p)-1X/7 in this polynomial. For any
matrix A, the polynomial det(T I + A) in the variable T has second leading
coefficient Tr(A). Apply this to A Xhp(h), whose trace is Xpif)Xh.
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Let's work through the proof of Theorem 4(i) in a case we've already

seen, G S3. Recall

TTl - (1) 7T2 (123) 7T3 (132) 7T4 (23) ^5 (13) 7Tß (12)

Let p : S3 GL(V) be the irreducible 2-dimensional representation on

given by permutation of the cooordinates. Using (1,0,-1), (0,1,-1) as an

ordered basis of V, we get the matrix realizations

[P(7J"i)]=^q [P(^2)1\ o) ' _ 1
Î

>

which tells us what the Ly in Lemma 3 are, 1 < i,j < 2. Taking the

determinant of the right hand side of (5.1) gives an expression ad — be for
the factor O3 of 6(83) where a,b,c,d are linear polynomials with integer
coefficients (such an expression was given by Dickson in [14, Eq. 2]). In the

expression of Dedekind's for O3 which we saw earlier, a, b, c, and d had

coefficients involving cube roots of unity. The fact that we can get integer
coefficients is related to the 2-dimensional irreducible representation of S3

being realizable in GL2(Z). In general, the irreducible factors of 0(SW) have

integer coefficients since all irreducible representations of Sn are defined over
the rational numbers.

As a basis of the linear forms in C[X;] we use the Ly and matrix entries

of all where p' runs over irreducible representations of S3 not

isomorphic to p. These are the trivial and sign representations, which yield

U Xi + X2 + X3 + X4 + X5 + X6 and L2 + X2 + X3 - X4-X5-X6,
so we can also use X\ + X2 + X3 and X4 +X5 + X^. These are essentially
elements Dedekind came across when factoring S(S3) into linear factors in

some hypercomplex number system. Compare this means of manufacturing

7T| T 7t2 7T3 and 7t4 + its + tt6 with Dedekind's calculation.

As an illustration of the proof of Theorem 4(ii), the quadratic irreducible

factor of ©(S3) corresponds to the irreducible 2-dimensional representation

v {(zi > Z2, Z3) c3 : Z] + z2 + z3 0}

Therefore

6

(5.1)
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of S3, and its coefficients of X\Xj for 2 < / < 6 (some of which are zero)

coincide with the character values at 7r,-.

The proof given for Frobenius' theorem on the factorization of 0(G) can

be adapted to show that for any finite-dimensional complex representation p

of G, the determinant attached to p, namely

decomposes into homogeneous irreducible factors (monic in Xe in accordance

with the decomposition of p into irreducible representations. Frobenius'

theorem on the group determinant involves the regular representation.

In Frobenius' initial work on the group determinant, he felt the most

remarkable (and difficult to prove) feature of the factorization was that the

degree of each irreducible factor coincides with its multiplicity as a factor.

We recognize this feature as a familiar statement about the multiplicity of
irreducible representations in the regular representation.

Since every factor (monic in Xe) of the group determinant has the form

det(}2gXgp(g)) for some representation p, the "if" direction of Theorem 3 gets

a second proof from the definition of a representation and the multiplicativity
of determinants.

According to Hawkins [26, 27], Frobenius' original approach to characters

of G (which is not the first one that appeared in print) was as follows. Let
O be an irreducible factor of 0(G) which is monic in Xe and of degree d.
Define the associated character x letting x(p) be the coefficient of Xc^~{

in d<$?/dXg. This is equivalent to the description we gave in the proof of
Theorem 4(ii), except that we speak of the character attached to an irreducible
representation of G while Frobenius (at first) spoke of the character attached
to an irreducible factor of the group determinant of G.

Here is another point of view that Frobenius had on characters. Let O
be an irreducible factor of the group determinant of G, monic in Xe and of
degree d. We regard O as a function C[G] —> C by Y,ag9 ^ ^(%)- Let
x Y^agg G C[G]. For a variable «, set

where C/ is a polynomial function of the ag's which is homogeneous of
degree i. In particular, C\ is a linear homogeneous polynomial of the agys.
Frobenius observed in [22, p. 1360] that its coefficients are the values of the
character x corresponding to O : Cx Y,g X(9)ag. Since (5.2) is essentially a

geG

(5.2) 3>(a- + ue) ud + Cb Q
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characteristic polynomial, so Cj is basically a trace, the connection Frobenius

eventually found between characters and traces is not surprising.
In [22], Frobenius explicitly showed how all the coefficients of an

irreducible factor of the group determinant can be expressed explicitly in
terms of its corresponding character. We will show more generally that for

any (complex) representation p of G, irreducible or not, the coefficients of
XgP(g)) can be expressed in terms of xp- Our discussion is based on

the matrix formula (5.3) below, which we now explain.
For N > 1 and er G S/v consisting of disjoint cycles of length N\,... yNr,

define a trace map Tra : Md(C) ^ C by Tra(A) Tr(ANl) •... • TrFor
example, Tr= (TrAf, Tr(1,...^(A) - Tr(A"), and Tra(Id) d>\

If a and r are conjugate in Sn they have the same cycle structure (and vice

versa), so Tra Trr. Note Tra is typically not linear.

For our application, we set N d. We will prove that for A G M^(C),

(5.3) det(A) ~Y,sgn(a)TrCT(A).
cr£S<i

A formula equivalent to (5.3) was used by Frobenius in [22, Sect. 3, Eq. 8].

For example, when d 2 let A have eigenvalues A and p. The right
hand side is

1 ((TrA)2 - Tr(A2)) ~((A+ p)-(A2 + det(A).

