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AN ASYMPTOTIC FREIHEITSSATZ

FOR FINITELY GENERATED GROUPS

by Pierre-Alain Cherix*) and Gilles SCHAEFFER

Abstract. Given two fixed integers k > 2 and I > 3, let T (X \ R) be
a presentation of the group. T with k #X generators and / #R relations. We
show that the following property of presentations of groups is generic in the sense
of Gromov: for any y G I, the subgroup of T generated by X — {y} is free of
rank k — 1. This gives some generic estimates for the spectral radius of the adjacency
operator in the Cayley graph of T relative to the generating system S X U X~1.

1. Introduction

The existence of free subgroups in some finitely generated group T gives
some information about the structure of T. For example, it implies that T
is non-amenable, and in particular that F has exponential growth. There are
several results which ensure that various groups do have non-abelian free
subgroups. For example:

THEOREM (Tits's alternative [15]). Let T be a finitely generated linear
group. Then either F is almost solvable or T contains a free subgroup on
two generators.

Le premier auteur est supporté par une bourse "Jeune chercheur" du Fonds National Suisse
de la Recherche Scientifique et a effectué ce travail à l'université de New South Wales.



10 P-A. CHERIX AND G. SCHAEFFER

THEOREM (Magnus's Freiheitssatz [12]). Let T= (Z|r) be a one relator

group, xo G X be a generator of T that appears in the relation r and r be a

cyclically reduced word in the free group Fx generated by X ; then X — {xo}
freely generates a free group in T.

Our purpose in this work is to measure in some sense how frequent it is

for a presentation T (X\R) to be such that a proper subset of X is free in
T. We prove the following result:

THEOREM 1.1. Let r (X\ R) be a finite presentation with k generators,
I relations and any fixed xo in X. Then the fact that X— {xo} freely generates
a free group in T is generic in the sense of Gromov.

The key idea is contained in proposition 4.1. Roughly speaking, if you
choose at random I long relations and if the presentation satisfies a Dehn

algorithm, then every generator xo will appear in every sufficiently long
subword of every relation and hence it will appear in every product of
conjugates of relations. So X — {ao} generates a free group in I\

In [6], the first author has shown that "X generates a free semi-group" is

generic and that this implies bounds on the spectrum of the adjacency operator
associated to the oriented Cayley graph of T relative to X. In section 5 below,

we consider the adjacency operator hs of the Cayley graph of T relative to
S X U X~1, and we prove similarly estimates on the norm of hs.

After finishing this paper we discovered that a result similar to Theorem 1.1

has been proved, using different methods, by G. Arzhantseva and A. OTshanskii

in [1]. They employed a slightly different definition of the genericity and they

proved that the small cancellation condition C'{A) is generic with respect to
this new definition.

We thank A. Valette for his useful remarks and for the proofreading of
this paper.
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2. Some definitions

First, we recall what Gromov's genericity is.

Definition (Champetier). Consider two integers k > 2, I > 1, a set X

of & generators and a property P of group presentations with X as generating

system and with / relations. For integers /?],.... /// > 1, let Pr(X ^..... n/)

denote the finite set of presentations (X | r\%..., r{) where r\ is a cyclically

reduced relation in the generators of X which is of length |rf| =* m 1 < / < Z).

Then P is said to be generic in the sense of Gromov if the ratio

#{(X\R) £ Pr(X,nu.. Mn/) | (X[P) satisfies P}
#Pr(X,m~~~

tends to 1 when min w; —>• Too.

For example, being a hyperbolic group is a generic property. This was

proved independently by Champetier [5] and Ol'shanskii [13].

One tool we need is small cancellation theory. Let (X\R) be a presentation

of a group r. Denote by P* the set of cyclic conjugates of elements of R

and of their inverses.

Definition 2.1. Let r (X\R) be a finitely presented group. A piece
is a prefix u common to at least two distincts elements in P* (by prefix,
we mean every non empty initial part of a word; in particular a word is a

particular prefix for itself).
Fix À £]0,1[. The presentation (X \ R) satisfies the small cancellation

condition C'(X) if the following inequality holds: \u\ < A|r| for every r G R*

and for every prefix u of r which is a piece.

Definition 2.2. A group T (X\ R) satisfies a Dehn algorithm if, for
every non trivial reduced word to £ Fx representing 1 in T, there exists a

prefix u of some word r £ P* such that m is a subword of cu and \u\ > ^\r\.

It is known that groups satisfying the small cancellation condition C'{ 1/6)
also admit a Dehn algorithm (see Theorem 4.4, Chapter V in [11] or
Theorem 25 in [14]). On the other hand Gromov proves that groups with
a Dehn algorithm are hyperbolic (see [8, Theorem 2.3.D]).

In Proposition 4.1 below, C/(l/6) is one of the conditions which imply
that, for some fixed x0 £ X, X — {x0} generates a free subgroup in F.
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Let (X\R) be a presentation with k generators and I relations ri,... ,77.
G. Arzhantseva and A. Ol'shanskii proved, in [1], that for any fixed À > 0,

#{(X\R) with C'(À) I Xw=i lri'l —^5 ri cyclically reduced}
^

d^+co #{(X\R) I Yl\=\ Iri\ ~ n cyclically reduced}

Unfortunately, even with this result, it is not known if the small cancellation

hypothesis is generic, so we need another hypothesis which is generic. Let us

recall the definition of Van Kampen diagrams.

Definition 2.3. Let tu G Fx represent the identity in T (X\R). Then
À is a Van Kampen diagram of uj if A is a planar 2-complex for which the

1-skeleton is a graph, each edge of it being labelled by a element of X or
X~l such that when we read the labelling of every 2-cell of the complex, we
get a word in 7?*, and such that the labelling of the border of the complex
À is the word tu.

For more details about Van Kampen diagrams, see [14], [3] or [11]. We

denote by 1(A) (resp. E(A) and #(A)) the number of internal edges of A (resp.
the number of external edges of À and the total number of edges of A).

DEFINITION 2.4. The combinatorial area of a Van Kampen diagram A is

the number of its 2-cells. We say that A is a reduced diagram of uj if it has

the minimal combinatorial area among all diagrams representing to.

For every uj G Fx representing the identity in T {X | R), the existence

of such a reduced diagram of uj is proved in [3].

Definition 2.5. For 0 < 9 < 1, a finite presentation (X |/?) is said

to satisfy the 9-condition, if for every reduced diagram A associated with
a reduced word uj in representing the identity in (X | R), we have

1(A) < 6 #(A).

In [13], OFshanskii showed that for every fixed 9 > 0, the property of
satisfying a 9 -condition is generic.

To prove that result, he needed to introduce the following definition.

DEFINITION 2.6. A reduced diagram is simple if every edge is contained

in the boundary of a 2-cell of the diagram.
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It is clear that every reduced diagram of u is a disjoint union of simple

ones linked by bridges, where a bridge is a finite path of edges which are

not in the boundary of a 2-cell, and, because the word to in is reduced,
each bridge links two simple diagrams. In figure 1 the diagram contains three

simple diagrams (Dl, D2, D3) and two bridges (Bl, B2).

D1

D3

Figure 1

A non simple diagram

Let X be a set of generators and y G X. For every reduced word r G Fx,
we denote by ny(r) the number of occurences of y and y_1 in r. For example
ny(yx3y~2xy3) 6.

Definition 2.7. Let Fx be the free group on X with #X k. For a
fixed 6 with 0 < e < 1 /k and y G X, a non trivial reduced word r eFx is
(e.y)-balanced if

Mr) > e

A presentation T (X \ R) is (e,y)-balanced, if every r e R is (e:y)~
balanced.
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3. About genericity

LEMMA 3.1. Let X {x\,... ,X£,y}. For every 0 < e < l/(k + 1), the

ratio
#{r G Fz I \r\ =n,r is (e,y)-balanced}

#{r e Fx I n}
tends to 1 when n tends oo.