To prove (5.3), let Ai,...,Ad be the eigenvalues of A, repeated with
multiplicity. For k > 1, let Sk A\ + - + Akd.

If a has m\ 1-cycles, m2 2-cycles, and so on, then m\ +2m2+- • •+dmd d
and sgn(cr) 11^((— \)k~l)mk. Since J^km^ J, sgn(cr) (—1 km^

Also, Trcr(A) s^s2 • •. • sd. Therefore

d

sgn(a)Tr a{A)(-1)"
k= 1

If a and r have the same cycle structure, sgn(cr) Trff(A) sgn(r)Trr(A).
For our evaluation of

— s§n(cr)Tr^(A)'
WEScI

we want to collect all the terms corresponding to permutations with the

same cycle structure. The permutations in Sj having a cycle structure with

m\ 1-cycles, m2 2-cycles, and so on form a conjugacy class whose size is

d\/UU^-mk\. Thus
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d /_| \mksmk

-52sgn(<j) Tra(A) - E II
d[

aeS, mum2
mi+2/ri2 H—=d

* v- A (-ir+=(-Drf Enmi,m2,---+0 k— 1

mi+2m2-[——^

We want to show this equals Ai • • Aj. To do this, we use generating

functions :

v A +iy+£+r
H kmkrrik\ / >n 7"*7 kmknik\

i>0 mi,m2, •••>0 A-l />0 mi,m2,-**>0 *=*1

mj +2m24—=* m1+2m2 + ---=/

kmkmk\

+E(+r+=n«-"*
$Ï==1 mit> 0 &—1

d b d d \kfk

fc=l 7=1 &=1

d d d

=n-pi- e a*a*)=nexp(i°s(i - ^ m°d td+i

7=1 *=1 7=1

d

JJ(1 - Ajt) mod td+l.

j= i

The coefficient of td here is (-l)^Ai - - Xd, as desired.

More generally, for N > 1 and A G Md(C), the coefficient of tN in
N

nt=i(l ~ A/0 is (— 1)N Tr(/\A), so by an argument similar to the one above,

T+)=(-.)" e Ô+++E—>>.
ni\ ,m2,--->0 &=1 crGS/v

mj +2m2H—=iV

It is interesting to write (5.3) using the classical definition of the determinant

of the d x d matrix (<+y) :

52 sgn(cr)ai(T( 1)02(7(2) •
• • •

• Cdcr(rf>^ E sgn(CT) Tl+<+)) •

crGSrf cGS</

Although these sums are both taken over Sd, the addends corresponding to
the same permutation <r are typically not equal. For instance, for a diagonal
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matrix the left hand side has only one nonzero term while the right hand side

has many nonzero terms.

Let's apply (5.3) to representation theory. It says that for a d-dimensional
representation p of G,

da(j^Xgp(g)) J\ XL sgn(a)TraÇ^Xg
g£G

'
creSd g£G

=<-»' e n

which equals

mi ,m2,--->0 k— 1

m \-\-2m2 H—=d

<"»" E É=(E X.tor...-Ä-.-Ar„r
• kmkrrik\ *

mi,m2,--->0 k~ 1 (gu...,gk)£Gk
m i -\-2m2 H—=d

So all coefficients can be expressed in terms of xp • F°r the connection between

the coefficients and the higher characters of p, see Johnson [30, p. 301].

In particular, if p is 1-dimensional then dtt(^2Xgp(g)^j J2xp(g)Xg •

For 2-dimensional p,

det(]Txflp(5)) =l-Ç£xP(g)Xg)2 -1 £ Xp(gh)XgXh
g£G (g,h)eG2

\ Y, (xP(g)
(g,h)G2

(xpigf-Xp(g2))x2g

g

+ XI
{g,h} unequal

To conclude this section, let's use the point of view developed here to

factor the group determinant of Dg, the group of symmetries of the square

(also denoted by some as D4). We index the elements of Dg as

9l 1, g2 (13)(24), p3 - (1234), g4 (1432),

95 (13), 96 (24), g7 (12)(34), gs «= (14)(23)
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The conjugacy classes are

Cl {1} C2 {52} C3 {53,54} C4 {55,56} C5 {57,58} •

The character table of D g is

C\ <22 C3 c4 C5

Xi 1 1 1 1 1

X2 1 1 1 -1 -1

X3 1 1 -1 1 -1

X4 1 1 -1 -1 1

X5 2 -2 0 0 0

Therefore 0(Dg) d>i O2 O3 O4 where

01 X\ + X2 + X3 + X4 + X5 + -^6 T- X-j + ^8 5

02 — K\ + X2 Hh X3 + X4 X5 X^ X7 Xg,

03 Xi + X2 — X3 — X4 + X5 + Xg — X7 — Xg,

04 X\ + X2 — X3 — X4 — X5 — Xg + X7 + Xg,

^5 det (y^Xsp(5)J

where p is the 2-dimensional irreducible representation of Dg. So

<i>5 - X5(g2))X2g+ (X5(5)X5W -
g {9>h} unequal

xî +xj +X32 +x\ -x]-xf-XÏ-xj
- 2X1X2 - 2X3X4 + 2X5X6 + 2X7X8.

Although Qg and Dg have identical character tables, and all coefficients of an

irreducible factor of the group determinant are determined by the corresponding
character, the quadratic irreducible factors of 0(Qg) and ©(Dg) are different.
This illustrates that the determination of all coefficients of a factor from its
character depends on the character as a function on group elements, not only
on conjugacy classes.


	5. FACTORING THE GROUP DETERMINANT BY REPRESENTATION THEORY