Proof. First we want to rephrase the Lemma in terms of generating
functions. Let K be any fixed subset of and FK(z->u) be the generating
function defined by

FK(z,u) J2zMuny(r)
reK

Fk{z->u) strongly depends on the choice of the generator y. However, as y
is fixed throughout the proof and to lighten the notation, we write FK{z, u)

instead of Fy^K(z, u).

Defining cnj and pn(l) by

Ffx(z,u)=y2 z|r|"%(r) L/ cn,iznul and —
rFx n,l C"'m

we have to prove that for every 0 < e < 1 /(k+ 1),

lim y~]0.
n—*oo z '

0 <l<en

We want to find an analytical form for Ffx(z, u).
It is clear that if K\ and K2 are disjoint subsets of then FKlUK2(z, u) —

FKl(z, u) + FKl(z, u).
Let K\,K2 be two subsets of Fx\ assume that the map K\ x K2 —> K\K2

defined by (uji,lü2) i—> uj\uj2 is one to one and satisfies \oj\uj2\ \lüi \ + \u2\

for cjüi G Ki (where K\K2 {cuiiu2\iUi G AT/}) ; it is also clear that FK]Kl(z, u) —

Fri (z, u)Fk2(Zi u). This can be extended to a finite product of such Kfs.

First we compute the generating functions of some subsets K of Fx-

• F{e}(Z,u) 1.

• Denote by X' X — {y}. As there are exactly 2k(2k — \)n~l reduced

words of length n > 1 in Fx>, we obtain F[Fx/-{e}](z, u) Set

f(z, u) F[¥x,_{e}](z, u).

• For (y) {y11 i G Z — {0}}, we have F(yfz, u) because

there are exactly 2 elements y±l in (y) such that ny(y±l) ly^'l i. Set

h(z, u) Ffy)(z, u).
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Now we can partition Fx as follows :

Fx {e}II[Fx, - {e}] H /„
n>\)

where

In {wo y Ui y'"-' LOn-1 y'n un

I uj e Fj', Uj y e for j ^ 0 or and z)^ 0}

It is easy to check that u)(f(z,u)+ 1 )2 h(z, u)f(z, u))"
1

• So

we obtain that

F¥x(z, u)i + f(z,u) + X (f(z,u)+ l)2 u) u)f(z, u))"'1
n> 1

„ ^ h(z,u)(f1)^
(1 +f(z,u))(1 + ————-J

1 - /z(z, w)/(z, M)

(1 + z)(l + uz)
~

1 - (2k-1 )z- uz(l+ + 1)Z)
'

Borrowing notation from [2], let g(z,u) (1 + z)(l + and P(z,u)
1 - (2k -l)z - uz(l+ (2k + l)z) » 1 - (2k- (2k + 1 Then

c < \9(z,u)Ffx(z,U)——-
u)

and let r{s) be the root of smallest modulus of P(r(s),es) 0 in a small

neighborhood of s 0. In particular r(0) 2FFI • According to [2, (3.1)],

we obtain from [2, Theorem 1] that

lim sup X P"(k)—7== [ e
'272

k<a„x+^„ v00
0

withM=^> Fn nid nr-^ and <r2 mr2 - •

Computing r'(0) or easy combinatorial considerations gives fin ^.
The actual value of a is here useless.

Now let 6 < jrpy and 6 > 0. Let x such that e~*~!2dt < 6.

Then there exists N such that for n > N, en < a^/nx + ^ since e <
Therefore, for n > N,

X PnW ^ X Pn(®
k<en k<crnx+iÂm

and there exists N\ such that for n > A/),

X p»'w~2S- a
k<en
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COROLLARY 3.2. For #X k, #R n, xq G X and 0 < e < 1/k fixed,
being (e,xo )-balanced is generic for T (X\ R).

Proof of corollary. We choose n relations at random; by Lemma 3.1,

every r G R is generically (e.xo)-balanced, but the conjunction of finitely
many generic properties is also generic.

4. Some sufficient conditions for the existence of free subgroups

We first begin by a very easy proposition.

PROPOSITION 4.1. Let T (X\R) be a finite presentation, which has

a Dehn algorithm and such that for some y G X every subword u of every
r G R* with \u\ > \r\/2 contains either y or y~l, then X — {y} generates a

free subgroup in T.

The proof of this proposition will follow from Lemma 4.2 below.

LEMMA 4.2. For (X\ R) a finite presentation of a group T and y G X,
the following are equivalent :

• X — {y} freely generates a free subgroup of T ;

• every non trivial element uj G Fx, which represents the identity in T,
contains either y or y_1.

Proof 1) => 2) : By contraposition, suppose that there exists a non trivial
reduced element u G Fx-{y} such that ÜJ — e (where uj is the canonical

projection of co in T), then X — {y} does not freely generate a free subgroup
in r.

2) =^> 1): Let uj\, uj2 G Fx_{};} be two reduced elements such that

0Ü2 G T. Then e G T. So uj\ujfx is an element of Fx-j^}
which represents the identity in T. By hypothesis, this implies cj2 in

FX- Hence X— {y} freely generates a free subgroup in T.

Proof of Proposition 4.1. By Lemma 4.2, it is sufficient to show that every
non trivial reduced word on F^ which represents the identity in T contains

either y or y_1. By assumption, T (X\ R) satisfies a Dehn algorithm, so

such a word contains at least one half of a relator r in R which contains at

least one occurrence of y or y"1.
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The interest of this proposition appears when we replace "having a Dehn's

algorithm" by "satisfying the small cancellation condition C"(l/6)", because

C7(l/6) and the fact that every subword u of any relation r with | u I > M/2
contains at least one y or y-1 are easy to check on a given presentation.

Unfortunately, as explained before, it is not known if the small cancellation

hypothesis is generic, so we need other sufficient conditions to ensure that

X— {y} generates a free subgroup in T.

PROPOSITION 4.3. Let T (X \ R) be a finite presentation with k

generators and I relations, which is (c^xq)-balanced for some 0 < e < 1/k
and some xo G X, and which satisfies a 6 -condition such that 9 < e/(:2 — e).
Then X — {xo} freely generates a free group in T.

To prove the proposition we need the following lemma and the following
notations. For a cell f of the diagram, we denote by lnt(f) (resp. by Ext(ft))
the number of edges of f which are internal to the diagram (resp. which are
on the border of the diagram). We denote also by #(/•) the total number of
edges of the cell f.

LEMMA 4.4. Let F (X\R) be a finite presentation of a group T which
satisfies a 0-condition for some 0 <6 < I, then for every reduced diagram,
there exists a 2-cell f of A satisfying

26
Int(f) <—#(f)

Proof. First we prove it for simple diagrams. Let e 20/{I+6). Because
the diagram is simple we have the following equalities :

I) yy Extifi) E(A)|<9A|,
/

II) yy Int(fi)27(A), because every internal edge belongs to two different
I

cells.

So we get:

#(A)
l- yyintifd+ y^Exm- 1

i

To obtain a contradiction, we suppose that every cell f of one diagram A
is such that (l/e)/nr(/}) > #(/). Then we have
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~ Ç lnt(fd>]T #(/•) #(A) +^i i i

whence ^ J2iInt(fi)>#(A) or ^/(A) > #(A). Since e 20/(1 + 0), we
obtain /(A) > 9#(A), which contradicts the 0-condition.

In fact, if the reduced diagram A is not simple, it is a union of simple
diagrams linked by bridges. So each of its parts, which is a simple diagram,
defines another reduced diagram (relative to another word), so the inequality
holds for every part of A which is a simple diagram. We conclude by saying
that increasing the number of external edges does not affect the inequality.

Proof of 4.3. By Lemma 4.2, it is sufficient to prove that the (e,xo)-
balanced and 6 -conditions imply that every non trivial reduced word in
which vanishes in T contains at least one x^1.

Let us choose such a word uj and A a reduced diagram of uj By Lemma
4.4, there exists a cell / with border equal to one r G R*, such that

O/D 0/1

intif) < T+~ë#(f)TT0|r| < e'r' ~ Hxo^ '

because 6 < e/(2 — e). As there are more occurences of xo or x0 than the

renumber of internal edges, it means that some occurrences of xq or x0
1 will

be external edges, i.e. will be in the border of A which is u.

We are now able to prove the main theorem.

Proof of theorem 1.1. By Proposition 4.3, for a finite presentation (X|/?),
we know that being (e.vo)-balanced and satisfying a 6-condition is sufficient

to ensure that X — {xo} freely generates a free subgroup in T. But by

Corollary 3.2 and [13, Theorem 2], these two conditions are generic and so

is the conjunction of these two conditions.

5. Spectral estimates for adjacency operators on Cayley graphs

The existence of a free subgroup generated by X — {xo} gives an upper
bound for the spectral value of the adjacency operator on the Cayley graph of

r ~ associated with the symmetric generating system S X UX~l.
We briefly recall some definitions and notations. The Cayley graph G(r, X)

of r associated with S has its set of vertices in bijection with T and two
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vertices g\ and g2 are linked by an edge if and only gflg2 £ S. A graph is

completely determined by its adjacency operator and, in the case of Cayley

graphs, the adjacency operator hs can be expressed in terms of the right
regular representation p acting on Z2(F) as

s(ES

The spectral properties of hs capture some information about the pair

(r,5 lUI_1). For example, Kesten proved

THEOREM (Kesten [10], [9]). Let T be a finitely generated group, let X
be a finite generating system and set S X U X~~1.

a) The following are equivalent:
0 IMI l;

ii) r is amenable.

b) Assume that #X >2; then
1 < ||^s||- Equality holds if and only if

T is isomorphic to the free group generated by X.

This enables us to give an easy proposition which was pointed out to us

by Pierre de la Harpe.

PROPOSITION 5.1. Let r= (X\R) be a finite presentation of a group T
with #X >2. If X OX 1 0 and if there exists aq G X such that X — {jcq }
generates a free subgroup in T then

< |N, < vwxT^i + i
#X - 11 511 - #x

Proof The first inequality is just Kesten's. To prove the second one, set
X' X — {xo}, S1 X' U (X')~l. Then we can write

(#S)hs — p(xo) + p(x0)
1

+ ^ p(s).
s^zS'

As X' freely generates a free group, by Kesten's result, we obtain that

|5>) 2y/2(#X') - 1 : 3

So

\\(#S)hs\\ < 2+||y^/?0) 2 + 2a/2(#A) - 3

s(E.S'
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And as Ini 1 0, #5 2#X and we get

The last proposition and Theorem 1.1 permit us to give generic upper
bounds for ||/&s||. Note that this upper bound is non trivial only for #X > 3.

COROLLARY 5.2. For a presentation F (X | R) with #X k > 3 arcd

#R m fixed, the inequalities < ||^|| < V2(#x>-3+i are generically
true.

Proof. Let x,y G A. Since k>3, there exists xo G X distinct from a and

y. By Theorem 1.1, the subgroup generated by X — {xo} is generically free;
in particular xy e in T. This shows that, generically, X HX~l 0. The

corollary follows then by combining Theorem 1.1 with Proposition 5.1.

It was proved by Grigorchuk [7, Theorem 7.1] that for any fixed e > 0,

any group satisfying the small cancellation hypothesis C'{ 1/6) and such that

the length of every relation is sufficiently large satisfies

V2W) - 1 VffîX) - 1

*x <IM< *x +t-

This corresponds to the intuitive idea that when the relations are long and do

not cancel too much, the Cayley graph looks like a tree in some ball of large
radius.

Champetier (in [4]) generalised this theorem, by replacing the small

cancellation C'(l/6), by a weaker condition defined by:

Definition (Champetier). A finite presentation (xj:,... ,x& | ri,..., rm)

satisfies the A(C) condition for C > 0, if for every word to in representing
the identity in (X|Ä), there exists a diagram À representing uj such that, if
there are // 2-cells contained in À having the relation rt as border, then

m

]T/i|n| <
i= 1
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With that definition, the precise statement of Champetier's theorem is :

THEOREM (Champetier). Let C be a positive constant. For every e > 0,

there exists an integer no such that for every presentation T (X\R), with

#R m, satisfying A(C) and no < inf{|r| | r G R}, the following inequalities

hold :

Œ<|Wâ(l + |) CW) -1
#X -11 - v 2 #X

Assume the presentation satisfies a 6-condition: then /(A) < A)

0(/(A) + for any reduced diagram associated with tu. As

m

5T'ir<i #(/) < 27(A) + E(A),
fcl 2-cell /CA

29
1-t

theorem and the genericity of the 6 -condition imply :

it is easy to see that the 6-condition implies + 1). So Champetier's

COROLLARY 5.3. For every e > 0, every fixed #X k and every fixed
#R m, ||/zf|| is generically close to

REFERENCES

[1] Arzhantseva, G. and A. Ol/shanskii. Generality of the class of groups in
which subgroups with a lesser number of generators are free (Russian).
Mat. Zametki 59 no. 4 (1996), 489-496.

[2] BENDER, E. A. Central and local limit theorems applied to asymptotic enumer¬
ation. J. Comb. Theory, Ser. A 15 (1973), 91-111.

[3] CHAMPETIER, C. Introduction à la petite simplification. Proceedings of the

congress 'Cayley graphs', École Normale Supérieure de Lyon, France,
13-15 décembre 1993.

[4] Cocroissance des groupes à petite simplification. Bull. London Math. Soc.
25 (1993), 438-444.

[5] Propriétés statistiques des groupes de présentation finie. Adv. Maths. 116
(1995), 197-262.

[6] Cherix, P.-A. Generic result for the existence of free semi-group. In : Séminaire
de théorie spectrale et géométrie, no. 13, Université de Grenoble I, Institut
Fourier (1994-1995), 123-133.

[7] GRIGORCHUK, R. Symmetrical random walks on discrete groups. Multicompo-
nent random systems (1978), 285-325.

[8] GROMOV, M. Hyperbolic groups. In: Essays in Group Theory, S.M. Gersten
Ed. M.S.R.I. Publ. 8 (1987), 75-263.



22 P-A. CHERIX AND G. SCHAEFFER

[9] KESTEN, H. Full Banach mean values on countable groups. Math. Scand. 7

(1959), 146-156.

[10] Symmetric random walks on groups. Trans. Amer. Math. Soc. 92 (1959),
336-354.

[11] LYNDON, R. E. and RC. SCHUPP. Combinatorial Group Theory. Springer, 1977.

[12] MAGNUS, W. Über diskontinuierliche Gruppen mit einer definierenden Relation.
J. Reine Angew. Math. 163 (1930), 141-163.

[13] Ol'shanskii, A. Almost every group is hyperbolic. International J. of Algebra
and Computation 2 (1992), 1-17.

[14] STREBEL, R. Small cancellation groups. Sur les groupes hyperboliques d'après
Mikhael Gromov, E. Ghys and P. de la Harpe Ed. Progr. Math. 83 (1990),
227-273 Birkhaûser (Boston).

[15] TITS, J. Free subgroups in linear groups. Journal of Algebra 20 (1972), 250-
270.

(Reçu le 17 octobre 1997)

Pierre-Alain Cherix

School of mathematics

University of New South Wales

Sydney, 2052
Australia
e-mail : pacherix@maths.unsw.edu.au

Gilles Schaeffer

LaBRI
Université Bordeaux I
351 Cours de la Libération
33405 Talence Cedex
France
e-mail: Gilles.Schaeffer@labri.u-bordeaux.fr


	AN ASYMPTOTIC FREIHEITSSATZ FOR FINITELY GENERATED GROUPS
	...
	1. Introduction
	2. Some definitions
	3. About genericity
	4. SOME SUFFICIENT CONDITIONS FOR THE EXISTENCE OF FREE SUBGROUPS
	5. Spectral estimates for adjacency operators on Cayley graphs
	...


